Журнал прикладной химии. 2020. Т. 93. Вып. 4

УДК 536.42; 549.29

ПОЛУЧЕНИЕ НАНОПОРОШКОВ ГРАФИТОПОДОБНОГО НИТРИДА УГЛЕРОДА И ИХ ФОТОКАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ ПОД ДЕЙСТВИЕМ ВИДИМОГО СВЕТА

© М. И. Чебаненко¹, Н. В. Захарова², В. И. Попков¹

 ¹ Физико-технический институт им. А. Ф. Иоффе, 194021, г. Санкт-Петербург, ул. Политехническая, д. 26
² Санкт-Петербургский государственный технологический институт (технический университет), 190013, г. Санкт-Петербург, Московский пр., д. 26 E-mail: m_chebanenko@list.ru

> Поступила в Редакцию 7 июня 2019 г. После доработки 30 сентября 2019 г. Принята к публикации 14 декабря 2019 г.

Нанопорошки графитоподобного нитрида углерода (g-C₃N₄) синтезированы термической обработкой карбамида (мочевины) на воздухе при температуре 450-550°С в течение 30 мин и исследованы методами рентгеновской дифракции и инфракрасной спектроскопии. Методом синхронного термического анализа определены основные процессы, приводящие к формированию g-C₃N₄ из карбамида в указанных выше условиях. Установлено, что с ростом температуры обработки карбамида от 450 до 550°С наблюдается рост удельной поверхности порошков с 43.3 до 58.6 $M^{2} \cdot c^{-1}$, а также увеличение размеров кристаллитов графитоподобного нитрида углерода по кристаллографическому направлению (002) от 2.8 до 4.1 нм. Полученные порошки графитоподобного нитрида углерода по результатам сканирующей электронной микроскопии и низкотемпературной адсорбции азота имеют мезопористую структуру и характеризуются средним размером пор 6.6–13.8 нм и пористостью 0.07-0.20 см³-г⁻¹. По результатам спектроскопии диффузного отражения установлено, что нанопорошки g- C_3N_4 поглощают излучение в видимой области и имеют ширину запрещенной зоны, равную 2.9 эВ. Проведен анализ фотокаталитической активности полученного графитоподобного нитрида углерода в процессе окисления водного раствора мурексида под действием видимого света и показано, что полученные нанопорошки g-C₃N₄ обладают активностью, близкой к активности коммерческого фотокатализатора TiO₂ (AEROXIDE P25). С учетом высокой активности и низкой себестоимости полученные порошки графитоподобного нитрида углерода могут быть использованы в качестве основы новых фотокаталитических материалов.

Ключевые слова: g-C₃N₄; графитоподобный нитрид углерода; нанопорошки; карбамид; мочевина; термическая обработка; фотокатализ DOI: 10.31857/S0044461820040039

Фотокаталитические и сопряженные с ними процессы в последнее десятилетие рассматриваются в качестве одного из наиболее перспективных способов перехода к возобновляемой энергетике. Наряду с фотопреобразователями и фотоэлектрохимическими элементами фотокаталитические устройства позволяют эффективно использовать доступное солнечное излучение для его прямого перевода в электрическую энергию или энергию химических связей образующихся соединений (например, в процессе разложения воды, окисления органических веществ, выделения водорода из растворов спиртов и углеводов, связывания диоксида углерода и многих других) [1]. Таким образом, становится возможным решение целого спектра прикладных задач в области энергетики, химической технологии и защиты окружающей среды. Вместе с тем при решении этих задач возникает ряд проблем, значительная часть которых носит материаловедческий характер и связана с необходимостью физико-химического конструирования и получения новых фотоактивных веществ и материалов на их основе.

