= КАТАЛИЗ =

УДК 542.973:544.478-03:547.31/-39

КОНВЕРСИЯ ДИМЕТИЛОВОГО ЭФИРА В ОБОГАЩЕННУЮ ТРИПТАНОМ СМЕСЬ ЖИДКИХ УГЛЕВОДОРОДОВ: ВЛИЯНИЕ ПРИРОДЫ МОДИФИКАТОРА И РЕЖИМНЫХ ПАРАМЕТРОВ

© 3. М. Матиева, Ю. М. Снатенкова, Н. В. Колесниченко, А. Л. Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, г. Москва, Ленинский пр., д. 29 E-mail: mzm@ips.ac.ru

> Поступила в Редакцию 17 февраля 2020 г. После доработки 18 мая 2020 г. Принята к публикации 9 июня 2020 г.

Исследовано влияние активного элемента в составе катализатора алкилирования, входящего в состав комбинированного катализатора получения из диметилового эфира жидких углеводородов с повышенным содержанием триптана. Показано, что при оптимальных режимных параметрах (температура 340°С, давление 10 МПа и массовая скорость по диметиловому эфиру 4 ч⁻¹) на комбинированном катализаторе в виде физической смеси катализаторов (средний размер зерна 2–4 мм) синтеза низиих олефинов на основе цеолита HZSM-5, модифицированного Mg, и алкилирования на основе цеолита HY, модифицированного La и Pd, получена с высокой селективностью смесь жидких углеводородов, содержащая более 8.5 мас% триптана.

Ключевые слова: *цеолит HZSM-5; цеолит HY; диметиловый эфир; жидкие углеводороды; триптан* DOI: 10.31857/S0044461820080174

Каталитический процесс превращения метанола в смесь алифатических и ароматических углеводородов на цеолите HZSM-5 (МТG-процесс) интенсивно разрабатывается и доведен до промышленного внедрения [1]. После разработки одностадийного способа получения диметилового эфира, который является промежуточным продуктом превращения ненефтяного сырья в ценные химические продукты, более перспективным становится процесс получения жидких углеводородов из синтез-газа через диметиловый эфир [2]. Интерес к этой области исследований постоянно растет [3-7], особенно в вопросах, касающихся получения высокооктанового экологически чистого автомобильного топлива, обогащенного изопарафинами [8]. Изопарафины с высоким октановым числом считаются идеальными компонентами углеводородного топлива, полное сгорание которых достигается благодаря высокому соотношению водорода и углерода в их составе. Наиболее ценным высокооктановым компонентом бензина среди C_5 – C_8 изопарафиновых углеводородов является триптан (2,2,3-триметилбутан). Благодаря высокоразветвленной структуре и высокому октановому числу, равному 112, триптан особенно эффективен для замещения ароматических компонентов в топливе [8, 9]. В настоящий момент не существует приемлемого способа его получения, который можно было бы рекомендовать для промышленной реализации, вследствие невысоких значений конверсии диметилового эфира и выхода триптана [10–15].

Ранее авторами настоящей статьи был получен жидкий синтетический продукт с содержанием

2,2,3-триметилбутана более 8.5 мас% и ароматических соединений не более 0.5 мас% на комбинированном катализаторе, состоящем из катализатора синтеза низших олефинов C_2 — C_4 и катализатора алкилирования, в довольно жестких для синтеза триптана условиях (температура 340°С и давление 10 МПа) [16]. Несмотря на практическое отсутствие в составе ароматических соединений, полученный продукт имеет расчетные октановые числа 84.5 и 82.0 по исследовательскому и моторному методам соответственно [16].

Цель работы — изучение влияния активного элемента в составе катализатора алкилирования, а также режимных параметров (температура, массовая скорость подачи диметилового эфира), схемы загрузки и среднего размера зерна катализаторов синтеза низших олефинов и алкилирования, входящих в состав комбинированного катализатора, на селективность по смеси жидких углеводородов с повышенным содержанием триптана.

