УДК 66.092-977: 66.092.977: 691.175.5/.8: 691.175.664

ПИРОЛИЗ ПОЛИУРЕТАНОВ. ОСОБЕННОСТИ ПРОЦЕССА И СОСТАВ ПРОДУКТОВ РЕАКЦИИ (обзор)

© Е. М. Захарян¹, А. Л. Максимов^{1,2}

 ¹ Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29
 ² Химический факультет Московского государственного университета им. М. В. Ломоносова, 119991, г. Москва, Ленинские горы, д. 1 E-mail: Zakharyan@ips.ac.ru

> Поступила в Редакцию 9 февраля 2022 г. После доработки 11 марта 2022 г. Принята к публикации 11 марта 2022 г.

Увеличение мощностей производства и потребления изделий из полиуретанов, применяемых в тяжелой и легкой промышленности, в строительной отрасли, автомобилестроении, медицине, мебельной индустрии, при изготовлении спортивных принадлежностей, приводит к необходимости их переработки и утилизации. Сжигание отходов полиуретана приводит к выбросу токсичных газов (NO_x, HCl, различных фреонов и фторсодержащих углеводородов) и к образованию полициклических ароматических и гетероциклических соединений, полихлорированных дибензодиоксинов и дибензофуранов и других коррозионно-агрессивных хлорсодержащих соединений. Термическая переработка полиуретанов в инертной атмосфере, т. е. пиролиз, в отличие от разложения полимера в окислительной среде приводит к образованию большего количества кислородсодержащих соединений, в связи с чем встает вопрос изучения оптимальных условий пиролиза полиуретановых отходов. Образование галоген- и фосфорсодержащих органических соединений, обусловленное наличием хлора, фтора, фосфора в добавках антипирена, улучшающего термостабильные свойства полиуретанов, значительно снижает качество получаемых продуктов пиролиза, что влияет на их дальнейшее использование. В обзоре описаны принципы и механизмы разложения полиуретанов. Рассмотрено влияние структуры полимера, температуры процесса, природы газа-носителя и присутствия катализатора на термическое разложение полиуретанов и образование продуктов в газовой и конденсированной фазах.

Ключевые слова: полиуретан; пенополиуретан; эластичный полиуретан; жесткий полиуретан; отходы полиуретана; отходы пенополиуретана; термическое разложение полиуретана; пиролиз полиуретана; каталитический пиролиз полиуретана DOI: 10.31857/S0044461822020025, EDN: DDRYAO

Молекулы полиуретанов представляют собой сополимеры, состоящие из определенного числа звеньев жесткого (4,4'-метилендифенилдиизоцианат, 2,4-/2,6-толуолдиизоцианат, изофорондиизоцианат, 1,6-гексаметилдиизоцианат, натфалиндиизоцианат) и мягкого сегментов (простого или сложного полиэфирполиола). Взаимодействие изоцианатной группы (—C=N=O) жесткого сегмента и гидроксильной группы (—OH) полиола, соотношение которых при синтезе полимера называется «изоцианатным индексом», приводит к образованию уретановой (карбаматной) связи (схема 1) [1]. Повышение изоцианатного

индекса приводит к существенному возрастанию прочностных свойств полимера, к примеру, для жестких пенополиуретанов NCO-индекс варьируется в пределах 1.1–2, для гибких — 1.0–1.1.