Процесс фотокатализа инициируется в гетерогенных полупроводниковых катализаторах после поглощения кванта ультрафиолетового или видимого излучения с образованием электронно-дырочной пары, при участии которой запускается серия физико-химических процессов и реакций. В качестве основы таких фотокаталитических материалов активно используется широкий круг полупроводниковых соединений, включающих гидроксиды, оксиды, сульфиды, селениды и ряд других соединений, а также композитов на их основе. В зависимости от электронного строения этих веществ — ширины запрещенной зоны, положения валентной зоны и зоны проводимости — фотокаталитические реакции могут быть индуцированы излучением как видимой, так и ультрафиолетовой области спектра. В последнем случае наибольшее распространение получили каталитические материалы на основе диоксида титана и композитов на его основе [2], которые часто используют в качестве образцов сравнения для оценки фотокаталитической активности других веществ различного состава и строения. Однако при рассмотрении вопроса эффективного использования солнечного света большую важность имеет разработка фотокаталитических материалов, которые функционируют под действием видимого света. Это связано с тем, что в спектре солнечного излучения на УФ-диапазон приходится только 4-5% энергии, в то время как на видимую часть — около 40% [3]. Среди материалов, которые проявляют активность под действием видимого излучения, можно выделить графитоподобный нитрид углерода (g-C₃N₄). Это вещество имеет гексагональную кристаллическую структуру, высокую химическую стабильность, поглощает излучение в видимой области спектра (ширина запрещенной зоны 2.7-2.9 эВ), не содержит в своем составе атомов благородных и редкоземельных металлов и проявляет необычайно высокую фотокаталитическую активность в процессах, индуцируемых действием видимого излучения [4, 5]. По указанным выше причинам графитоподобный нитрид углерода все чаще рассматривается в качестве альтернативы фотокаталитическим материалам на основе диоксида титана и активно исследуется возможность его широкого практического использования.

Основным методом получения $g-C_3N_4$ в форме нанопорошков является термолиз различных органических предшественников на воздухе или в инертной атмосфере — меламина, мочевины, тиомочевины и дициандиамида [6–9]. Однако также используются методы гидротермального и гидротермально-микроволнового синтеза из водных растворов органических предшественников, но эти методы, как правило, приводят к получению графитоподобного нитрида углерода, модифицированного кислородсодержащими группами [10, 11]. Несмотря на большое число возможных органических предшественников g-C₃N₄, чаще всего используют карбамид (мочевину), поскольку именно в этом случае достигаются наиболее высокие значения удельной поверхности продукта при прочих равных условиях проведения синтеза [12, 13]. Помимо природы предшественника на основные функциональные свойства графитоподобного нитрида углерода большое влияние оказывают температура и режим отжига. Однако систематических исследований влияния этих факторов на процесс формирования и свойства g-C₃N₄ ранее не проводилось.

Цель работы — исследование возможности получения нанопорошков g-C₃N₄ термической обработкой карбамида на воздухе и изучение их фотокаталитических характеристик в зависимости от условий синтеза.

Экспериментальная часть

Нанопорошки графитоподобного нитрида углерода $g-C_3N_4$ были получены термической обработкой карбамида CH₄N₂O (х.ч.) в воздушной среде аналогично методике [14, 15]. В результате термообработки была получена серия из трех порошков бледно-желтого цвета.

Микроструктуру полученных композиций определяли с помощью сканирующей электронной микроскопии на растровом электронном микроскопе Tescan Vega 3 SBH.

Фазовый состав полученных порошков был исследован методом рентгеновской дифрактометрии с использованием многофункционального дифрактометра Rigaku SmartLab 3 (Си_{*K*_α}-излучение, $\lambda = 0.154051$ нм). Измерения были проведены в интервале углов Брэгга 5–80° с шагом сканирования 0.01° и временем съемки в точке — 1 с.

Синхронный термический анализ выполнен в режиме дифференциальный термический анализ–термическая гравиметрия (ДТА/ТГ) в интервале температур 25–900°С с использованием дериватографа Shimadzu TG-60.

ИК-спектры образцов были получены на Фурье-ИК-спектрометре Shimadzu IRTracer-100 с приставкой НПВО Specac в диапазоне волновых чисел 350– 4000 см⁻¹ с использованием алмазного кристалла с глубиной проникновения излучения 2 мкм под углом 45°. Удельная поверхность и пористость образцов были определены методом низкотемпературной адсорбции–десорбции азота с помощью прибора Micromeritics ASAP 2020 Surface Area and Porosity Analyzer. Анализ проводили при температуре жидкого азота (77 K).

Плотность полученных образцов измеряли с помощью гелиевого пикнометра Quantachrome Ultra Pycnometer 1000 в ячейке объемом 10 см³.

Спектры ЭСДО образцов получали с использованием спектрофотометра Specord 200 в области 350–700 нм, оснащенного интегрирующей сферой, позволяющей снимать спектры относительно оптического эталона — спектралона.

