= КАТАЛИЗ =

УДК 544.77:665.654.2

О МЕХАНИЗМЕ УДАЛЕНИЯ СЕРЫ ПРИ ГИДРОКОНВЕРСИИ В ПРИСУТСТВИИ КАТАЛИЗАТОРА M0S₂

© Х. М. Кадиев, А. М. Гюльмалиев, М. Х. Кадиева

Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29 E-mail: kadiev@ips.ac.ru

> Поступила в Редакцию 9 августа 2020 г. После доработки 29 декабря 2020 г. Принята к публикации 15 февраля 2021 г.

Обсуждаются практические и теоретические аспекты превращения серосодержащих компонентов при гидроконверсии тяжелого нефтяного сырья в присутствии каталитических систем на основе наноразмерного MoS_2 . Термодинамическим расчетом температурных зависимостей равновесного состава продуктов реакций гидрирования серосодержащих соединений установлено, что в широком температурном интервале наиболее устойчивым продуктом является тиофен. Квантово-химическими методами показано, что при хемосорбции молекулы водорода на валентно-ненасыщенных атомах Mo происходит разрыв связи H—H, миграция атомов H к другим валентно-ненасыщенным атомам Mo, а также к атомам S. Исследование взаимодействия молекулы H_2S с кластерами Mo_2S_4 и Mo_3S_6 показало, что хемосорбция H_2S происходит на валентно-ненасыщенных атомах S роли донора — переносчика водорода. Показано, что серосодержащие соединения (меркаптаны, тиофен и дибензотиофен) также через атомы S хемосорбируются на валентно-ненасыщенных атомах Mo, расположенных на гранях кластеров MoS_2 .

Ключевые слова: гидроконверсия; дисульфид молибдена; хемосорбция; гидрогенолиз; десульфуризация; метод функционала электронной плотности DFT b3lyp; переходное состояние; поверхность потенциальной энергии

DOI: 10.31857/S0044461821040125

В результате роста спроса на энергоносители и истощения запасов нефти в переработку все больше вовлекаются тяжелые нефти [1]. Для улучшения качества товарных нефтепродуктов применяются гидрогенизационные процессы, в ходе которых удаляются S-, N- и О-содержащие соединения, одновременно протекают реакции гидрогенолиза насыщенных и гидрирования ненасыщенных соединений, а также десульфуризации [2–6], в связи с чем большое внимание уделяется разработке новых каталитических систем на основе сульфидов переходных металлов для десульфуризации тяжелого сырья. К настоящему времени изучено большое количество катализаторов десульфуризации на основе сульфидов металлов Со, Ni, Mo на твердых носителях, эффективность которых оценивается в реакциях превращения модельных серосодержащих соединений. Некоторые из этих катализаторов успешно применяются в промышленных процессах [4]. В работах [2–5] обсуждается синтез наноразмерных частиц MoS₂ и их применение в каталитической гидроконверсии и десульфуризации тяжелого сырья. Однако, как отмечено в работе [6], в настоящее время остаются малоизученными природа активных центров катализаторов на основе сульфидов переходных металлов, в частности MoS₂, механизм активации молекулы H₂ на активных центрах катализаторов, а также механизм реакции превращения серосодержащих компонентов сырья.

Квантово-химические исследования реакций удаления серы, катализируемых наноразмерными частицами MoS₂, стабилизированными в углеводородной среде без традиционного твердого носителя, позволят установить энергетические характеристики элементарных актов реакций, протекающих на активных центрах катализатора, и способствуют дальнейшему развитию методов получения и эффективного применения каталитических систем гидроочистки.

Цель работы — экспериментальная оценка активности катализатора (MoS₂) в процессе гидроконверсии тяжелого нефтяного сырья, оценка термодинамической стабильности модельных серосодержащих соединений в условиях гидроконверсии и теоретический анализ механизма гидрирования модельных серосодержащих соединений.

Экспериментальная часть

Квантово-химические расчеты выполнены с применением метода функционала электронной плотности DFT b3lyp с использованием базисного набора DGDZVP [7]. Энергетические характеристики атомов и молекул оценивали по полной электронной энергии с учетом энергии нулевых колебаний E_0 . Проведен расчет энергии минимумов и седловых точек на поверхности потенциальной энергии и сечений поверхности потенциальной энергии по координате реакций.