Экспериментальная часть

Приготовление катализаторов. В настоящей работе использовали катализаторы алкилирования на основе цеолита У (Pd-0.75La-HY, Pd-1.1La-HY, Pd-La-Ca-HY, Rh-La-HY и РЗЭ-НУ) и катализатор синтеза низших олефинов на основе цеолита HZSM-5, модифицированного магнием (Mg-HZSM-5). Катализатор Pd-0.75La-НҮ был приготовлен по методике [17], катализатор Pd-1.1La-HY — по методике [18]. В состав катализатора РЗЭ-НУ редкоземельные элементы (РЗЭ) были введены из промышленного РЗЭ-концентрата (ТУ 1767-009-00545484-95. «Карбонаты редкоземельных металлов») методом ионного обмена по методике [17]. Катализатор Pd-La-Ca-HY был приготовлен по методике [17] с той разницей, что для приготовления катализатора с повышенным содержанием лантана (2.6 мас%) ионный обмен проводили в несколько последовательных стадий с увеличением размера катиона (Са²⁺–La³⁺– NH₄⁺) [19, 20]. Процедуру ионного обмена проводили с использованием 37.5, 135 и 26 г л⁻¹ растворов $Ca(NO_3)_2$, La(NO₃)₃ и NH₄NO₃ с сушкой в течение 12 ч и прокалкой при 500°С в течение 4 ч после каждой стадии ионного обмена. Для получения катализатора Rh-La-HY лантан вводили методом ионного обмена по методике [17], родий наносили на готовые экструдаты La-HY/Al₂O₃ из водного раствора RhCl₃. Катализатор Mg-HZSM-5 был приготовлен на основе цеолита HZSM-5, модифицированного магнием по методике [21]. Содержание оксида алюминия (связующее) во всех катализаторах составляло 30 мас%. Химический состав катализаторов представлен в табл. 1. Комбинированные катализаторы были приготовлены путем смешения гранул (средний размер зерна 2–4 мм) катализатора Mg-HZSM-5 и катализатора алкилирования (Pd-1.1La-HY или P3Э-HY) в заданном массовом соотношении.

Определение химического состава катализаторов проводили методом рентгеноспектрального флуоресцентного элементного анализа на спектрометре ARL Perform'xSequential XFR (ThermoFisherScientific, Atkinson, NH, США), оснащенном родиевой трубкой (3.5 кВт).

Методика проведения испытаний. Конверсию диметилового эфира проводили в микропилотной проточно-циркуляционной установке в среде водорода при температуре 340°С, давлении 10 МПа и массовой скорости подачи диметилового эфира 1–4 ч⁻¹ согласно методике [22]. Концентрация диметилового эфира на входе в реактор синтеза углеводородов составляла 1.0–4.0 об%.

На основании анализа исходного газа, содержащего диметиловый эфир, СО, СН₄, СО₂, H₂O, N₂, и выходящего газа, а также реакционной воды на содержание диметилового эфира рассчитывали конверсию $K_{\text{ДМЭ}}$ (%) диметилового эфира:

$$K_{\rm ДM\Im} = \frac{M_{\rm ДM\Im_{BX}} - M_{\rm ДM\Im_{Bhix}}}{M_{\rm ДM\Im_{BX}}} \cdot 100\%,$$

где $M_{\text{ДМЭ}_{\text{BX}}}$ и $M_{\text{ДМЭ}_{\text{BЫX}}}$ — количество (г) диметилового эфира на входе и выходе из установки соответственно.

Селективность по жидким углеводородам $S_{C_{5+}}(\%)$ рассчитывали по формуле

$$S_{C_{5+}} = \frac{M_{C_{5+}}}{M_{C_{5+}} - M_{C_1 - C_4}} \cdot 100\%,$$

где $M_{C_{5+}}$ — количество жидких углеводородов (г), $M_{C_1-C_4}$ — количество легких углеводородов C_1 - C_4 (г).

Общее количество углеводородов вычисляли по результатам анализа газообразных и жидких углеводородов.

Обсуждение результатов

В работе [16] получена смесь жидких углеводородов с повышенным содержанием ди- и триметилзамещенных алканов (72 мас%) из диметилового эфира в среде водорода в присутствии комбинированного катализатора с соотношением Mg-HZSM-5/Pd-1.1La-HY,

Vone Hugorop	Тип цеолита	SiO ₂ / Al ₂ O ₃	Содержание активных элементов, мас%									
Катализатор			Si	Al	La	Pd	Rh	Ce	Nd	Ca	Na	Mg
Mg-ZSM-5	ZSM-5	37	28.1	19.7						0.11	0.05	1.0
Pd-1.1La-HY [16]	Y	3.1	25.1	22.5	1.1	0.2				0.05	0.2	0.05
Pd-0.75La-HY [17]	Y	5.4	25.9	22.5	0.75	0.2				0.01	0.06	0.05
Rh-La-HY	Y	5.4	25.8	22.6	0.74	_	0.1			0.01	0.05	0.05
Pd-La-Ca-HY	Y	5.4	25.4	22.5	2.6		_			1.14	0.04	0.04
РЗЭ-НҮ	Y	4.0	27.1	22.9	2.8	_	_	4.7	2.1	1.5	0.5	0.15

