= ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ —

УДК 539.1.044:535.683

ФЛУОРЕСЦЕНТНЫЕ СВОЙСТВА ПОЛИМЕРНЫХ СИСТЕМ С ОТРИЦАТЕЛЬНЫМ ФОТОХРОМИЗМОМ НА ОСНОВЕ КОМПЛЕКСОВ СПИРОПИРАНА С ИОНАМИ МЕТАЛЛОВ

© В. А. Барачевский^{1,2}, Т. М. Валова¹

 Центр фотохимии Федерального научно-исследовательского центра «Кристаллография и фотоника» РАН, 119421, г. Москва, ул. Новаторов, д. 7а, к. 1
Межведомственный центр аналитических исследований в области физики, химии и биологии при Президиуме РАН, 117997, г. Москва, Профсоюзная ул., д. 65, стр. 6

E-mail: barva@photonics.ru

Поступила в Редакцию 6 апреля 2019 г. После доработки 14 января 2021 г. Принята к публикации 25 января 2021 г.

Проведено спектрально-кинетическое исследование флуоресцентных свойств комплексов молекул фотохромного нитрозамещенного спиропирана с катионами металлов, различающихся сродством к электрону, в полимерных матрицах различной природы. Показано, что фотоиндуцированное динамическое изменение окраски определяется изменением не только поглощения, но и люминесценции комплексов, проявляющих отрицательный фотохромизм. Выявлена роль протонных комплексов в фотохромных превращениях мероцианиновой формы спиропирана.

Ключевые слова: фотохромизм; спектроскопия; спиропиран; катионы металлов; комплексы DOI: 10.31857/S0044461821030038

Расширение сфер применения фотохромных материалов [1] способствовало возрастанию интереса к исследованию явления отрицательного фотохромизма, заключающегося в обратимом фотообесцвечивании фотохромных веществ [2, 3].

Ранее нами было показано, что фотохромные системы с отрицательным фотохромизмом могут быть созданы на основе комплексов фотохромных нитрозамещенных спиропиранов с ионами металлов, образующихся как в растворах, так и в полимерных матрицах [4]. Настоящая работа является логическим продолжением ранее выполненного исследования. Цель работы — изучение флуоресцентных свойств полимерных систем на основе комплексов спиропирана с ионами металлов, проявляющих отрицательный фотохромизм в полимерных матрицах различной природы.

Экспериментальная часть

Объектами исследования являлись комплексы спиропирана [4] с ионами металлов Mg²⁺ и Tb³⁺, образующимися при растворении безводных солей

Mg(ClO₄)₂ (кат. № 222283, Aldrich) и Tb(NO₃)₃ (кат. № 217212, Aldrich).

Полимерными связующими служили коммерческие полиметилметакрилат (кат. № 445746, Aldrich), ацетобутират целлюлозы (кат. № 419036, Aldrich) и амидсодержащий сополимер АС-А (ТУ 2216-009-95611404-2006, ООО «НПК «ШУРАВИ»). В качестве растворителей для получения пленок на основе сополимера АС-А применяли смесь ацетонитрила (кат. № 271004, Aldrich) и толуола (кат. № 244511, Aldrich). Полиметилметакрилатные пленки готовили с использованием смеси ацетонитрила и ацетона (кат. № 154598, Aldrich). В случае получения пленок с использованием полимера ацетобутират целлюлозы применяли ацетонитрил. Полимерные фотохромные композиции получали смешиванием растворов полимера и фотохромного соединения или его комплекса. Для проведения исследований были приготовлены полимерные композиции с содержанием спиропирана c = 0.75 мас% по

отношению к массе сухого полимера. Соотношение содержания спиропирана и ионов металла составляло 1:100. Приготовленные полимерные композиции наносили на кварцевые стекла методом полива, сушили при комнатной температуре в темном месте до полного испарения растворителя, а затем досушивали в сушильном шкафу при 60°С в течение 60 мин.

Спектральные измерения полимерных пленок проводили с использованием спектрофотометра Cary 50 bio (Varian). Спектры флуоресценции регистрировали на спектрофлуориметре Cary Eclipse (Varian).

Фотоокрашивание полимерных слоев осуществляли УФ-излучением ксеноновой лампы L8253 осветителя LC-4 (Hamamatsu) через светофильтр УФС-1, фотообесцвечивание достигалось воздействием излучения видимого диапазона через светофильтр ЖС-10.