Исследование фотокаталитической активности полученных образцов проводили в стеклянном реакторе при комнатной температуре под действием видимого света от линейной галогеновой лампы J118/R7s мощностью 150 Вт с использованием УФ-светофильтра (λ ≥ 420 нм). Для предотвращения неконтролируемого нагрева реакционного раствора от источника света использовалось водяное охлаждение. Перед началом эксперимента суспензию выдерживали в темноте при постоянном перемешивании в течение 50 мин для установления адсорбционно-десорбционного равновесия между красителем и фотокатализатором. Действию видимого света подвергался раствор объемом 1 л, в котором было растворено 0.03 г мурексида (NH₄C₈H₄N₅O₆) и распределено 0.1 г фотокатализатора (g-C₃N₄). Концентрацию мурексида в растворе определяли спектрофотометрически с использованием двухлучевого спектрофотометра Shimadzu UV-1800 при анализе равных объемов раствора, отбираемых каждые 30 мин после начала облучения. Фотокаталитическую активность образцов определяли на основании снижения относительной концентрации мурексида в реакционном растворе. Результаты испытания полученных в работе образцов сравнивали с результатами испытания коммерчески доступного фотокатализатора на основе диоксида титана (TiO₂) AEROXIDE P25 с удельной поверхностью 62 м²·г⁻¹; масса TiO₂ составляла 0.1 г, остальные условия эксперимента были аналогичны условиям экспериментов с g-C₃N₄. Как известно, AEROXIDE P25, в основе которого находится рутильная и анатазная форма диоксида титана, фотокаталитически активен только под действием ультрафиолетового излучения, однако в случае протекания процессов фотодеградации азосоединений, к которым относится использованный в данной работе краситель мурексид, наблюдается эффект фотосенсибилизации, проявляющийся при сорбции красителя на поверхности диоксида титана

(AEROXIDE P25). За счет эффекта фотосенсибилизации и остающегося на высоком уровне разделения электронно-дырочных пар ранее неактивный под видимым излучением AEROXIDE P25 проявляет активность на уровне известных фотокатализаторов видимого излучения, что позволило использовать его в качестве фотокатализатора сравнения.

Обсуждение результатов

Исследование характера химических и фазовых превращений, происходящих при термической обработке карбамида на воздухе, было проведено методом синхронного термического анализа (рис. 1). На основании сопоставления термических эффектов и эффектов потери массы установлено, что формирование g-C₃N₄ из карбамида происходит через следующие основные стадии [6, 16]:

I — плавление карбамида (CH₄N₂O) — узкий интенсивный эндотермический эффект при температуре 137°C, который не сопровождается потерей массы;

Рис. 1. Результаты синхронного термического анализа (ДТА-ТГ-ДТГ) порошка карбамида в воздушной атмосфере.

II — разложение карбамида до биурета $(C_2H_5N_3O_2)$ — широкий интенсивный эндотермический эффект при температуре 226°С, сопровождающийся широким интенсивным эффектом потери массы при 220°С;

III — разложение биурета до меламина $(C_3H_6N_6)$ — узкий интенсивный эндотермический эффект при температуре 234°С, сопровождающийся узким интенсивным эффектом потери массы при 230°С;

IV — разложение меламина до мелама $(C_6H_9N_{11})$ — широкий интенсивный эндотермический эффект при температуре 364°С, сопровождающийся широким интенсивным эффектом потери массы при 364°С;

V — разложение мелама до мелема ($C_6H_6N_{10}$) — малоинтенсивный эндотермический эффект при температуре 384°С, сопровождающийся малозаметным эффектом потери массы;

VI — разложение мелема до мелона $(C_6H_3N_9)$ эндотермический эффект при температуре 413°C, сопровождающийся эффектом потери массы при 419°C;

VII — разложение мелона до нитрида углерода (C₃N₄) — малоинтенсивный эндотермический эффект при температуре 445°С, сопровождающийся малозаметным эффектом потери массы.

На основании анализа полученных результатов предложена следующая схема формирования нитрида углерода из карбамида: CH_4N_2O (карбамид) $\rightarrow C_2H_5N_3O_2$ (биурет) $\rightarrow C_3H_6N_6$ (меламин) $\rightarrow C_6H_9N_{11}$ (мелам) $\rightarrow C_6H_6N_{10}$ (мелем) $\rightarrow C_6H_3N_9$ (мелон) $\rightarrow C_3N_4$ (нитрид углерода) [17, 18].