Таблица 1 Химический состав изученных катализаторов

равным 1:3 (табл. 2). Полученный продукт характеризуется практическим отсутствием ароматических соединений (не более 0.5 мас%). Однако расчетные октановые числа 84.5 и 82.0 по исследовательскому и моторному методам соответственно достигаются благодаря содержанию в его составе триптана в количестве более 8.5 мас%.

Увеличение среднего размера зерна комбинированного катализатора Mg-HZSM-5/Pd-1.1La-HY (соотношение 1:3) от 1.5–2.5 до 2–4 мм не приводит к значительному изменению степени превращения диметилового эфира и селективности по жидким углеводородам (табл. 2), что свидетельствует об отсутствии внутридиффузионного торможения вследствие изменения геометрических характеристик зерна катализатора.

Снижение концентрации метанола в водной фазе (табл. 2) можно объяснить тем, что с увеличением размера зерна катализатора увеличивается реакционный путь молекул в микропорах цеолита, где в сущности и протекают все реакции, сопутствующие превращению диметилового эфира в углеводороды, в том числе и образование из диметилового эфира метанола и дальнейшие его превращения. Снижению концентрации метанола сопутствует и некоторое повышение выхода жидких углеводородов и метана (табл.2), образующегося путем гидрирования метильных групп метоксичастиц либо за счет гидридного переноса между метоксичастицами и метанолом [23].

В ходе экспериментов с различной схемой загрузки катализаторов Mg-HZSM-5 и Pd-1.1La-HY (табл. 3) было отмечено, что при послойной загрузке в случае, когда Mg-HZSM-5 расположен в верхнем слое, т. е. первым по ходу движения сырьевого потока, триптан практически не образуется. Скорее всего на Pd-1.1La-HY протекают в основном вторичные превращения образовавшихся на Mg-HZSM-5 продуктов. Такой вывод можно сделать при сравнении полученных результатов с данными по углеводородному составу продукта, полученного на Mg-HZSM-5. При переходе на комбинированный катализатор содержание ароматических углеводородов и олефинов уменьшается в 4 раза, а содержание изопарафиновых и циклических углеводородов увеличивается. По всей видимости, на кислотных центрах катализатора Pd-1.1La-HY протекает изомеризация олефинов с последующим их гидрированием на Pd-центрах. Палладий способствует также протеканию реакции гидрокрекинга и гидрирования ароматических углеводородов [24]. Послойная загрузка в случае, когда первым по ходу движения сырьевого потока расположен катализатор Pd-1.1La-HY, приводит к повышению содержания триптана в смеси жидких углеводородов от 5 до 11 мас%, однако при такой комбинации двух катализаторов селективность по жидким углеводородам существенно ниже. При переходе от катализатора Pd-1.1La-HY к комбинированному катализатору с такой схемой загрузки увеличивается содержание ароматических углеводородов от 3.6 до 10.2 мас%, которые представлены в основном метилзамещенными бензолами, в том числе дуролом (1,2,4,5-тетраметилбензол) в количестве 1 мас%. В то же время наблюдается снижение концентрации метанола в водной фазе от 39.5 до 22.4 мас%. Это свидетельствует об участии метанола в метилировании бензольного кольца. Кроме того, в газах сдувки отмечено высокое содержание метана, который образуется на Pd-центрах катализатора Pd-1.1La-HY путем гидрирования метильных групп метоксичастиц, образующихся на бренстедовских кислотных центрах цеолита, либо за счет гидридного переноса между метоксичастицами и метанолом [23].