Добавление в реакционную смесь воды приводит к образованию мочевины и выделению СО2, который способствует расширению полостей в структуре полимера и приводит к формированию пенополиуретана, использующегося в качестве тепло- и звукоизоляционного материала [2]. Помимо СО2 в качестве вспенивателя используют различные низкокипящие соединения, такие как фреон или пентан. Варьируя молекулярную структуру и молекулярную массу полиола, используемого в синтезе полиуретанов, получают полимеры с широким диапазоном плотности, имеющие эластичную, полужесткую или жесткую структуру. Жесткие полиуретаны имеют более высокую степень разветвления и сшивки по сравнению с эластичными полимерами благодаря использованию полиолов с более низкой молекулярной массой и высоким гидроксильным числом, за счет чего достигается низкая плотность и низкая теплопроводность материала, что позволяет применять его в качестве изоляционного материала [2]. Насыпная плотность гибких пенополиуретанов, имеющих структуру с открытыми ячейками, достигает 20 кг м-3, тогда как насыпная плотность жестких пенополиуретанов со структурой с закрытыми ячейками варьируется в пределах 30-35 кг·м-3 [3]. Плотность же коммерческих жестких пенополиуретанов может достигать 80 кг·м⁻³ [3]. В составе коммерческих полиуретанов используются аминные катализаторы, удлинители цепи, антипирены, сшивающие агенты, наполнители, вспенивающие агенты, улучшающие определенные свойства полимера [4], благодаря которым его используют в различных промышленных отраслях — строительной, медицинской, мебельной, текстильной и т. д. [5, 6].

Значительное потребление полиуретановых изделий приводит к росту количества их отходов, 30% которых перерабатывают, 40% подвергают рекуперации энергии, а оставшуюся часть вывозят на свалки [7]. Как и многие виды полимерных отходов, в том числе изделия из поливинилхлорида и вулканизированного каучука [8–10], полиуретановые отходы сортируют и измельчают с целью дальнейшего использования в качестве наполнителя для новых смесей (механический подход к утилизации) и подвергают процессам гликолиза, аминолиза, пиролиза и газификации (химический подход к утилизации) с целью получения ценного нефтехимического сырья [11, 12].

Цель работы — анализ данных литературы, касающейся пиролиза различных полиуретанов/пенополиуретанов, для выявления основных механизмов образования азот- и кислородсодержащих соединений в продуктах процесса, анализ механизма разложения полиуретанов в процессах низкотемпературной термообработки и пиролиза, а также в присутствии различных катализаторов.

Особенности механизма разложения полиуретанов

Разложение полиуретана, полученного в результате взаимодействия полиизоцианатной смолы и фенола (табл. 1), при 200–1000°С происходит в два этапа [13, 14]. Первая стадия протекает при 100–300°С с потерей до 50% массы полимера путем разрыва полиольных и полиизоцианатных связей, вторая стадия протекает вплоть до 800°С с образованием твердого остатка, выход которого составляет 26.75 мас% исходного полимера.

-
3
Ħ
Π
.5
6
-02

Состав полиуретанов и пенополиуретанов, подвергающихся некаталитическому и каталитическому пиролизу (M_r — молекулярная масса)

Полиуретан/изоцианатный индекс/		Состав полиуретана		Литературный
элементый состав	изоцианат	спирт	добавки	источник
Полиуретан	Полиизоцианатная смола	фенол	Аминный катализатор диметилэта- ноламин	[13]
Полиуретан на водной основе (60.6% С, 8.2% Н, 3.3% N)	Толуолдиизоцианат	Поликапролактонгликоль	Диметилпропионовая кислога	[15]
Полиуретан (59.1% С, 8.9% Н, 5.3% N)	Изофорондиизоцианат	Полипропиленгликоль	 4-Бутиленгликоль и диметилпро- пионовая кислота, растворенная в N-метил-2-пирролидоне, в каче- стве удлинителей цепи триэтил- амин в качестве нейтрализатора 	[16]
Полиуретан	Толуолдиизоцианат	Полиэтиленгликоль 200/400/1000/ 2000 г·моль ⁻¹	Her	[17]
Полиуретан	4,4'-Метилендифенилдиизо- цианат	Полиэтиленгликоль 200/400/1000/ 2000 г-моль-1		
Полиуретановая пленка	Толуолдиизоцианат	Поли(этиленгликоль)адипат (11– 13 мас%)	Триметилпропан	[18]
Гибкий пенополиуретан (изоциа- натный индекс 1.08)	Толуолдиизоцианат (46 частей)	Полиол Alcupol F-5611 (трехфунк- циональный полиэфир-полиол ($M_{\rm r}=3000~{\rm r}\cdot{\rm Monb}^{-1}$) с гидрок- сильным числом 56 мг KOH ${\rm r}^{-1}$) (100 частей)	Вода (3 части) в качестве продувки, сшивающий агент диметилэта- ноламин (0.3 части), катализатор триэтилендиамин (0.3 части), ок- тоат Sn(II) (0.8 части), диметилси- ликоновое масло (1 часть)	[19]
Полиуретановые клеи, устойчивые к давлению	Изофорондиизоцианат	Полипропиленгликоль ($M_{\rm r}$ = 1010 и 2000 г·моль ⁻¹), гидроксили- рованный полибутадиен ($M_{\rm r}$ = = 1370 г·моль ⁻¹ , гидроксильное число 245 мг KOH·r ⁻¹)	2,2-Диметилолпропионовая кислота, дибутилдилаурат, этилендиамин, триэтиламин	[20]
Полиуреган состава [(уксусный ан- гидрид) ₆ (масляный ангидрид) ₁₂ - (целлюлоза) ₄ (трифункциональ- ный изоцианат) ₃]	1,6-Гексаметилендиизоциа- нат (трифункциональный изоцианат, 48 частей)	Целлнолозный полиол, полученный этерификацией целлнолозы сме- сью уксусного и масляного анги- дридов (ацегобутират целлнолозы (33 части))	Her	[21]

