= КАТАЛИЗ =

УДК 66.095.92

СИНТЕЗ ФИШЕРА–ТРОПША В ПРИСУТСТВИИ КАТАЛИЗАТОРОВ НА ОСНОВЕ НЕМОДИФИЦИРОВАННЫХ ЖЕЛЕЗНЫХ РУД

© М. В. Куликова, М. В. Чудакова, А. Б. Куликов, А. Ю. Крылова

Институт нефтехимического синтеза им. А. В.Топчиева РАН, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29 E-mail: m kulikova@ips.ac.ru

> Поступила в Редакцию 23 мая 2020 г. После доработки 28 августа 2020 г. Принята к публикации 4 сентября 2020 г.

Описано использование товарной железной руды магнетитового типа и руды типа железистых кварцитов в качестве катализаторов низкотемпературного синтеза Фишера–Тропша. По результатам химического анализа руды содержали в основном магнетит железа, углерод, а также бадделеит ($ZrO_2 + HfO_2$) и гатчеттолит ($Ta_2O_5 + Nb_2O_5 + U_3O_8$). Установлено, что образцы руд, содержащие наибольшее количество железа (48–59%) и наименьшее количество серы (0.1% и менее), проявили активность в синтезе Фишера–Тропша без дополнительного модифицирования, в товарном виде. Выход жидких продуктов составлял более 100 г· m^{-3} при конверсии СО около 60% при проведении синтеза на самых активных образцах рудных катализаторов. Активность руд в синтезе Фишера–Тропша может быть связана с наличием в данных природных минеральных образованиях оксидов, которые оказывают промотирующий эффект при использовании руд в качестве катализаторов.

Ключевые слова: синтез Фишера–Тропша; гетерогенный катализ; синтетические жидкие углеводороды; железосодержащие руды; магнетит DOI: 10.31857/S0044461821010151

Традиционно синтетические углеводороды получают из таких сырьевых источников, как природный газ, уголь, горючие сланцы, торф и т. д., но из-за мировой экономической и экологической ситуации весьма актуальным становится разработка эффективного процесса переработки биомассы, в том числе различных биологических отходов,* с получением компонентов экологически чистых моторных топлив [1, 2]. Процесс переработки биомассы осуществляют в две стадии, первая из которых — газификация твердого сырья с получением синтез-газа (смеси оксида углерода и водорода), вторая — конверсия синтез-газа в жидкие углеводороды, так называемую синтетическую нефть. Такая нефть выгодно отличается от природного аналога постоянством состава и отсутствием серо- и азотсодержащих соединений.

Основным методом получения углеводородов из синтез-газа является синтез Фишера–Тропша (CO + H₂ = [CH₂] + H₂O) [3, 4]. Реакция протекает в присутствии железных или кобальтовых катализаторов. В присутствии железных катализаторов образуются углеводородные смеси, обогащенные олефинами, кобальтовые катализаторы способствуют селективному образованию парафинов [5]. Следует

^{*} Seifkar N., Lu Xiaoming, Malina R., Barrett S., Herzog H. Biomass to Liquid Fuels Pathways: Techno-Economic Environmental Evaluation. An MIT Energy Initiative Report. March 2015 MIT Energy Initiative, 77 Massachusetts Ave., Cambridge, MA 02139, USA. https://sequestration.mit.edu/ bibliography/BTL%20final%20compiled.pdf

отметить также экономическую эффективность использования железных катализаторов, чья себестоимость заметно ниже цены кобальтовых контактов.

Железные катализаторы применяются в промышленности для реализации двух вариантов синтеза Фишера–Тропша (низко- и высокотемпературного). Высокотемпературный синтез проводят при ~300°С в псевдоожиженном слое железного катализатора, который представляет собой промотированный оксид железа. Основные продукты синтеза — олефины бензиновой и дизельной фракций, которые используют как сырье для получения поверхностно-активных веществ, наполнителей и т. д.