Физическая смесь катализаторов Mg-HZSM-5 и Pd-1.1La-HY является оптимальной схемой загрузки, при которой в условиях циркуляции и высокой линейной скорости реакционного потока снижается

5
IJ
И
5
a

1210

		1.1, MUCCOBUA	arvoyub			1 L ndude o to	_			
	1	C			Ŭ	остав бензина, м	ac%			
Схема загрузки	конверсия диметило- вого эфира Кдмэ, %	селективность по жидким углеводородам S _{C5+} , мас%	Триптан, мас%	изопара- фины	н-пара- фины	циклические углеводороды	оле- фины	ароматические углеводороды (в том числе дурол)	Метанол в водной фазе, %	Метан в сдувке, об%
Физическая смесь	<i>L</i> .66	88.5	5.1	72.8	17.4	5.2	1.0	4.1(0.1)	19.5	4.8
Послойная: верхний слой — Mg-HZSM-5, нижний слой — Pd-1.1La-HY	6.66	0.06	0.1	62.4	17.9	14.7	1.2	3.8 (0.2)	0.7	6.1
Послойная: верхний слой — Pd-1.1La-HY, нижний слой — Mg-HZSM-5	97.1	80.5	11.1	67.1	13.3	7.4	2.0	10.2 (1.0)	22.4	27.7
Mg-HZSM-5	9.99	90.5		55.9	13.3	11.8	4.5	15.2 (1.0)	2.0	4.1
Pd-1.1La-HY	94.0	82.5	13.5	75.4	14.4	5.6	1.0	3.6 (0.0)	39.5	21.0

вклад вторичных реакций, характерных для варианта послойной загрузки катализаторов. Такая комбинация катализаторов позволяет достигать содержания триптана в полученном продукте более 5 мас% при высокой активности (99.7%) и селективности по жидким углеводородам более 88 мас% (табл. 3).

Результаты изучения влияния массовой скорости подачи диметилового эфира на селективность образования углеводородов С5+ в присутствии комбинированного катализатора с соотношением катализаторов Mg-ZSM-5/Pd-1.1La-HY, равным 1:3 (механическая смесь, средний размер зерна 2-4 мм), показали (рис. 1), что с уменьшением этого параметра от 4 до 1 ч⁻¹ незначительно уменьшается селективность по жидким углеводородам и изопарафинам. Более значительное влияние массовая скорость оказывает на выход триптана. Содержание его в жидком продукте значительно уменьшается с уменьшением массовой скорости (т. е. с увеличением времени контакта) (рис. 1). Как было показано [16], образованию триптана способствует малое время контакта, поскольку в этом случае создаются условия, благоприятные для образования триптана (более быстрое протекание реакции метилирования низших олефинов, первичных продуктов конверсии диметилового эфира, по сравнению с реакциями переноса водорода, обрывающими цепь с образованием низших алканов). Повышение содержания в жидком продукте метилзамещенных бензолов с уменьшением массовой скорости сопровождается понижением содержания метанола в водной фазе продукта. Это свидетельствует об участии метанола в метилировании бензольного кольца,

что согласуется с результатами, приведенными в [25], согласно которым цеолиты типа пентасила проявляют максимальную активность в алкилировании толуола в ароматическое кольцо.

Оптимальной скоростью подачи сырья для получения с высокой селективностью смеси жидких углеводородов, содержащей триптан более 8.5 мас%, является массовая скорость по диметиловому эфиру, равная 4 ч⁻¹.

Результаты изучения влияния температуры на селективность по смеси углеводородов С5+, полученной в присутствии комбинированного катализатора с соотношением катализаторов Mg-ZSM-5/Pd-1.1La-HY, равным 1:3 (физическая смесь, средний размер зерна 2-4 мм) (табл. 4), и ее групповой углеводородный состав (рис. 2) показали, что с уменьшением температуры от 340 до 320°С повышается содержание триптана в составе жидких углеводородов от 8.5 до 15 мас% (рис. 2) и его доля в составе фракции углеводородов С₇ (62 мас%). Однако при этом существенно снижается степень превращения диметилового эфира и селективность по углеводородам С₅₊ (табл. 2). Образовавшийся при этой температуре из диметилового эфира метанол накапливается в водной фазе продукта до 30 мас%. Повышение температуры до 380°С обеспечивает практически полную конверсию диметилового эфира (99.9%). Такие условия более благоприятны для участия в синтезе углеводородов метанола, образовавшегося из диметилового эфира, что приводит к понижению его содержания в водной фазе продукта и некоторому повышению селективности катализатора. Однако в этих условиях содержание

Рис. 1. Зависимость основных показателей [селективность по жидким углеводородам и содержание в них изопарафинов (*a*), триптана и ароматических углеводородов (*б*)] конверсии диметилового эфира от массовой скорости подачи сырья в присутствии комбинированного катализатора Mg-HZSM-5/Pd-1.1La-HY (соотношение 1:3).