			Таблица 1 ((әпнәжиороди)
Полиуретан/изоцианатный индекс/		Состав полиуретана		Литературный
элементый состав	изоцианат	спирт	добавки	источник
Гибкий полиуретан	Толуолдиизоцианат (8–35 мас%)	Поли(1,4-бутиленгликоль)адипат		
Гибкий полиуретан	Изофорондиизоцианат (17 мас%)	Поли(1,4-бутиленгликоль)адипат		
Гибкий полиуретан	1,6-Гексаметилендиизоциа- нат (11 мас%)	Поли(1,4-бутиленгликоль)адипат		
Жесткий полиуретан	4,4'-Метилендифенилдиизо- цианат (20 мас%)	Поли(1,4-бутиленгликоль)адипат	1911	[77]
Жесткий полиуретан	4,4'-Метилендифенилдиизо- цианат (22 мас%)	Поли(1,6-гексиленгликоль)адипат		
Жесткий полиуретан	4,4'-Метилендифенилдиизо- цианат (12 мас%)	Полидиэтилендиадипат		
Гибкий полиуретан	Толуолдиизоцианат	Полипропиленгликоль		
Жесткий полиуретан	4,4'-Метилендифенилдиизо- цианат	Полипропиленгликоль	Her	
Гибкий эластомер	Толуолдиизоцианат	Поли(1,4-бутиленгликоль)	Метилен-бис-хлоранилин в качестве отвердителя	
Жесткий эластомер	4,4'-Метилендифенилдиизо- цианат	Поли(1,4-бутиленгликоль)адипат	Her	[23]
Жесткий полиуретан	Нафталиндиизоцианат	Поли(этиленгликоль)адипат		
Гибкий полиуретан	1,6-Гексаметилендиизоциа- нат	Полиэфир фталевый ангидрид-эти- ленгликоль	Антипирен	
Жесткий эластомер	4,4'-Метилендифенилдиизо- цианат	Поли(1,4-бутиленгликоль)	Диаминфенилметан в качестве аминного катализатора	
Герметик	Толуолдиизоцианат	Полипропиленгликоль	Her	
Отходы лака на основе полиурета- на (64.03% С, 7.19% Н, 25.47% О, 3.31% N)	Нет данных	Нет данных	Нет данных	[24]
Пенополиуретан	2,6-Толуолдиизоцианат	Полипропиленгликоль	Диэтил- и дибутилфталаты в каче- стве пластификатора, диэтиламин в качестве нейтрализатора	[25]