Анализ ТГ-зависимости свидетельствует о том, что выход нитрида углерода по отношению к исходному карбамиду в результате его термообработки на воздухе составляет около 2 мас%, а полное превращение заканчивается при температуре около 450°С, о чем свидетельствует отсутствие изменения массы исследуемого образца. На основании этих результатов были выбраны три температуры 450, 500 и 550°С, при которых производилась последующая термообработка порошка карбамида с целью получения нитрида углерода. Продолжительность этого процесса была

Рис. 2. Рентгеновские дифрактограммы образцов g-C₃N₄, полученных при обработке карбамида при температурах 450 (*a*), 500 (*б*) и 550°С (*в*).

выбрана на основе анализа литературных данных [14] и составила 30 мин.

Порошки, полученные термической обработкой карбамида при 450, 500 и 550°С в течение 30 мин на воздухе, исследовали методом рентгеновской дифрактометрии (рис. 2). Согласно представленным результатам на дифрактограммах всех полученных порошков фиксируются рентгеновские рефлексы при углах Брэгга ~13.1 и 27.5°, соответствующие индексам Миллера (100) и (002) графитоподобного нитрида углерода [19]. Дифракция рентгеновского излучения при этом происходит с основных структурных элементов g-C₃N₄ — трис-триазиновых блоков и сопряженных с ними ароматических колец [8].

Уширение основных линий рентгеновской дифракции g-C₃N₄ снижается с ростом температуры обработки карбамида. Средний размер области когерентного рассеяния, определенный по уширению рефлекса (002), составляет 4.1, 3.4 и 2.8 нм для температур обработки 450, 500 и 550°С соответственно. С ростом температуры обработки также повышаются интенсивности основных рентгеновских рефлексов, что свидетельствует об упорядочении кристалличе-

Физико-химические характеристики нанопорошков g-C	3IN4
---	------

Температура синтеза, °С	Пикнометрическая плотность, г [.] см ⁻³	Удельная поверхность, м ² ·г ⁻¹	Суммарный объем пор, см ³ ·г ⁻¹	Средняя ширина пор, нм	Ширина запрещенной зоны, эВ
450	2.06	43.3	0.07	6.6	2.94
500	2.07	51.9	0.09	7.5	2.95
550	2.13	58.6	0.20	13.8	2.93

ской структуры графитоподобного нитрида углерода. Это также подтверждается результатами гелиевой пикнометрии образцов $g-C_3N_4$ (см. таблицу), которые свидетельствуют о повышении плотности образцов с ростом температуры их синтеза.

Химический состав и структура поверхности синтезированных нанопорошков g-C₃N₄ была исследована методом ИК-спектроскопии (рис. 3). Интенсивные полосы поглощения при 3174 и 1631 см-1 отвечают валентным и деформационным колебаниям связей О-Н в молекулах физически сорбированной волы. Все остальные наиболее интенсивные полосы поглощения могут быть отнесены к колебаниям связей в структуре g-C₃N₄: интенсивная широкая полоса поглощения в области 3174 см⁻¹ отвечает валентным колебаниям связей N-H; интенсивная полоса поглощения при 804 см⁻¹ и малоинтенсивные полосы поглощения с максимумами при волновых числах от 1554 до 1234 см⁻¹ соответствуют деформационным и валентным колебаниям связей С-N гептазинового кольца [16]. На полученных спектрах в области волновых чисел 2260-2000 см-1 также наблюдаются шумы, связанные с присутствием в камере прибора углекислого газа (СО₂) из воздуха, которые не относятся к исследуемому образцу.

Морфология нанопорошков g-C₃N₄, полученных при термообработке при 550°С в течение 30 мин, была исследована методом сканирующей электронной микроскопии (рис. 4). Полученное вещество представляет собой субмикрометровые частицы (рис. 4, *a*, *б*), состоящие из более мелких фрагментов g-C₃N₄ с искривленной слоистой морфологией. Эти фрагменты сильно агломерированы между собой и даже после ультразвуковой обработки, использованной при подготовке образца к сканирующей электронной микроскопии, остаются в составе крупных частиц с развитой поверхностью и сравнительно высокой пористостью.

Количественные характеристики удельной поверхности и пористости полученных нанопорошков g-C₃N₄ были определены по результатам низкотемпературной адсорбции–десорбции азота (рис. 5). Полученные изотермы (рис. 5) адсорбции по форме соответствуют изотермам II типа по классификации ИЮПАК и характеризуют исследуемый материал как мезопористый. С ростом температуры синтеза графитоподобного нитрида углерода объем адсорбирующегося на поверхности нанопорошков азота растет.