Потенциальные поверхности энергии взаимодействия молекул M с кластерами MoS₂ строили с оптимизацией геометрических параметров комплекса M + кластер MoS₂. Положение переходного состояния между двумя минимумами на поверхности потенциальной энергии определяли с применением методов линейного синхронного транзита (TS) и квадратичного синхронного транзита (QST2, QST3)* по наличию только одного мнимого собственного значения матрицы Гессе**. Путем поиска внутренней координаты реакции (метод IRC) определяли путь реакции, соединяющий два минимума энергии на поверхности потенциальной энергии.

Области термодинамической устойчивости модельных серосодержащих структур различной природы оценивали с применением программного пакета HSC Chemistry 6.***

В исследованиях реакции удаления серы в процессе гидроконверсии использовали результаты гидроконверсии тяжелого нефтяного сырья на пилотной установке, описанной в работе [3]. Опыты по гидроконверсии проводили при P = 7 МПа, T = 445°С, H_2 /сырье = 1000 нл/л как в присутствии наноразмерного катализатора (MoS₂) концентрацией 0.05 мас% (в расчете на Mo), так и в его отсутствие. Катализатор получали *in situ* из водного раствора прекурсора катализатора [(NH₄)₆Mo₇O₂₄·4H₂O (х.ч., OOO «Компания Лабтех»)]. Исследованные образцы гудрона были отобраны на разных нефтеперерабатывающих заводах и различались по физико-химическим свойствам и составу, в частности по содержанию серы, смол и асфальтенов (табл. 1).

Для уменьшения влияния глубины превращения сырья на степень удаления серы в процессе гидроконверсии исследования активности катализатора (MoS₂) в процессе десульфуризации проводили при конверсии фракции сырья, выкипающей выше 520°С (далее фракция 520°С+), за проход равной 56–58%. Фракционный состав сырья и продуктов реакции определяли по ГОСТ 11011-85 «Нефть и нефтепродукты. Метод определения фракционного состава в аппарате APH-2». Содержание серы определяли с помощью рентгенофлуоресцентного энергодисперсионного анализатора Спектроскан S (ООО «НПО «СПЕКТРОН»). Групповой состав сырья определяли методом жидкостно-адсорбционной хроматографии с градиентным вытеснением и разделением на лабораторном жидкостном хроматографе Градиент-М (АО «ИНХП»).

Количество серы, удаленной из широкой фракции продуктов (гидрогенизатов) и дистиллятных фракций (НК–180°С, 180–350°С) в ходе каталитической гидроконверсии (Δ S, %), вычисляли по формуле

$$\Delta \mathbf{S} = \frac{(\mathbf{S}_0 - \mathbf{S}_{Mo})}{\mathbf{S}_0} \cdot 100,\tag{1}$$

где S_0 — содержание серы (мас%) в гидрогенизатах и дистиллятных фракциях, полученных в опытах без катализатора, S_{Mo} — содержание серы (мас%) в ги-

^{*} Бутырская Е. В., Нечаева Л.С. Компьютерная химия. Воронеж: Издат.-полиграф. центр Воронеж. гос. ун-та, 2011. С. 23.

^{**} Цирельсон В. Г. Квантовая химия молекулы, молекулярные системы и твердые тела. М.: БИНОМ. Лаборатория знаний, 2010. С. 30–33.

^{***} URL: http://www.hsc-chemistry.net/ сайт программного пакета HSC Chemistry, 2020 (дата обращения: 10.08.2020).

Своиства сырья гидроконверсии						
Показатель	Гудрон 1	Гудрон 2	Гудрон 3			
Плотность сырья, кг·м ⁻³	1013	1003	991			
Содержание фр. >520°С, мас%	84.9	83.4	85.6			
Содержание серы, мас%	3.3	3.5	2.9			
Содержание смол, мас%	29.1	30.4	26.4			
Содержание асфальтенов, мас%	10.9	13.4	4.7			
Вязкость при 100°С, мм ² ·с ⁻¹	365	394	466			

Таблица 1 Свойства сырья гидроконверсии

дрогенизатах и дистиллятных фракциях, полученных в опытах в присутствии катализатора.