Низкотемпературный синтез представляет собой первую стадию синтеза средних дистиллятов из синтез-газа. Его осуществляют при 200–250°С в стационарном слое осажденных катализаторов, содержащих в качестве промоторов оксиды K, Al, Si и др. [6]. Метод приготовления катализаторов этого типа довольно сложный и затратный. Основными продуктами являются длинноцепочечные парафины (синтетические воски), которые подвергают гидроизомеризации с целью получения средних дистиллятов (дизельного топлива и реактивного керосина).

В низкотемпературном синтезе Фишера–Тропша железорудные катализаторы в промышленной практике не используются. Без специального промотирования на железных катализаторах высокотемпературного синтеза Фишера–Тропша не образуются такие продукты, как твердые парафины (воски). Введение в руду традиционных оксидных промоторов железных катализаторов (оксидов кремния, алюминия, магния и др.), позволяющих увеличить длину цепи образующихся углеводородов, технически затруднено и экономически не оправдано.

На территории Российской Федерации находятся крупные месторождения природных минеральных образований — руд, в составе некоторых из них содержатся соединения, которые являются промоторами для железных катализаторов синтеза Фишера–Тропша (оксиды магния, алюминия, калия и др.), поэтому катализаторы на основе природных минеральных образований могут быть перспективными для использования в процессе получения углеводородов из синтез-газа.

Цель работы — изучение влияния состава катализаторов — немодифицированных товарных железных руд месторождений России — на протекание низкотемпературного синтеза Фишера–Тропша.

Экспериментальная часть

В качестве катализаторов синтеза Фишера–Тропша использованы железные руды, химический и минеральный состав которых приведен в табл. 1 и 2. Элементный состав основных компонентов руд был определен методом атомной эмиссионной спектрометрии с возбуждением спектров в индуктивно связанной плазме (ICP-AES) с использованием атомно-эмиссионного спектрометра с индуктивно связанной плазмой Optima-4300DV (Perkin Elmer). Содержание оксида кремния определяли фотометрическим методом.

Элементный состав основных компонентов железных руд (масло)												
№ образца	Fe	Mn	Si	Al	Mg	Ca	K	Na	Ti	V	Р	S
1	45.4		13.40	3.15	2.10	4.99	_	_		0.10	0.13	3.70
2	19.2	0.21	12.90	5.74	2.02	4.94	0.29	1.40	5.20	0.13	0.78	0.29
3	48.2	0.33	6.95	1.56	10.5	0.38			0.10		0.01	0.12
4	58.8	0.47	0.81	1.60	3.14	3.22	0.2	0.12	0.64	0.10	0.10	0.02

Таблица 1 Элементный состав основных компонентов железных руд (мас%)

Элементный состав примесных компонентов железных руд (мас%; г·т ⁻¹)											
№ образца	Ni	Cu	Zn	Sr	Ba	As	Zr	Nb	Со	C	
1	60	400	700			40			50		
2	230	100	800	240	230						
3			1000			120					
4			700	500			370	160		2900	

Таблица 2

№ образиа	руд	ные	неру	Модуль основности*		
oopuodu	главные	второстепенные	главные	второстепенные		
1	Магнетит, пирит, пирротин, мартит	Гематит, марказит, мушкетовит	Пироксен, гранат, актинолит, скапо- лит, эпидот	Кальцит, хлорит, апатит, цеолит	0.34 (кислая)	
2	Магнетит	Гематит, мартит, пи- рит	Диопсит, гранат, хлорит, кальцит, галит	Серпентин, эпидот, кварц, датолит	0.28 (кислая)	
3	Мартит, железная слюдка, гидроге- матит, гетит	Гематит, магнетит, сидерит, оксоги- дроксиды железа	Кварц, хлорит, каль- цит	Доломит, бемит, гиббсит, пирит	0.96 (самофлюсую- щаяся)	
4	Магнетит		Апатит, форстерит, кальцит, флогопит	Доломит, диопсид, клиногумит, сер- пентинит, хлорит	2.0 (основная)	

Таблица 3 Минеральный состав руды

* Модуль (коэффициент) основности представляет собой массовое отношение суммы оксидов щелочных земель (кальция, магния) к сумме оксидов кислых компонентов (кремния, алюминия), т. е. основность — это способность вещества реагировать с кислотами.