Значения удельной поверхности исследуемых образцов увеличиваются от 43.3 до 58.6 м²·г⁻¹ с ростом температуры синтеза от 450 до 550°С (см. таблицу). Это изменение удельной поверхности связано с эво-

Рис. 3. ИК-спектры пропускания образцов g-C₃N₄, полученных при обработке карбамида при температурах 450 (*a*), 500 (*б*) и 550°С (*в*).

люцией поровой структуры g- C_3N_4 , о чем свидетельствует практически трехкратный рост суммарного объема пор с 0.07 до 0.20 см³·г⁻¹, а также увеличение средней ширины пор с 6.6 до 13.8 нм (см. таблицу) при указанном выше росте температуры синтеза. Эволюция поровой структуры сопровождается изменением распределения пор по размерам (рис. 5). Полученные зависимости позволяют предположить

Рис. 4. Результаты сканирующей электронной микроскопии образца g-C₃N₄, полученного при обработке карбамида при температуре 550°С.

Рис. 5. Изотермы адсорбции-десорбции и распределение пор по размерам образцов g-C₃N₄, полученных при обработке карбамида при температурах 450, 500 и 550°С.

наличие в образцах двух типов пор — с размерами 10–30 и 30–75 нм. Первые, по-видимому, располагаются между моно- и полислоями графитоподобного нитрида углерода, а вторые находятся между агломератами наночастиц g-C₃N₄. Рост объема пор с увеличением температуры синтеза графитоподобного нитрида углерода за счет более полного удаления остатков промежуточных продуктов приводит к увеличению доступной для сорбции поверхности образца. Тем самым формируется сложная пористая структура образцов и развивается его удельная поверхность.

Расчет ширины запрещенной зоны полученных нанопорошков g-C₃N₄ был выполнен на основании обработки электронных спектров диффузного отражения (рис. 6, *a*). Край полосы поглощения образцов представлен в виде суперпозиции полос, описываемых распределением Ферми–Дирака [20]. На основании математической обработки полученных спектров для всех образцов по указанной методике были рассчитаны значения Е₀ (величина расщепления орбиталей поверхностного комплекса), равные ~2.9 эВ, которые можно сопоставить с шириной запрещенной зоны твердых веществ E_{g} (см. таблицу), в то время как ширина запрещенной зоны диоксида титана составила 3.1 эВ. Изменение температуры синтеза g-C₃N₄ от 450 до 550°С существенным образом не повлияло на эту характеристику нанопорошков.

Фотокаталитическая активность нанопорошков g-C₃N₄ была исследована в реакции обесцвечивания водного раствора мурексида под действием видимого излучения (рис. 6, δ). Для определения устойчивости раствора красителя к видимому излучению был проведен эксперимент без фотокатализатора, который показал, что водный раствор мурексида не деградирует под действием видимого света. Активность исследуемых образцов анализировалась по сравнению с активностью коммерчески доступного нанопорошка диоксида титана марки AEROXIDE P25. Согласно представленным данным полное фотокаталитическое

Рис. 6. Электронные спектры диффузного отражения (*a*); результаты измерения фотокаталитической активности образцов g-C₃N₄, полученных при обработке карбамида при температурах 450, 500 и 550°C, под действием видимого света; результаты эксперимента без фотокатализатора (только раствор мурексида) и фотокаталитического эксперимента с диоксидом титана (AEROXIDE P25) (*б*).

обесцвечивание раствора мурексида в присутствии нанопорошков g-C₃N₄ происходит через 300 мин воздействия видимого света, что на 120 мин хуже, чем результат для нанопорошка AEROXIDE P25. Формы концентрационных зависимостей образцов g-C₃N₄ различаются между собой, и на протяжении фотокаталитического эксперимента скорость окисления мурексида увеличивается с ростом температуры синтеза нанопорошков в ряду 550 > 500 > 450°C. Это может быть связано с различным вкладом скоростей адсорбции реагента и десорбции продуктов фотокаталитического окисления на поверхности образцов с различной пористой структурой в суммарную скорость исследуемого процесса. Однако финальная часть концентрационных зависимостей сглаживает эту разницу в фотокаталитической активности образцов. С учетом близких значений удельных поверхностей нанопорошков g-C₃N₄ (43.3–58.6 м²·г⁻¹) и TiO₂ (62.0 м²·г⁻¹) можно заключить, что графитоподобный нитрид углерода обладает более низкой фотокаталитической активностью, чем диоксид титана. Поскольку g-C₃N₄ не содержит в своем составе атомов дорогостоящих металлов, как в случае с TiO₂, более низкие фотокаталитические характеристики нанопорошков графитоподобного нитрида углерода могут быть компенсированы экономической целесообразностью их использования в качестве основы фотокаталитических материалов.