Обсуждение результатов

Реакционная способность сераорганических соединений в процессе десульфуризации в присутствии традиционных алюмоникель-молибденовых катализаторов уменьшается в следующей последовательности: меркаптаны > дисульфиды > сульфиды ~ ~ тиофаны > тиофены > бензотиофены > дибензотиофены [7, 8]. Представляет интерес рассмотреть реакционную способность типичных серосодержащих соединений, таких как меркаптаны, сульфиды, ди- и полисульфиды, тиофен, тиофан, тиазол, бензотиофан, дибензотиофен, в реакциях гидрирования в условиях, близких к условиям процесса гидроконверсии, т. е. при температуре T = 420°C и давлении P = 7 МПа. Перечень исходных серосодержащих соединений и продуктов реакций гидрирования серосодержащих соединений, а также их начальное количество C_0 приведены в табл. 2.

Термодинамические расчеты при давлении в зоне реакции 7 МПа показали, что единственным серо-

Соединение	C_0 , моль	Соединение	C_0 , моль			
CH ₃ CH ₂ SH	1		1			
CH ₃ CH ₂ CH ₂ SH	1		1			
CH ₃ CH ₂ CH ₂ CH ₂ SH	1	\sim	1			
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ SH	1	H ₂	20*			
$CH_{3}CH_{2}CH_{2}CH_{2}H_{2}CH_{2}SH$	1	H ₂ S	0			
$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}SH$	1	S ₂	0			
S(CH ₃) ₂	1	CH ₄	0			
CH ₃ CH ₂ SCH ₃	1	CH ₃ CH ₃	0			
S(CH ₂ CH ₃) ₂	1	CH ₃ CH ₂ CH ₃	0			
CH ₃ CH ₂ CH ₂ SCH ₃	1		0			
CH ₃ CH ₂ S—SCH ₃	1					

Таблица 2 Модельные серосодержащие соединения различного класса

* Исходное число молей H₂ принято C₀ = 20 моль, чтобы обеспечить избыток водорода для протекания реакции деструктивного гидрирования.

-	-	-		-		-			
Показатель	Гудрон 1		Гудрон 2		Гудрон 3				
Катализатор	_	Мо	\mathbf{S}_2	_	Mo	\mathbf{S}_2		Мо	\mathbf{S}_2
Температура, °С	445	44	45	445	44	45	445	44	45
Объемная скорость подачи сырья, ч ⁻¹	3.0	3.	.0	2.0	2	.0	1.5	1.	.5
Конверсия фракции 520°С+, мас%	60.2	56	5.7	65.1	58	8.4	69.6	56	5.2
Содержание серы в продуктах, мас%:	S ₀	S _{Mo}	ΔS	S ₀	S _{Mo}	ΔS	S ₀	S _{Mo}	ΔS
Гидрогенизат	3.28	2.12	35	3.59	2.57	28	2.37	2.11	11
Фракция НК-180°С	1.26	1.01	20	1.02	0.75	26	0.95	0.63	33
Фракция 180–350°С	2.74	1.97	28	2.21	1.89	14	2.1	1.88	10

Таблица 3 Результаты гидроконверсии тяжелого нефтяного сырья

содержащим органическим соединением, которое присутствует в равновесной системе в небольшом количестве практически во всем интервале температур, является тиофен (рис. 1). Этот вывод согласуется со сложившимся мнением, что среди серосодержащих соединений в нефтях наиболее устойчивыми являются тиофен и его производные [9]. Следует ожидать, что в условиях гидроконверсии полное удаление серы не представляется возможным, о чем свидетельствуют результаты гидроконверсии образцов тяжелого нефтяного сырья на пилотной установке (табл. 3).

Введение катализатора позволяет снизить содержание серы в продуктах гидроконверсии (табл. 3). Кроме того, в условиях каталитической гидроконверсии в присутствии наноразмерного MoS₂ степень удаления серы из гидрогенизата и фракции 180–350°C снижается вместе со снижением плотности и повышением вязкости исходного сырья (табл. 1). Степень удаления серы из фракции НК–180°С при этом растет,

Рис. 1. Равновесный состав продуктов гидрирования модельных серосодержащих соединений. S(M) — моноклинная сера, S — ромбическая сера.