Обсуждение результатов

Обратимые изменения фотоиндуцированных спектров поглощения, возбуждения флуоресценции и флуоресценции (рис. 1) спиропирана в полиметилметакрилатной пленке свидетельствуют о проявлении этим соединением положительного фотохромизма, который заключается в обратимом его фотоокрашивании и темновом обесцвечивании:

При облучении фотохромной пленки УФ-светом циклическая форма А спиропирана в результате фотодиссоциации связи —С—О— в пирановом фрагменте и последующей темновой *цис-транс* изомеризации превращается в открытую мероцианиновую форму В, которая спонтанно или под действием видимого излучения возвращается в исходную форму А [схема (1)] [4]. Этот процесс ускоряется при нагревании пленки.

Спектры возбуждения флуоресценции (рис. 1, кривые 3, 5, 7) свидетельствуют о том, что появление флуоресценции (рис. 1, кривые 4, 6, 8) обусловлено фотоиндуцированным образованием мероцианиновой формы спиропирана. Спектры поглощения и флуоресценции характеризуются максимумами при 555 и 600 нм соответственно (см. таблицу). Интенсивность флуоресценции изменяется в процессе фотохромных превращений симбатно с изменением оптической плотности в полосе поглощения мероцианиновой формы.

После введения в полимерный раствор ионов магния спектр поглощения спиропирана изменяется. В спектре появляются полосы поглощения в видимой области с двумя максимумами при 430 и 500 нм (см. таблицу; рис. 2, кривая 1). Облучение пленки видимым светом приводит к ее обратимому обесцвечиванию (см. таблицу; рис. 2, кривая 2), т. е. к проявлению

Рис. 1. Спектры поглощения (1, 2), возбуждения флуоресценции при измерении на длине 600 нм (3, 5, 7) и флуоресценции при возбуждении светом с длиной волны 555 нм (4, 6, 8) спиропирана в полиметилметакрилатной пленке до (1, 3, 4), после УФ-облучения через светофильтр УФС-1 (2, 5, 6) и последующей темновой релаксации (7, 8).

отрицательного фотохромизма [4], обусловленному образованием в темновых условиях фотохромного комплекса иона металла с фенолятным кислородом мероцианиновой формы спиропирана [схема (1)].

Полоса флуоресценция с максимумом при 575 нм (рис. 2, кривая 4) обусловлена присутствием в пленке молекул спиропирана в мероцианиновой форме, образующих комплексы с ионами магния. Она гипсохромно сдвинута на 25 нм относительно полосы поглощения мероцианиновой формы, регистрируемой в отсутствие ионов в полимере (см. таблицу). Вторая коротковолновая полоса поглощения, по-видимому, принадлежит протонированной мероцианиновой форме спиропирана [3], которая не проявляет люминесцентных свойств.

Рис. 2. Спектры поглощения (1, 2), возбуждения флуоресценции при измерении на длине 575 нм (3, 5) и флуоресценции при возбуждении светом с длиной волны 525 нм (4, 6, 7) спиропирана в присутствии Mg²⁺ в полиметилметакрилатной пленке до (1, 3, 4), после облучения видимым светом (2, 5, 6) и последующей темновой релаксации (7).

Рис. 3. Спектры поглощения (1, 2), возбуждения флуоресценции при измерении на длине 563 нм (3, 5) и флуоресценции при возбуждении светом с длиной волны 510 нм (4, 6) спиропирана с Tb³⁺ в полиметилметакрилатной пленке до (1, 3, 4) и после облучения видимым светом (2, 5, 6).

Подобные спектральные и флуоресцентные изменения наблюдаются для спиропирана с катионами тербия (см. таблицу; рис. 3). В отличие от комплексов с ионами магния в спектре поглощения наблюдается только длинноволновая полоса поглощения комплекса мероцианиновой формы с ионом тербия, максимум которой сдвигается на 35 нм в коротковолновую область спектра относительно максимума полосы поглощения мероцианиновой формы, регистрируемой в отсутствие катиона тербия (см. таблицу). При этом полоса поглощения протонного комплекса с максимумом при 430 нм спектрально не проявляется (см. таблицу).