Таблица 4

Селективность по жидким углеводородам комбинированного катализатора Mg-ZSM-5/Pd-1.1La-HY (соотношение 1:3) и выход триптана в зависимости от температуры (массовая скорость подачи диметилового эфира 4 ч⁻¹)

Температура, °С	Конверсия диметилового эфира <i>К</i> дмэ, %	Селективность по жидким углеводородам <i>S</i> _{C5+} , мас%	Триптан, мас%	Доля триптана от углеводородов С ₇ , %	Метанол в водной фазе, мас%	Метан в сдувке, об%
320	90.8	50.0	15.0	61.6	30.2	12.8
340	99.7	75.5	8.5	33	14.5	16.9
380	99.9	77.0	1.0	11	7.0	28

Рис. 2. Зависимость группового углеводородного состава смеси C₅₊ углеводородов, полученной в присутствии комбинированного катализатора Mg-ZSM-5/Pd-1.1La-HY (соотношение 1:3), от температуры.

триптана в смеси углеводородов C_{5+} значительно уменьшается.

Оптимальной температурой для получения с высокой селективностью смеси жидких углеводородов, содержащей триптан более 8.5 мас%, является 340°С. Как было показано ранее [16], на катализаторе Pd-0.75La-HYдостигнуты сравнимые с катализатором Pd-1.1La-HYселективность по бензину (83 мас%) и содержание в нем триптана (9 мас%), при этом в водной фазе продукта было отмечено более низкое содержание метанола, не выше 27 мас% (на катали-

Таблица 5 Основные показатели конверсии диметилового эфира на катализаторах различного состава (массовая скорость подачи диметилового эфира 4 ч⁻¹)

	Voupopoug	Санастириаати	Триптан, мас%	Состав бензина, мас%					Метанол	
Катализатор	диметилового эфира Кдмэ, %	по жидким углеводородам S _{C5+} , мас%		изопа- рафины	н-пара- фины	цикли- ческие углево- дороды	оле- фины	ароматиче- ские угле- водороды	в водной фазе, мас%	Метан в сдув- ке, об%
Pd-0.75La-HY [17]	93.0	83.0	9.4	77.4	14.6	5.9	0.4	1.7	27.0	22.5
Pd-La-Ca-HY	97.1	84.5	6.0	75.6	19.1	4.9	0.3	1.0	20.5	24.5
Rh-La-HY	81.1	88.0	4.0	61.4	20.4	6.7	3.5	7.8	46.5	8.5
РЗЭ-НҮ	81.0	50.0	14.5	76.5	8.7	10.0	2.0	2.8	46.5	28.5

Рис. 3. Основные показатели [селективность по смеси жидких углеводородов и содержание в ней изопарафинов (*a*), триптана и ароматических углеводородов (*б*)] конверсии диметилового эфира на комбинированных катализаторахMg-HZSM-5/Pd-1.1La-HY и Mg-ZSM-5/P3Э-HY (соотношение 1:3).

заторе Pd-1.1La-HY ~40 мас%). С целью изучения влияния активного элемента в составе катализатора алкилирования (Me-HY) на выход триптана были приготовлены и испытаны в конверсии диметилового эфира (табл. 5) катализаторы на основе цеолита HY: Rh-La-HY, Pd-La-Ca-HY и P3Э-HY (химический состав катализаторов приведен в табл. 1).

Катализатор Pd-La-Ca-HY с повышенным содержанием лантана 2.6 мас% проявил более высокую активность в сравнении с катализатором Pd-0.75La-HY. Конверсия диметилового эфира составила 97 и 93% соответственно при селективности по жидким углеводородам 84.5 и 83 мас% соответственно (табл. 5). Однако в присутствии катализатора Pd-La-Ca-HY в составе получаемой смеси углеводородов С5+ содержание триптана составило не более 6 мас%. Введение в состав катализатора Rh в качестве гидро-дегидрирующего металла привело к повышению селективности по жидким углеводородам до 88 мас% (табл. 5). Однако при этом существенно снизилась активность катализатора до 81% и содержание триптана в составе углеводородов С5+ до 4 мас%, а содержание метанола в водной фазе продукта увеличилось до 50 мас%. Положительный эффект в отношении селективности по триптану был отмечен при модифицировании цеолита НУ редкоземельными элементами (La, Ce, Nd) (табл. 5). На катализаторе РЗЭ-НҮ (суммарное содержание РЗЭ составляет 9.6 мас%), в состав которого не входит благородный металл, было получено высокое содержание триптана в составе смеси жидких углеводородов (14.5 мас%). Однако в этом случае были отмечены низкая селективность по углеводородам C_{5+} (50 мас%) при недостаточной конверсии диметилового эфира (81%) и высокая концентрация метанола в водной фазе продукта, близкая к 50 мас%. Одна из возможных причин столь невысокой селективности может заключаться в отсутствии в составе катализатора благородного металла, предотвращающего олигомеризацию непредельных углеводородов, предшественников кокса, посредством гидрирования в парафины [26].