что может быть обусловлено отсутствием термостабильных серосодержащих компонентов в составе фракции НК–180°С. Характер изменения степени удаления серы, наблюдаемый для фракций продуктов гидроконверсии сырья с разными характеристиками, позволяет предположить, что устойчивые в условиях гидроконверсии моно- и полициклические гомологи тиофена концентрируются преимущественно в высококипящих фракциях продуктов гидроконверсии. Таким образом, состав сырья и присутствие катализатора влияют в целом на эффективность процесса гидроконверсии, важной частью которого является превращение серосодержащих компонентов.

Нами был проведен анализ взаимодействия молекулы водорода H₂ с кластером MoS₂. Согласно литературным данным [10, 11], атомы Мо в кластерах MoS₂ гексагональной и ромбоэдрической кристаллических структур окружены шестью атомами S в тригонально-призматической (2H) и октаэдрической координации (1T). Активными центрами в каталитических реакциях являются координационно-ненасыщенные атомы Мо, расположенные на ребрах кристаллической структуры. Различия в кристаллических структурах 2Н и 1Т обусловливают различия их электронной структуры (рис. 2). В колебательном спектре 2Н-структуры присутствует мнимая частота, свидетельствующая о том, что минимум энергии кластера Mo_3S_6 не найден, так как кластер с точечной симметрией C_{3h} имеет вырожденную волновую функцию и, согласно эффекту Яна-Теллера, неустойчив.* После хемосорбции H₂ комплекс [H₂…Mo₃S₆] переходит в устойчивое состояние, и система характеризуется минимумом электронной энергии [12].

^{*} Цирельсон В. Г. Квантовая химия молекулы, молекулярные системы и твердые тела. М.: БИНОМ. Лаборатория знаний, 2010. С. 330.

Рис. 2. Малликеновские заряды на атомах и длины связей кластеров Mo₃S₆ кристаллических модификаций MoS₂ типа 2H (*a*) и 1T (*б*).

Рассмотрим в качестве модельных кластеров с разными размерами кластеры Mo₂S₄ и Mo₃S₆. После присоединения H₂ к кластеру Мо₃S₆ 2H-модификации система [H2···Mo3S6] не имеет вырожденных электронных уровней (симметрию C_{3h}), и при оптимизации структуры комплекса полная энергия системы снижается до минимума. В случае 1Т-модификации кластера Мо₃S₆ комплекс с Н₂ энергетически намного более устойчив, чем в случае 2Н-модификации кластера Мо₃S₆ (рис. 3). Существенно то, что сначала молекула H₂ с разрывом связи Н—Н координируется координационно-ненасыщенными атомами Мо, а затем, благодаря низким значениям энергии перехода между минимумами энергии, возможна миграция атомов Н к другим атомам Мо и атомам S (рис. 3). Следовательно, в кристаллической решетке кластеров MoS₂ валентно-ненасыщенные атомы Мо, расположенные на ребрах, играют роль «активного центра». Возможность миграции атомов Н по поверхностным атомам кристаллической решетки кластера MoS₂ после их хемосорбции на атоме Мо подтверждается существованием минимумов электронной энергии комплексов и низкими значениями энергии переходного состояния между локальными минимумами, показывающими, что структуры, соответствующие этим минимумам, могут легко переходить друг в друга.

При изучении взаимодействия H_2S с кластером Mo_3S_6 рассмотрены схемы реакций (1)–(3). Стадии образования комплекса $[H_2S\cdots Mo_3S_6]$ (2) и его разрушения на продукты $Mo_3S_7 + H_2$ (3) являются экзотермическими. Следовательно, H_2S в присутствии MoS_2 становится донором водорода, атом S входит в координационную сферу валентно-ненасыщенного атома Mo, находящегося на грани кластера, а атомы H могут участвовать в реакциях гидрирования или образовывать молекулу H_2 .

$$Mo_3S_6 + H_2S \rightarrow [H_2S \cdots Mo_3S_6], \Delta E_0 = -15 \ \text{ккал} \cdot \text{моль}^{-1};$$
 (2)

$$[H_2S \cdots Mo_3S_6] \to Mo_3S_7 + H_2, \Delta E_0 = -1$$
 ккал моль⁻¹. (3)

Энергия активации реакции H_2S с кластером Mo_3S_6 составляет 13 ккал·моль⁻¹, энергия хемосорбции H_2S на Mo_3S_6 — 15 ккал·моль⁻¹, а энергетический барьер реакции разложения комплекса $[H_2S\cdots Mo_3S_6]$ на продукты Mo_3S_7 и H_2 составляет 51 ккал·моль⁻¹. Барьер обратной реакции — присо-

единения водорода с образованием хемосорбированного на кластере H_2S — составляет 51 ккал·моль⁻¹ (рис. 4, табл. 4). Следовательно, хемосорбированный H_2S на кластере Mo_3S_6 практически в равной степени является донором и акцептором водорода.