Использование в качестве полимерного связующего ацетобутирата целлюлозы практически не приводит к существенным различиям в изменении

Рис. 4. Спектры поглощения (1, 2, 7), возбуждения флуоресценции при измерении на длине 575 нм (3, 5) и флуоресценции при возбуждении светом с длиной волны 515 нм (4, 6, 8) спиропирана с Mg²⁺ в сополимере AC-A до (1, 3, 4), после облучения видимым светом (2, 5, 6) и последующей темновой релаксации (7, 8).

Полимер	Ион	Максимум полосы поглощения λ, нм (оптическая плотность в максимуме полосы поглощения D)		Максимум полосы флуоресценции λ _{φл} , нм (интенсивность флуоресценции в максимуме полосы флуоресценции <i>I</i> _{фл} , отн. ед.)	
		до облучения	после облучения	до облучения	после облучения
Полиметилметакрилат		355 (0.16) 445 (0.04) 555 (0.01)	555 (0.17)	600 (35)	625 (275)
	Mg ²⁺	430 (0.66) 500пл (0.36)	380 (0.24) 500 (0.12)	575 (420)	575 (220)
	Tb ³⁺	388 (0.43) 485 (0.68)	380 (0.38) 485 (0.48)	565 (75)	565 (60)
Ацетобутират целлюлозы		350 (0.08) 550 (0.03)	550 (0.08)	600 (70)	620 (140)
	Mg ²⁺	430 (0.46) 505пл (0.25)	380 (0.27) 505 (0.07)	572 (240)	565 (65)
	Tb ³⁺	377 (0.30) 490 (0.45)	370 (0.29) 490 (0.34)	555 (55)	555 (50)
Амидосодержащий сополи- мер АС-А (образец изго-		350 (0.13)	375 (0.28) 560 (0.71)	600 (45)	630 (675)
товлен в 2017 г.)	Mg ²⁺	430 (0.57) 515пл (0.25)	365 (0.28) 515 (0.10)	575 (760)	575 (185)
	Tb ³⁺	375 (0.32) 490 (0.56)	500 (0.36)	560 (65)	560 (52)
Амидосодержащий сополи- мер АС-А (образец изго- товлен в 2015 г.)		350 (0.26) 465 (0.03) 560 (0.01)	370 (0.34) 560 (0.71)	595 (65)	623 (775)
	Mg ²⁺	430 (0.77) 515пл (0.35)	415 (0.28) 515 (0.09)	555 (1275)	580 (500)
	Tb ³⁺	430 (0.62) 510пл (0.26)	420 (0.38) 510 (0.11)	577 (740)	517 (577)

Спектральные и люминесцентные характеристики спиропирана в полимерных пленках без и в присутствии ионов металлов (при соотношении концентраций спиропирана и ионов металлов 1:100)

Примечание. пл — плечо полосы поглощения.

спектральных и флуоресцентных свойств полимерных пленок, содержащих комплексы спиропирана с ионами магния и тербия (см. таблицу).

Близкие результаты получены для фотохромных пленок с прямым и обратным фотохромизмом с использованием сополимера АС-А, который характеризуется большим свободным молекулярным объемом (рис. 4, 5). Отличительной особенностью является более интенсивная флуоресценция комплексов мероцианиновой формы спиропирана с ионами металлов (см. таблицу).

Интересные особенности спектрального проявления комплексообразования мероцианиновой формы спиропирана с ионами металлов наблюдаются для образцов, которые хранились в течение длительного времени (см. таблицу). Если спектры поглощения комплексов мероцианиновой формы спиропирана с ионами магния остаются неизменными спустя 2 года (см. таблицу), то в спектрах поглощения комплексов с ионами тербия проявляются значительные изменения (см. таблицу; рис. 6). Как и в случае полимерных слоев, содержащих комплексы с ионами магния, появляется полоса поглощения протонированной мероцианиновой формы спиропирана с максимумом при 430 нм. Следует отметить, что интенсивность флуоресценции усиливается с временем хранения фо-

Рис. 5. Спектры поглощения (1–3), возбуждения флуоресценции при измерении на длине 560 нм (4) и флуоресценции при возбуждении светом с длиной волны 490 нм (5–7) спиропирана с Tb³⁺ в сополимере AC-A до (1, 4, 5), после (2, 6) облучения видимым светом и последующей темновой релаксации (3, 7).