Катализатор РЗЭ-НҮ, в присутствии которого достигнуто высокое содержание триптана (14.5 мас%) в составе смеси жидких углеводородов, был использован в качестве алкилирующего компонента в составе комбинированного катализатора (механическая смесь, средний размер зерна 2–4 мм) Mg-ZSM-5/ РЗЭ-НҮ (соотношение 1:3) в конверсии диметилового эфира в смесь жидких углеводородов (рис. 3).

В присутствии комбинированных катализаторов Mg-HZSM-5/Pd-1.1La-HY и Mg-HZSM-5/P3Э-HY (рис. 3) получены сравнимые результаты по селективности образования жидких углеводородов и содержанию триптана в составе полученного продукта, а также по концентрации метанола в водной фазе продукта. При этом в составе смеси жидких углеводородов, полученной на Mg-HZSM-5/P3Э-HY, содержание ароматических углеводородов (9 мас%) больше, чем на Mg-HZSM-5/Pd-1.1La-HY (0.5 мас%).

Катализатор РЗЭ-НҮ, в состав которого не входит благородный металл, может использоваться в составе комбинированного катализатора для получения обогащенной триптаном смеси жидких углеводородов с высокой селективностью.

Выводы

Исследовано влияние активного элемента катализатора алкилирования, входящего в состав комбинированного катализатора получения жидких углеводородов с повышенным содержанием триптана из диметилового эфира. Показано, что катализатор РЗЭ-НҮ с повышенным содержанием редкоземельных элементов (La, Ce, Nd) может использоваться в составе комбинированного катализатора для получения триптансодержащей смеси жидких углеводородов с высокой селективностью.

Установлено, что оптимальным вариантом загрузки комбинированного катализатора Mg-HZSM-5/Me-HY является физическая смесь обоих катализаторов со средним размером зерна 2–4 мм. Такая комбинация катализаторов обеспечивает содержание триптана более 8.5 мас% и пониженное содержание ароматических соединений в составе получаемой смеси жидких углеводородов при высокой активности и селективности по углеводородам C₅₊ до 88 мас%. Для достижения этих показателей наиболее оптимальными являются температура 340°С и массовая скорость подачи диметилового эфира, равная 4 ч⁻¹.

Благодарности

Работа выполнена с использованием оборудования ЦКП «Аналитический центр проблем глубокой переработки нефти и нефтехимии» ИНХС РАН.

Финансирование работы

Исследование выполнено на базе Института нефтехимического синтеза РАН за счет гранта Российского научного фонда (проект № 17-73-30046).

Конфликт интересов

Максимов А. Л. является главным редактором Журнала прикладной химии, у остальных авторов конфликт интересов, требующий раскрытия в данной статье, отсутствует.

Информация об авторах

Матиева Зарета Муратовна, в.н.с. ИНХС РАН, к.х.н., ORCID: https://orcid.org/0000-0001-8076-5844

Снатенкова Юлия Михайловна, м.н.с. ИНХС РАН, ORCID: https://orcid.org/0000-0002-6221-4034

Колесниченко Наталия Васильевна, г.н.с. ИНХС РАН, д.х.н., проф.,

ORCID: https://orcid.org/0000-0003-2534-2624

Максимов Антон Львович, директор ИНХС РАН, д.х.н., член-корр. РАН,

ORCID: https://orcid.org/0000-0001-9297-4950

Список литературы

 Keil F. J. Methanol-to-hydrocarbons: Process technology // Micropor. Mesopor. Mater. 1999. V. 29. P. 49–66.