167

				:
Полиуретан/изоцианатный индекс/		Состав полиурстана		Литературный
элементый состав	изоцианат	спирт	добавки	источник
Пенополиуретан (плотность 22 кг·м ⁻³)	Смесь изомеров 2,4-/ 2,6-то- луолдиизоцианата	Полипропиленгликоль	Диэтил- и дибутилфталаты в каче- стве пластификатора	[26]
Пенополиуретан (плотность 25 кг ^{.м-3})	Смесь изомеров 2,4-и 2,6-толуолдиизоцианата	Полиол на основе сложного эфира адипиновой кислоты (диэтилен- гликоль)		
Гибкий пенополиуретан (изоциа- натный индекс 1.08)	Толуолдиизоцианат (46 частей)	Полиол Alcupol F-5611 (трехфунк- циональный полиэфирполиол $M_{\rm r} = 3000 {\rm r} \cdot {\rm моль}^{-1} {\rm c} {\rm гидроксиль}$ - ным числом 56 мг KOH ${\rm r}^{-1}$) (100 частей)	Вода (3 части) в качестве продувки, сшивающий агент диметилэта- ноламин (0.3 части), катализатор триэтилендиамин (0.3 части), ок- тоат Sn(II) (0.8 части), силико- новое ПАВ (1 часть), антипирен полифосфат аммония (20 частй)	[27]
Гибкий пенополиуретан (негорю- чая пена с плотностью 31 кг·м ⁻³) С ₁ Н _{1.77} 00.31N0.06	Толуолдиизоцианат	Полиалкоксиполиэфирный полиол, содержащий стирол и акрилони- трильный полимер	Вода, неорганические наполнители, пластификаторы, антимикробные агенты, пигменты	[28]
Гибкий пенополиуретан (огнестой- кая пена с плотностью 36 кг·м ⁻³) С ₁ Н _{1.69} О _{0.28} N _{0.17} Сl _{0.003} P _{0.001}	Толуолдиизоцианат	Полиалкоксиполиэфирный полиол, содержащий стирол и акрилони- трильный полимер	Вода, неорганические наполнители, пластификаторы, антимикробные агенты, пигменты и антипирены меламин и галофосфат	
Гибкий пенополиуретан (изно- шенные матрасы с плотностью 19.62 кг·м ⁻³ , 57.79% С, 7.36% H, 5.95% N, <0.01% S)	Нет данных	Нет данных	Ca 9.19%, O 3.87%, Si 0.105%, Sn 0.105%, Cl 0.0385%, Na 0.0273%, Fe 0.0247%, S 0.0127%, Mg 0.0097%, Al 0.00797%, P 0.00157%	[29, 30]
Отходы пенополиуретана (изоля- ционный материал холодиль- ника)	4,4'-Метилендифенилдиизо- цианат	1,4-Бутиленгликоль	CFCl ₃	[31]
Отходы пенополиуретана (изоля- ционный материал холодильни- ка) (62.7% С, 6.3% Н, 24% О, 6.4% N, 0.6% S)	4,4'-Метилендифенилдиизо- цианат	1,4-Бутиленгликоль	Добавки, содержащие Fe, Ti, Si, Al, Na, K (3.7 мас%)	[32]
Жесткий пенополиуретан	4,4'-Метилендифенилдиизо- цианат	1,4-Бутиленгликоль	Трис(1-хлор-2-пропил)фосфат и мо- дифицированное арамидное во- локно в качестве антипирена	[33]