Элементный состав примесей (содержание 10⁻⁵–10⁻⁶% и менее) был определен методом массспектрометрии с индуктивно связанной плазмой (ICP-MS) с использованием масс-спектрометра с индуктивно-связанной плазмой Elan-6100 (Perkin Elmer). Содержание углерода определяли по выделению CO₂, детектируемому хроматографически. Основным компонентом примеси в составе руд являлся цинк. Были идентифицированы другие компоненты, элементный состав и содержание которых в исследуемых образцах варьировались (табл. 2).

Железо в исследуемых рудах представлено в основном магнетитом (Fe₃O₄) и гематитом (Fe₂O₃) и их разновидностями (табл. 3).

Исходные руды предварительно восстанавливали водородом (1000 ч⁻¹) в течение 24 ч при 450°С и 30 атм.

Синтез Фишера–Тропша проводили в проточной каталитической установке с фиксированным слоем катализатора в условиях непрерывной работы. Условия синтеза: давление 30 атм, температура 240–300°С, синтез-газ CO:H₂ = 1:1 (мол.), объемная скорость подачи синтез-газа 1000 ч⁻¹. Подъем температуры осуществляли ступенчато (на 20°С каждые 12 ч). После каждой стадии изотермического режима при подъеме температуры осуществляли отбор проб газообразных и жидких продуктов на анализ.

Исходный синтез-газ и газообразные продукты синтеза анализировали методом газоадсорбционной хроматографии на хроматографе Кристаллюкс-4000. Детектор — катарометр, газ-носитель — гелий. При этом использовали две хроматографические колонки. Для разделения СО и N₂ применяли колонку, заполненную молекулярными ситами CaA (3 м × 3 мм). Температурный режим — изотермический, 80°С. Для разделения СО₂ и углеводородов C₁–C₄ применяли колонку, заполненную Науег Sep R (3 м × 3 мм). Температурный режим — программированный, 80–200°С, 8 град·мин⁻¹.

Для оценки активности катализатора использовали следующие показатели: конверсия СО (процентное отношение массы прореагировавшего оксида углерода к массе СО, вошедшего в реакционную зону), выход (количество граммов продукта, полученного при пропускании через катализатор 1 нм³ синтез-газа).

Обсуждение результатов

Образцы руд № 1 и 2 не проявили заметной активности в синтезе Фишера–Тропша: конверсия СО не превышала 20% в интервале температур 240–300°С. Образцы № 1 и 2 содержали в своем составе никель и медь, т. е. металлы, способные осуществлять превращение синтез-газа: никель является катализатором

Рис. 1. Влияние температуры синтеза Фишера-Тропша на основные показатели синтеза в присутствии образцов № 3 и 4.

а — конверсия СО, б — выход жидких продуктов, *в* — выход газообразных продуктов.

метанирования CO [7, 8], а медь катализирует превращение синтез-газа в метанол.* Значительная часть каталитически активных металлов в катализаторах \mathbb{N} 1 и 2 находится в виде трудновосстанавливаемых силикатов и алюминатов (таких как гранат, пероксен, актинолит, серпентин и др.), которые, по-видимому, не подвергаются восстановлению при температуре 450°С. Сера и фосфор, которые в значительном количестве содержатся в образцах \mathbb{N} 1 и 2, дезактивируют катализаторы синтеза Фишера–Тропша. Наличие фосфора и серы в исследуемых железорудных контактах, безусловно, могло повлиять на снижение их активности.

В присутствии образцов № 3 и 4 при повышении температуры с 240 до 300°С наблюдали практически линейное увеличение конверсии СО (рис. 1, *a*). Образец № 4 был заметно активнее образца № 3,

конверсия СО на нем была выше на 10-15% во всем изученном интервале температур и при 300°С достигала почти 90%. Высокая активность образца № 4, по-видимому, объясняется большей концентрацией железа и меньшим количеством его трудновосстанавливаемых форм. Следует отметить, что образец № 4 представлял собой товарную руду (железный концентрат после обогащения), которая содержала в основном магнетит железа. Образец также содержал значительное количество магния — структурного промотора железных катализаторов синтеза Фишера-Тропша. В незначительном количестве (<1%) присутствовали промотирующие оксиды бадделеит $(ZrO_2 + HfO_2)$, гатчеттолит $(Ta_2O_5 + Nb_2O_5 + U_3O_8)$. Поскольку оксидные компоненты являются промоторами синтеза Фишера-Тропша, обнаружено их положительное влияние на активность катализаторов. Углерод, содержащийся в значительном количестве в образце № 4, может участвовать в формировании карбидов — активной фазы железных катализаторов синтеза Фишера-Тропша.