https://doi.org/10.1016/S1387-1811(98)00320-5

- [2] Martinez-Espin J. S., Mortén M., Janssens T. V. W., Svelle S., Beato P., Olsbye U. New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds // Catal. Sci. Technol. 2017. V. 7. N 13. P. 2700–2716. https://doi.org/10.1039/c7cy00129k
- [3] Wen Z., Wang C., Wei J. Isoparaffin-rich gasoline synthesis from DME over Ni-modified HZSM-5 // Catal. Sci. Technol. 2016. V. 6. P. 8089–8097. https:// doi.org/10.1039/c6cy01818a
- [4] Dagle R. A., Lizarazo-Adarme J. A., Gray M. J., White J. F., King D. L., Palo D. R. Syngas conversion to gasoline-range hydrocarbons over Pd/ZnO/Al₂O₃ and ZSM-5 composite catalyst system // Fuel Process. Technol. 2014. V. 123. P. 65–74. https://doi.org/10.1016/j.fuproc.2014.01.041
- [5] Jamil A. K., Muraza O., Miyake K., Ahmed M. H. M., Yamani Z. H., Hirota Y., Nishiyama N. Stable production of gasoline-ranged hydrocarbons from dimethyl ether over iron-modified ZSM-22 zeolite // Energy Fuels. 2018. V. 32. P. 11796–11801. https://doi.org/10.1021/acs.energyfuels.8b03008
- [6] Li J. Q., Han D. Z., He T., Liu G. B., Zi Z. Y., Wang Z. Q., Wu J. L., Wu J. H. Nanocrystal H[Fe,Al]ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline // Fuel Process. Technol. 2019. V. 191. P. 104–110. https://doi.org/10.1016/j.fuproc.2019.03.029
- [7] Wen Z. Y., Li Z. M., Ge Q. J., Zhou Y., Sun J., Abroshan H., Li G. Robust nickel cluster@Mes-HZSM-5 composite nanostructure with enhanced catalytic activity in the DTG reaction // J. Catal. 2018. V. 363. P. 26–33.

https://doi.org/10.1016/j.jcat.2018.04.010

[8] Хаджиев С. Н., Магомедова М. В., Пересылкина Е. Г. Синтез триптана из метанола и диметилового эфира (обзор) // Нефтехимия. 2016. Т. 56. № 3. С. 198–213. https://doi.org/10.7868/S0028242116030060 [*Khadzhiev S. N., Magomedova M. V., Peresypkina E. G.* Triptane synthesis from methanol and dimethyl ether: A review // Petrol. Chem. 2016. V. 56. N 3. P. 181–196.

https://doi.org/ 10.1134/S0965544116030063].

- [9] Пат. РФ 2296735 (опубл. 2007). Способ получения триптана.
- [10] Bercaw J. E., Hazari N., Labinger J. A., Scott V. J., Sunley G. J. Selective methylative homologation: An alternate route to alkane upgrading // J. Am. Chem. Soc. 2008. V. 130. P. 11988. https://doi.org/10.1021/ja803029s
- [11] Pat. USA 7825287 B2 (publ. 2010). Process for production of triptane and triptene.
- [12] Simonetti D. A., Ahn J. H., Iglesia E. Catalytic cohomologation of alkanes and dimethyl ether and promotion by adamantane as a hydride transfer cocatalyst // ChemCatChem. 2011. V. 3. P. 704–718. https://doi.org/10.1002/cctc.201000383
- [13] Ahn J. H., Temel B., Iglesia E. Selective homologation routes to 2,2,3-trimethylbutane on solid acids // Angew. Chem. 2009. V. 48. P. 3814–3816. https:// doi.org/10.1002/anie.200900541
- [14] Simonetti D. A., Carr R. T., Iglesia E. Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C1 species // J. Catal. 2012. V. 285. P. 19–30. https://doi.org/10.1016/j.jcat.2011.09.007
- [15] Schaidle J. A., Ruddy D. A., Habas S. E. Conversion of dimethyl ether to 2,2,3-trimethylbutane over a Cu/BEA catalyst: Role of Cu sites in hydrogen incorporation // ACS Catal. 2015. V. 5. P. 1794–1803. https:// doi.org/10.1021/cs501876w
- [16] Матиева З. М., Снатенкова Ю. М., Колесниченко Н. В., Герзелиев И. М., Максимов А. Л. Конверсия диметилового эфира в обогащенную триптаном смесь жидких углеводородов в присутствии комбинированных катализаторов // Изв. АН. Сер. хим. 2020. № 4. С. 691–696 [Matieva Z. M., Snatenkova Yu. M., Kolesnichenko N. V., Gerzeliev I. V., Maxsimov A. L. Synthesis of liquid hydrocarbons enriched with triptane via dimethylether conversion over combined catalyst // Russ. Chem. Bull., Int. Ed. 2020. V. 69. N 4. P. 691–696. https://doi.org/10.1007/s11172-020-2819-2].
- [17] Матиева З. М., Курумов С. А., Снатенкова Ю. М., Колесниченко Н. В., Бондаренко Г. Н., Хаджиев С. Н. Конверсия диметилового эфира в смесь жидких углеводородов с повышенным содержанием триптана // ЖПХ. 2019. Т. 92. № 2. С. 204– 212. https://doi.org/10.1134/S0044461819020105 [Matieva Z. M., Kurumov S. A., Snatenkova Yu. M., Kolesnichenko N. V., Bondarenko G. N., Khadzhiev S. N. Conversion of dimethyl ether to a mixture of liquid hydrocarbons with increased triptane content // Russ. J. Appl. Chem. 2019. V. 92. N 2. P. 235–243. https://doi.org/10.1134/S1070427219020101].