Выводы

Проведено комплексное исследование процессов образования графитоподобного нитрида углерода в условиях термической обработки карбамида и определены оптимальные температурные режимы синтеза, обусловливающие возможность получения нанопорошков g-C₃N₄ с высокоразвитой поверхностью. Полученные результаты позволяют рассматривать указанный подход к получению графитоподобного нитрида углерода в качестве потенциальной основы технологии получения нанопорошков g-C₃N₄ с контролируемыми структурными, морфологическими, адсорбционными и фотокаталитическими характеристиками. Высокая фотокаталитическая активность полученных нанопорошков графитоподобного нитрида углерода и отсутствие в их составе дорогостоящих элементов позволяет сделать вывод о возможных перспективах практического использования графитоподобного нитрида углерода в качестве эффективной и доступной основы каталитических материалов для фотоиндуцируемых процессов возобновляемой энергетики, экологии и зеленой химии.

Благодарности

Представленные исследования были выполнены с использованием аналитического оборудования Инжинирингового центра Санкт-Петербургского государственного технологического института (технического университета).

Конфликт интересов

Н. В. Захарова заявляет, что она является ответственным секретарем Журнала прикладной химии, у остальных авторов конфликт интересов, требующий раскрытия в данной статье, отсутствует.

Информация об авторах

Чебаненко Мария Игоревна, ORCID: https:// orcid.org/0000-0001-6386-0006

Захарова Наталия Владимировна, к.х.н., ORCID: https://orcid.org/0000-0001-7974-2012

Попков Вадим Игоревич, к.х.н., ORCID: http:// orcid.org/0000-0003-3862-5041

Список литературы

- Spasiano D., Marotta R., Malato S., Fernandez-Ibañez P., Di Somma I. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach // Appl. Catal. B: Environmental. 2015. V. 170–171. P. 90–123. https:// doi.org/10.1016/j.apcatb.2014.12.050
- [2] Василевская А. К., Попков В. И., Валеева А. А., Ремпель А. А. Формирование наночастиц нестехиометрических оксидов титана ($TinO_{2n-1}$) при термообработке оксида титана и наночастиц анатаза в токе водорода// ЖПХ. 2016. Т. 89. № 8. С. 961– 970 [Vasilevskaia A. K., Popkov V. I., Valeeva A. A., Rempel A. A. Formation of nonstoichiometric titanium oxides nanoparticles ($TinO_{2n-1}$) upon heat-treatments of titanium hydroxide and anatase nanoparticles in a hydrogen flow // Russ. J. Appl. Chem. 2016. V. 89. N 8. P. 1211–1220.

https://doi.org/10.1134/S1070427216080012].

- [3] Fagan R., McCormack D. E., Dionysiou D. D., Pillai S. C. A review of solar and visible light active TiO₂ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern // Mater. Sci. Semiconductor Processing. 2016. V. 42. P. 2–14. https:// doi.org/10.1016/j.mssp.2015.07.052
- [4] Ilkaeva M., Krivtsov I., Bartashevich E., Khainakov S. A., García J. R., Díaz E., Ordóñez S. Carbon nitride assisted chemoselective C-H bond

photo-oxidation of alkylphenolethoxylates in water medium // Green Chem. Lett. and Reviews. 2017. V. 19. N 18. P. 4299–4304.