Координата реакции

Рис. 3. Энергии некоторых локальных минимумов и переходных состояний между ними на поверхности потенциальной энергии взаимодействия в комплексах [H₂…Mo₂S₄] (*a*) и [H₂…Mo₃S₆] (*б*).

Молекула	<i>E</i> ₀ , a. e.	Реакция	$\Delta E_0,$ ** ккал·моль $^{-1}$		
Н	-0.5005	$H_2S = SH^{\bullet} + H$	85		
H ₂	-1.1660	$H_2S = S + H_2$	101		
SH•	-398.7078	$[H_2S\cdots Mo_3S_6] = [Mo_3S_7H]^{\bullet} + H$	39		
H_2S	-399.3443	$[\mathrm{H}_2\mathrm{S}\cdots\mathrm{M}\mathrm{o}_3\mathrm{S}_6] = \mathrm{M}\mathrm{o}_3\mathrm{S}_7 + \mathrm{H}_2$	-1		

Таблица 4 Энергия ΔE_0 процесса отрыва атома водорода от сероводорода*

* $E_0(S_1) = -398.0179$ а. е., $E_0(Mo_3S_7) = -14720.1783$ а. е., $E_0(Mo_3S_7H^{\bullet}) = -14719.6152$ а. е. ** 1 а. е. = 627.5095 ккал моль⁻¹.

Координата реакции

Рис. 4. Энергии некоторых локальных минимумов и переходных состояний на поверхности потенциальной энергии взаимодействия H₂S с кластером Mo₃S₆.

При изучении взаимодействия меркаптанов (R—SH₂), в частности, этантиола, с кластером Mo₃S₆ учитывали, что при координации атомов S этантиола на атоме Мо кластера Mo₃S₆ возможны два маршрута превращения: по первому образуются Mo₃S₆—SH₂ и этилен (рис. 5, *a*; энергия активации $E_{akT} = 25 \text{ ккал} \cdot \text{моль}^{-1}$), по второму — Mo₃S₇ и этан (рис. 5, *b*; согласно методу расчета IRC, $E_{akT} = 11 \text{ ккал} \cdot \text{моль}^{-1}$). Хемосорбция меркаптанов на кластерах MoS₂, как и в случае с H₂S, происходит через атомы S с последующим встраиванием атома S в координационную сферу валентно-ненасыщенных атомов Mo.

Одним из обсуждаемых в литературе вопросов является характер взаимодействия серосодержащих ароматических структур, таких как тиофен, дибензотиофен и их производных, с поверхностью кластера дисульфида молибдена [4]. В работе [13] показано, что состояние, когда плоскость молекулы параллельна поверхности катализатора (π -адсорбция), энергетически более выгодно, чем в случае, когда плоскость молекулы расположена перпендикулярно к поверхности катализатора (σ -адсорбция). Отметим, что адсорбция является самопроизвольным процессом и протекает с энергией активации, близкой к

нулю. В равновесном состоянии энергия адсорбции молекулы на поверхности складывается из энергий межмолекулярных взаимодействий различной природы, которые зависят от взаимного расположения молекул. Следовательно, устойчивость π-типа структур комплекса адсорбент-адсорбат будет зависеть от размеров адсорбата. Таким образом, для конденсированных ароматических систем адсорбция π-типа должна быть более устойчивой. Но, как было показано выше, при хемосорбции на валентно-ненасыщенном атоме Мо образуется комплекс σ-типа с более прочной связью, следовательно, для малых молекул энергия хемосорбции может быть выше, чем энергия адсорбции. Важно отметить, что дибензотиофен через атомы S по σ -типу координируется с атомом Мо, π -орбитали атомов бензольных колец в верхней занятой молекулярной орбитали комплекса не участвуют, что также свидетельствует о σ-характере связи молекулы дибензотиофена с кластером Mo_3S_6 (рис. 6, *a*, *б*).