- [18] Пат. РФ 2482917 (опубл. 2013). Способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов.
- [19] Шириязданов Р. Р. Суперкислотные цеолитные каталитические системы для алкилирования изобутана олефинами // Ползуновский вестн. 2010. № 3. С. 121–126.
- [20] Sievers C., Liebert J. S., Stratmann M. M., Olindo R., Lercher J. A. Comparison of zeolites lax and lay as catalysts for isobutane/2-butene alkylation // Appl. Catal. A. 2008. V. 336. P. 89–100. https:// doi.org/10.1016/j.apcata.2007.09.039
- [21] Горяинова Т. И., Бирюкова Е. Н., Колесниченко Н. В., Хаджиев С. Н. Изучение магнийсодержащих цеолитных катализаторов синтеза низших олефинов из диметилового эфира // Нефтехимия. 2011. Т. 51. № 3. С. 181–185 [Goryainova T. I., Biryukova E. N., Kolesnichenko N. V., Khadzhiev S. N. Study of magnesium-containing zeolite catalysts for the synthesis of lower olefins from dimethyl ether // Petrol. Chem. 2011. V. 51. N 3. P. 169–173. https:// doi.org/10.1134/S096554411101004X].
- [22] Ке Zh., Курумов С. А., Su X., Снатенкова Ю. М., Букина З. М., Колесниченко Н. В., Wu W., Хаджиев С. Н. Zn-модифицированные нано-ZSM-5 цеолиты, полученные методом seed-induced: взаимосвязь текстурных, кислотных и каталитических свойств в конверсии диметилового эфира в углеводороды // Нефтехимия. 2017. Т. 57. № 6. С. 658–664 [Ke Zhang, Kurumov S. A., Xiaofang Su, Snatenkova Yu. M., Bukina Z. M., Kolesnichenko N. V., Wei Wu, Khadzhiev S. N. Zinc-modified ZSM-5 nanozeolites synthesized by the seed-induced method: Interrelation of their textural, acidic, and catalytic properties in DME conversion to hydrocarbons // Petrol. Chem. 2017. V. 57. N 12. P. 1036–1042. https://doi.org/10.1134/S0965544117120179].
- [23] Schulz H., Wei M. Pools and constraints in methanol conversion to olefins and fuels on zeolite HZSM-5 // Top. Catal. 2014. V. 57. P. 683–692. https:// doi.org/10.1007/s11244-013-0225-9
- [24] Park I. S., Kwon M. S., Kang K. Y., Lee J. S., Park J. Rhodium and iridium nanoparticles entrapped in aluminum oxyhydroxidenanofibers: Catalysts for hydrogenations of arenes and ketones at room temperature with hydrogen balloon // Adv. Synth. Catal. 2007. V. 349. N 11–12. P. 2039–2047. https:// doi.org/10.1002/chin.200751048
- [25] Исаков Я. И., Исакова Т. А., Миначев Х. М. Алкилирование толуола метанолом на высококремнеземных цеолитах ЦВМ // Нефтехимия. 1986. Т. 26. № 3. С. 335–342.
- [26] Ma T., Imai H., Suehiro Y., Chen C., Kimura T., Asaoka S., Li X. Selective synthesis of gasoline from syngas in near-critical phase // Catal. Today. 2014. V. 228. P. 167–174. https://doi.org/10.1016/j.cattod.2013.10.037