^{*} Methanol in ULLMANN'S Encyclopedia of Industrial Chemistry // Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012. P. 6. https://doi.org/10.1002/14356007. a16_465.pub3

Рис. 2. Содержание жидких углеводородов (*3a* и *4a*) и алифатических спиртов (*3б* и *4б*) в жидких продуктах в процессе синтеза Фишера–Тропша на образцах № 3 и 4 соответственно.

Превращение синтез-газа на образцах № 3 и 4 приводило к образованию жидких (углеводородов C_{5+} и одноатомных алифатических спиртов C_1-C_4) и газообразных (углеводородов C_1-C_4 и CO_2) углеродсодержащих продуктов. Для обоих катализаторов общий выход жидких продуктов (углеводородов и спиртов) при повышении температуры достигал максимума при температуре 260°С (рис. 1, δ). Во всем интервале температур более активный образец № 4 позволял получать заметно больше жидких продуктов (102 г·м⁻³), чем менее активный катализатор № 3 (64 г·м⁻³).

При температурах выше 260°С наблюдали заметное снижение выхода целевых продуктов синтеза на обоих катализаторах № 3 и 4 вследствие резкого усиления газообразования (рис. 1, в) в основном за счет образования диоксида углерода. Селективность в отношении метана при этом не превышала 6-7%. Увеличение выхода СО2 явилось, по-видимому, следствием интенсификации реакции водяного газа, протекающей на оксиде железа [9]. Очевидно, что часть карбидного железа — истинного катализатора синтеза Фишера-Тропша — окисляется водой, образующейся при протекании этой реакции особенно эффективно при 260°С (температуре, оптимальной для синтеза жидких углеводородов). Вследствие изменения состава катализатора наблюдалось изменение его селективности.

Основными жидкими продуктами конверсии синтез-газа на обоих железорудных катализаторах являлись углеводороды, доля которых составляет 80-92%(рис. 2). Состав углеводородов незначительно зависит от температуры синтеза. В смеси углеводородов преобладает фракция C₅–C₁₀ (49–64%), содержание олефинов достигает 40%.

Железные катализаторы проявляют активность в синтезе одноатомных алифатических спиртов [10].

В синтезе Фишера–Тропша, катализаторами которого выступали образцы руд № 3 и 4, доля оксигенатов (спирты С₁–С₅) не превышает 20% и снижается почти вдвое при повышении температуры с 240 до 300°С. Основным компонентом спиртовой фазы во всем интервале температур синтеза является этанол.

Выводы

Показана принципиальная возможность использования товарных немодифицированных руд в качестве активных катализаторов низкотемпературного синтеза Фишера–Тропша. Руды должны быть подобраны таким образом, чтобы они содержали помимо железа элементы, которые в традиционных железных катализаторах выполняют роль промоторов (оксиды кремния, алюминия, магния и др.). Железный концентрат после обогащения — товарная руда, содержащая в своем составе в основном магнетит, катализирует образование жидких синтетических углеводородов с выходом более 100 г ⋅ м⁻³ при конверсии СО около 60%.

Благодарности

Исследования выполнялись с использованием оборудования ЦКП «Аналитический центр проблем глубокой переработки нефти и нефтехимии» ИНХС РАН.

Финансирование работы

Работа выполнена в рамках государственного задания Института нефтехимического синтеза РАН.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Иноформация о вкладе авторов

М. В. Куликова — анализ продуктов реакции, сведение материальных балансов опытов, объяснение полученных научных закономерностей; М. В. Чудакова — проведение экспериментальных работ по синтезу Фишера–Тропша; А. Б. Куликов — проведение химического и элементного анализа руд; А. Ю. Крылова — анализ источников литературы, постановка задачи исследований.