Тиофен и его производные гидрируются труднее, чем меркаптаны [9]. В случае взаимодействия Mo_3S_6 – SH_2 + тиофен (рис. 6, *в*, *г*) происходит поэтапное гидрирование тиофена. Интересно отметить, что в процессе гидрогенолиза тиофена за счет взаимодействия SH-группы катализатора с H_2 образуется H_2S [14].

Внутренняя координата реакции

Рис. 5. Энергетические характеристики реакции взаимодействия этантиола с кластером Mo₃S₆: энергии локальных минимумов стадии образования Mo₃S₆—SH₂ и этилена (*a*) и поверхности потенциальной энергии стадии образования Mo₃S₇ и этилена (*б*).

Рис. 6. Оптимизированная структура комплексов Mo₃S₆ + дибензтиофен (*a*) и контур ее верхней занятой молекулярной орбитали (*б*), комплексов Mo₃S₆—SH₂ + тиофен (*в*, *г*).

Рис. 7. Температурная зависимости равновесного состава продуктов реакции гидрирования тиофена без его деструкции.

Термодинамическую устойчивость продуктов реакции гидрирования тиофена оценим по равновесному составу продуктов гидрирования. Возможные продукты реакции гидрирования тиофена без его деструкции следующие:

СH₃CH₂CH₂CH₂CH₂SH, CH₃CH(SH)CH₂CH₃, (CH₃)₂CHCH₂SH, CH₃CH₂CH(SH)CH₃, (CH₃CH₂)2S, CH₃CH₂CH₂—S—CH₃. Устойчивыми при давлении 7 МПа во всем интервале температур являются молекулы бутан-2-тиола и тиофена (рис. 7).

Выводы

В процессе гидроконверсии тяжелого нефтяного сырья в присутствии каталитических систем на основе сульфида молибдена активными центрами катализатора, на которых протекают первичные реакции молекул водорода и серосодержащих соединений, являются валентно-ненасыщенные атомы молибдена, расположенные на гранях кристаллической структуры кластера MoS_2 . Серосодержащие соединения (меркаптаны, тиофен, дибензотиофен) взаимодействуют с MoS_2 по σ -механизму, при деструкции хемосорбированных серосодержащих соединений атомы серы входят в координационную сферу атома молибдена кластера MoS_2 , а в присутствии H_2 могут выделиться в виде H_2S . Сероводород в атмосфере H_2 при взаимодействии с активными центрами катализатора MoS₂ выступает в роли донора водорода.

Финансирование работы

Исследование выполнено на базе Института нефтехимического синтеза РАН за счет гранта Российского научного фонда.

Конфликт интересов

Авторы не имеют конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Кадиев Хусаин Магамедович, д.х.н., ORCID: https://orcid.org/0000-0001-8705-114X Гюльмалиев Агаджан Мирза-оглы, д.х.н., ORCID: https://orcid.org/0000-0003-2458-6686 Кадиева Малкан Хусаиновна, к.х.н., ORCID: https://orcid.org/0000-0001-9964-4516

Список литературы

- [1] Хаджиев С. Н., Кадиев Х. М., Кадиева М. Х. Синтез и свойства наноразмерных систем в качестве катализаторов гидроконверсии тяжелого нефтяного сырья // Нефтехимия. 2014. Т. 54. № 5. С. 327–351. https:// doi.org/10.7868/S0028242114050062 [Khadzhiev S. N., Kadiev Kh. M., Kadieva M. Kh. Synthesis and properties of nanosized systems as efficient catalysts for hydroconversion of heavy petroleum feedstock // Petrol. Chem. 2014. V. 54. N 5. P. 323–346. https://doi.org/10.1134/S0965544114050065].
- [2] Khadzhiev S. N., Kadiev Kh. M., Yampolskaya G. P., Kadieva M. Kh. Trends in the synthesis of metal oxide nanoparticles through reverse microemulsions in hydrocarbon media // Adv. Colloid Interface Sci. 2013.
 V. 197–198. P. 132–145. https://doi.org/10.1016/j.cis.2013.05.003
- [3] Кадиев Х. М., Хаджиев С. Н., Кадиева М. Х. Синтез и применение наночастиц полифункционального катализатора для гидроконверсии природного битума // Нефтехимия. 2013. Т. 53. № 5. С. 337–348. https://doi.org/10.7868/S0028242113050031 [Kadiev Kh. M., Khadzhiev S. N., Kadieva M. Kh. Synthesis and use of polyfunctional catalyst nanoparticles for hydroconversion of natural bitumen // Petrol. Chem. 2013. V. 53. N 5. P. 298–308. https://doi.org/10.1134/S0965544113050034].
- [4] Томина Н. Н., Пимерзин А. А., Моисеев И. К. Сульфидные катализаторы гидроочистки нефтяных фракций // Рос. хим. журн. 2008. Т. LII. № 4. С. 41–52.
- [5] Никульшин П. А., Томина Н. Н., Пимерзин А. А. Активность катализаторов гидродесульфирова-