https://doi.org/10.1039/C7GC01588G

- [5] Kadi M. W., Mohamed R. M., Ismail A. A., Bahnemann D. W. Decoration of mesoporous graphitelike C₃N₄ nanosheets by NiS nanoparticles driven visible light for hydrogen evolution// Appl. Nanosci. 2018. V. 8. N 6. P. 1587–1596. https://doi.org/10.1007/s13204-018-0835-4
- [6] Schaber P. M., Colson J., Higgins S., Thielen D., Anspach B., Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel // Thermochim. Acta. 2004. V. 424. N 1–2. P. 131–142. https://doi.org/10.1016/j.tca.2004.05.018
- [7] Mo Z., She X., Li Y., Liu L., Huang L., Chen Z., Zhang Q., Xu H., Li H. Synthesis of g-C₃N₄ at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution // RSC Advances — Royal Soc. Chem. 2015. V. 5. N 123. P. 101552–101562. https://doi.org/10.1039/C5RA19586A
- [8] Wen J., Xie J., Chen X., Li X. A review on g-C₃N₄based photocatalysts // Appl. Surface Sci. 2017. V. 391. P. 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030
- [9] Zhang J.-H., Hou Y.-J., Wang S.-J., Zhu X., Zhu Ch.-Y., Wang Zh., Li Ch.-J., Jiang J.-J., Wang H.-P., Pan M., Sua C-Y. A facile method for scalable synthesis of ultrathin g-C₃N₄ nanosheets for efficient hydrogen production // J. Mater. Chem. A. 2018. V. 6. N 37. P. 18252–18257. https://doi.org/10.1039/C8TA06726K
- [10] Ming L., Yue H., Xu L., Chen F. Hydrothermal synthesis of oxidized g-C₃N₄ and its regulation of photocatalytic activity // J. Mater. Chem. A. 2014. V. 2. N 45. P. 19145–19149.

https://doi.org/10.1039/C4TA04041D

- [11] Khan A., Alama U., Razaa W., Bahnemannbc D., Muneer M. One-pot, self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C₃N₄ composite with enhanced photocatalytic activity under visiblelight irradiation // J. Phys. Chem. Solids. 2018. V. 115. P. 59–68. https://doi.org/10.1016/j.jpcs.2017.10.032
- [12] *Kharlamov A., Bondarenko M., Kharlamova G., Gubareni N.* Features of the synthesis of carbon nitride oxide (g-C₃N₄)O at urea pyrolysis // Diamond

and Related Mater. 2016. V. 66. P. 16–22. https://doi.org/10.1016/j.diamond.2016.03.012

- [13] Chidhambaram N., Ravichandran K. Single step transformation of urea into metal-free g-C₃N₄ nanoflakes for visible light photocatalytic applications // Mater. Lett. 2017. V. 207. P. 44–48. https://doi.org/10.1016/j.matlet.2017.07.040
- [14] Dong F., Wang Zh., Sun Y., Hob W.-K., Zhang H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity // J. Colloid Interface Sci. 2013. V. 401. P. 70–79. https:// doi.org/10.1016/j.jcis.2013.03.034
- [15] Dong F., Liwen Wu L., Sun Y., Fu M., Wu Zh., Lee S. C. Efficient synthesis of polymeric g-C₃N₄ layered materials as novel efficient visible light driven photocatalysts // J. Mater. Chem. 2011. V. 21. N 39. P. 15171–15174. https://doi.org/10.1039/c1jm12844b
- [16] Xu J., Li Y., Peng Sh., Lu G., Li Sh. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: The effect of the pyrolysis temperature of urea // Phys. Chem. Chem. Phys. 2013. V. 15. N 20. P. 7657. https:// doi.org/10.1039/c3cp44687e
- [17] Lotsch B. V., Schnick W. Thermal conversion of guanylurea dicyanamide into graphitic carbon nitride via prototype CN_x precursors // Chem. Mater. 2005.
 V. 17. P. 3976–3982. https://doi.org/10.1021/cm050350q
- [18] Zhang Y., Liu J., Wua G., Chen W. Porous graphitic carbon nitride synthesized via directly polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production // Nanoscale. 2012. V. 4. P. 5300–5303. https://doi.org/10.1039/C2NR30948C
- [19] Ye S., Wang R., Wu M.-Z., Yuan Y.-P. A review on g-C₃N₄ for photocatalytic water splitting and CO₂ reduction // Appl. Surface Sci. 2015. V. 358. P. 15–27. https://doi.org/10.1016/j.apsusc.2015.08.173
- [20] Соснов Е. А., Малков А. А., Малыгин А. А. Новый вариант обработки электронных спектров диффузного отражения // ЖФХ. 2009. Т. 83. № 4. С. 746– 752 [Sosnov E. A., Malkov A. A., Malygin A. A. A new approach to processing electronic diffuse reflectance spectra // Russ. J. Phys. Chem. A. 2009. V. 83. N 4. P. 642–648.

https://doi.org/10.1134/s0036024409040219].