Информация об авторах

Куликова Майя Валерьевна, к.х.н., ORCID: https://orcid.org/0000-0003-2235-8989 *Чудакова Мария Владимировна*, к.х.н., ORCID: https://orcid.org/0000-0001-9211-9970

Куликов Альберт Борисович, к.х.н.,

- ORCID: https://orcid.org/0000-0003-1756-282X Крылова Алла Юрьевна, д.х.н., проф.,
- ORCID: https://orcid.org/0000-0002-8729-419X

Список литературы

- Chae H.-J., Jeong K.-E., Kim C.-U., Jeong S.-Y. Development status of BTL (biomass to liquid) technology // J. Energy Eng. 2007. V. 16. N 2. P. 83–92. https://doi.org/10.1039/C1EE02238E
- [2] Dahmen N., Dinjus E., Dhenrich E. Renewable energy: Sustainable concepts for the energy change. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013. P. 61–65.
- [3] Mahmoudi H., Mahmoudi M., Doustdar O., Jahangiri H., Tsolakis A., Gu S., Wyszynsk M. L. A review of Fischer-Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation // Biofuels Eng. 2017. V. 2. P. 11-31. https://doi.org/10.1515/bfuel-2017-0002
- [4] J. van de Loosdrecht, Botes F. G., Ferreira A., Gibson P., Moodley D. J., Saib A. M., Visagie J. L., Weststrate C. J., Niemantsverdriet (Hans) J. W. Fischer–Tropsch synthesis: Catalysts and chemistry // Comprehensive Inorganic Chemistry II. From Elements to Applications. Reference Work. Elsevier Ltd, 2013. V. 7. P. 525–557. https://doi.org/10.1016/B978-0-08-097774-4.00729-4
- [5] Крылова А. Ю. Катализаторы синтеза Фишера– Тропша — ядро стратегии получения синтетических жидких топлив // Кинетика и катализ. 2012. Т. 53.

 $\mathbb{N}_{\mathbb{P}}$ 6. C. 790–795 [*Krylova A. Yu.* Fischer–Tropsch synthesis catalysts as the core of the strategy for obtaining synthetic liquid fuels // Kinet. Catal. 2012. V. 53. N 6. P. 742–746.

https://doi.org/10.1134/S0023158412060067].

- [6] Dry M. E. The Fischer–Tropsch process: 1950–2000 // Catal. Today. 2002. V. 71. P. 227–241. http://dx.doi.org/10.1016/S0920-5861(01)00453-9
- [7] Minyukova T. P., Itenberg I. SH., Demeshkina M. P., Shterzer N. E., Yurieva T. M. Selective methanation of carbon monoxid to purify hydrogen for fuel elements // J. Environ Dev. 2005. P. 789–72. https://doi.org/10.1134/S0023158410060170
- [8] Sehested J., Dahl S., Jacobsen J., Rostup-Nielson J. R. Methanation of CO over nickel: Mechanism and kinetics at high H₂/CO ratios // J. Phys. Chem. 2005. V. 109. P. 2432-2438. https://doi.org/10.1007/s11705-010-0528-3
- [9] Крылова А. Ю., Лядов А. С., Куликова М. В.,
- Xаджиев С. Н. Образование диоксида углерода в синтезе Фишера–Тропша на наноразмерных частицах железного катализатора // Нефтехимия. 2012. Т. 52. № 2. С. 92–96 [Krylova A. Yu., Lyadov A. S., Kulikova M. V., Khadzhiev S. N. Formation of carbon dioxide in the Fischer–Tropsch synthesis on nanosized iron catalyst particles // Petrol. Chem. 2012. V. 52. N 2. P. 74–78.

https://doi.org/10.1134/S0965544112010045].

[10] Gerber M. A., White J. F., Stevens D. J. Mixed alcohol synthesis catalyst screening / pacific northwest national laboratory Richland. WA: Pacific Northwest National Laboratory, USA, 2007. P. 1.3. https://www. pnnl.gov/main/publications/external/technical_reports/ PNNL-16763.pdf