ния на основе гетерополисоединений молибдена 6 ряда в реакции гидрогенолиза тиофена // Изв. вузов. Химия и хим. технология. 2007. Т. 50. № 9. С. 54–57.

- [6] Krebs E., Daudin A., Raybaud P. DFT study of CoMoS and NiMoS catalysts: From nano-crystallite morphology to selective hydrodesulfurization // Oil Gas Sci. Technol. 2009. V. 64. N 6. P. 707–718. https://doi.org/10.2516/ogst/2009004
- [7] Никульшин П. А., Еремина Ю. В., Томина Н. Н., Пимерзин А. А. Влияние природы предшественников алюмоникельмолибденовых катализаторов на их активность в гидродесульфировании // Нефтехимия. 2006. Т. 46. № 5. С. 371–376 [Nikul'shin P. A., Eremina Yu. V., Tomina N. N., Pimerzin A. A. Influence of nature of precursors of aluminum-nickel-molybdenum catalysts on their performance in hydrodesulfurization // Petrol. Chem. 2006. V. 46. N 5. P. 343–348. https://doi.org/10.1134/S0965544106050070].
- [8] Breysse M., Djega-Mariadassou G., Pessayre S., Geantet C., Vrinat M., Perot G., Lemaire M. Deep desulfurization: Reactions, catalysts and technological challenges // Catal. Today. 2003. V. 84. P. 129–138. https://doi.org/10.1016/S0920-5861(03)00266-9
- [9] Калечиц И. В. Химия гидрогенизационных процессов в переработке топлив. М.: Химия, 1973. С. 240–255.
- [10] Qing T., De-en J. Stabilization and band-gap tuning of the 1T-MoS₂ monolayer by covalent functionalization // Chem. Mater. 2015. V. 27. P. 3743–3748. https://doi.org/10.1021/acs.chemmater.5b00986

- [11] Хаджиев С. Н., Кадиев Х. М., Гюльмалиев А. М., Кадиева М. Х. Свойства и структура наноразмерных каталитических систем на основе сульфидов молибдена // Наногетероген. катализ. 2017. Т. 2. № 2. С. 110–118. https://doi.org/10.1134/S2414215817020046
 [Khadzhiev S. N., Kadiev Kh. M., Gulmaliev A. M., Kadieva M. Kh. Properties and structure of nanosized catalyst systems based on molybdenum sulfides // Petrol. Chem. 2017. V. 57. N 14. P. 1277–1286. https://doi.org/10.1134/S0965544117140043].
- [12] Dumeignil F., Paul J.-F., Veilly E., Qian E. W., Ishihara A., Payen E., Kabe T. Description of coordinatively unsaturated sites regeneration over MoS₂-based HDS catalysts using ³⁵S experiments combined with computer simulations // Appl. Catal. A: General. 2005. V. 289. P. 51–58. https://doi.org/10.1016/j.apcata.2005.04.025
- [13] Cristol S., Paul J.-F., Payen E., Bougeard D., Hutschka F., Clemendot S. DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study // J. Catal. 2004. V. 224. P. 138–147. https://doi.org/10.1016/j.jcat.2004.02.008
- [14] Kogan V. M., Isaguliants G. V. The HDS mechanism: Which «auxiliary» process takes place — sulfur isotopic exchange or replacement — and why is it important to know it? // Catal. Today. 2008. V. 130. N 1. P. 243–248.

https://doi.org/10.1016/j.cattod.2007.07.02