Образец получен в 2017 г.

Рис. 6. Спектры поглощения (1, 2, 7), возбуждения флуоресценции при измерении на длине 577 нм (3, 5) и флуоресценции при возбуждении светом с длиной волны 530 нм (4, 6, 8) образца спиропирана с Tb³⁺ в сополимере AC-A до (1, 5, 6), после облучения видимым светом (2–4) и последующей пятидневной темновой релаксации (7, 8).

Образец получен в 2015 г.

тохромных пленок, что можно объяснить испарением остатков растворителя и, как следствие, увеличением жесткости полимерной матрицы.

Результаты исследования флуоресцентных свойств полимерных пленок на основе фотохромного спиропирана в отсутствие ионов металлов показывают, что пленки, обладая положительным фотохромизмом, проявляют, как и в растворах, фотоиндуцированную флуоресценцию, обусловленную образованием мероцианиновой формы под действием УФ-света. Эти же свойства проявляют и полимерные пленки на основе комплексов спиропирана и ионов металлов, обладающие отрицательным фотохромизмом. Однако флуоресцентные свойства этих пленок обусловлены образующимися в темноте комплексами мероцианиновой формы с ионами металлов.

Наблюдаемая в спектрах поглощения полоса поглощения в спектральной области при 430 нм связана с появлением в полимерной матрице нелюминесцирующих протонных комплексов молекул спиропирана, которые образуются в результате разрушения комплексов с ионами металлов. Отсутствие полос поглощения протонных комплексов спиропирана с ионами тербия в свежеприготовленных полимерных слоях по сравнению с комплексами спиропирана с ионами магния и их появление спустя 2 года, по-видимому, обусловлено более высокой эффективностью взаимодействия фенолятного кислорода мероцианиновой формы спиропирана с этим ионом в силу более высокого сродства ионов тербия к электрону по сравнению с ионами магния [3].

Выводы

Фотохромные полимерные материалы на основе комплексов нитрозамещенного спиропирана с ионами металлов проявляют обратимое фотоиндуцированное изменение не только абсорбционных, но и флуоресцентных свойств, обусловленных комплексами мероцианиновой формы с ионами металлов. Это открывает новые возможности для совершенствования покрытий различного типа с динамическим изменением окраски за счет фотоиндуцированного изменения не только поглощения, но и люминесценции. При разработке таких покрытий следует обращать внимание на образование нелюминесцирующих протонных комплексов, образование которых зависит как от природы фотохромного соединения, так и сродства катионов металлов к электрону.

Благодарности

Авторы благодарят В. А. Арсенова за предоставление образца спиропирана.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по государственному заданию МЦАИ РАН (в части спектрально-кинетических исследований) и ФНИЦ «Кристаллография и фотоника» РАН (в части получения фотохромных полимерных пленок).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Барачевский Валерий Александрович, к. ф.-м.н., ORCID: https://orcid.org/0000-0002-6524-9646 Валова Татьяна Михайловна, ORCID: https://orcid.org/0000-0002-2103-8011

Список литературы

 Photochromic мaterials: preparation, properties and applications / Eds H. Tian and J. Zhang. Wiley-VCH Verlag GmbH & Co.Weinheim, Germany, 2016. Р. 393– 415.

- [2] Barachevsky V.A. Negative photochromism in organic systems // Rev. J. Chem. 2017. V. 7. N 3. P. 334–371. https://doi.org/10.1134/S2079978017030013
- [3] Aiken S., Edgar R. J. L., Gabbutt C. D., Heron B. M., Hobson P. A. Negatively photochromic organic compounds: Exploring the dark side // Dyes and Pigments. 2018. V. 149. P. 92–121. https://doi.org/10.1016/j.dyepig.2017.09.057
- [4] Барачевский В. А., Валова Т. М. Спектральнокинетическое исследование отрицательного фотохромизма систем на основе комплексов спиропиранов с ионами металлов // Оптика и спектроскопия. 2017. Т. 123. № 3. С. 377–383 [Barachevsky V. A., Valova T. M. A spectral-kinetic investigation of the negative photochromism of systems based on complexes of spiropyrans with metal ions // Opt. Spectrosc. 2017. V. 123. N 3. P. 404–410. https://doi.org/10/7868/S0030403417090069].