(әпнәжиороди	
Таблица 1	

Литературный	источник	[34]	[35]	[36]	[37]	[38]	[20]	[60]	[0]]	[40]		[41]		[42]
	добавки	Глицериновые эфиры жирных кис- лот	Глицериновые эфиры жирных кис- лот, сложные эфиры адипиновой кислоты	Her	СН ₃ ССl ₂ F в качестве вспенивателя, катализатор	CFCl ₃	1,4-Бутиленгликоль в качестве уд- линителя	1,4-Бутиленгликоль в качестве уд- линителя	1,4-Бутиленгликоль в качестве удли- нителя цепи	1,4-Бутиленгликоль в качестве удли- нителя цепи	1,4-Бутиленгликоль в качестве удли- нителя цепи	1,4-Бутиленгликоль в качестве удли- нителя цепи	1,4-Бутиленгликоль в качестве удли- нителя цепи	1,4-Бутиленгликоль в качестве удли- нителя цепи
Состав полиуретана	спирт	Полипропиленгликоль	Полипропиленгликоль	Пропоксилированный триметилол- пропан	Полиэтиленоксид	Полиэтиленоксид-полипропилен- гликоль	Тетрагидрофуран (37%)	1,4-Бутиленгликольадипат (39%)	Политетрагидрофуран $(M_{\rm r} = 991 \ {\rm r} \cdot {\rm monb}^{-1})$	Политетрагидрофуран $(M_{\rm r} = 1911 \ {\rm r}\cdot{\rm monb}^{-1})$	Политетрагидрофуран (<i>M</i> _r = 991.33 г·моль ⁻¹)	Политетрагидрофуран $(M_{\rm r} = 1911 \text{ г}\cdot\text{моль}^{-1})$	Политетрагидрофуран (M _r = 1911 г·моль ⁻¹)	Политетрагидрофуран ($M_{ m r}=1000~ m r\cdot моль^{-1})$
	изоцианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат (48%)	4,4'-Метилендифенилдиизо- цианат (42%)	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат
Полиуретан/изоцианатный индекс/	элементый состав	Жесткий полиуретан	Велосипедные шины из полиурета- на (59.75% С, 6.4% H, 27.35% О, 3.96% N, 0.09% S)	Жесткий полиуретан	Жесткий пенополиуретан (тепло- изоляционный материал) (Shanghai Saikun, China)	Полиэфир-полиуретан	Термопластичный эластомерный полиуретан	Термопластичный эластомерный полиуретан	Сегментированный эластомер (изо- цианатный индекс 1.01)	Сегментированный эластомер (изо- цианатный индекс 1.01)	Сегментированный полиуретано- вый эластомер (изоцианатный индекс 1.01). Соотношение 2:1:1	Сегментированный полиуретано- вый эластомер (изоцианатный индекс 1.01). Соотношение 2:1:1	Сегментированный полиуретано- вый эластомер (изоцианатный индекс 1.01). Соотношение 3:1:2	Сегментированный полиуретан

Полиуретан/изоцианатный индекс/		Состав полиуретана		Литературный
элементый состав	изоцианат	спирт	добавки	источник
Жесткий пенополиуретан (изоциа- натный индекс 1.05)	Полимерный 4,4'-метилен- дифенилдиизоцианат (150 г)	Полиол простого полиэфира с гидроксильным числом 454.9 мг КОН·г ⁻¹ (143 г)		
Жесткий пенополиуретан (изоциа- натный индекс 1.1)	Полимерный 4,4'-метилен- дифенилдиизоцианат (150 г)	Полиол простого полиэфира с гидроксильным числом 454.9 мг КОН·г ⁻¹ (135 г)	Аминный катализатор триэтанол- диамин (3 г) в диэтиленгликоле (33 мас%), катализатор дибутил-	
Жесткий пенополиуретан (изоциа- натный индекс 2)	Полимерный 4,4'-метилен- дифенилдиизоцианат (150 г)	Полиол простого полиэфира с гидроксильным числом 454.9 мг КОН·г ⁻¹ (59 г)	оловодилаурат (0.5 г), силиконо- вое масло (2 г), вода (2 г)	[45]
Жесткий пенополиуретан (тепло- изоляционный материал с плот- ностью 63.25 кг·м ⁻³)	4,4'-Метилендифенилдиизо- цианат (150 г)	Простой полиэфирполиол с гидроксильным числом 463.64 мг КОН·г ⁻¹ (100 г)	Дибутиллаурат олова (0.5 г), диме- тилсиликоновое масло (2 г), вода (2 г), пропиленгликоль (1), три- этаноламин	[44]
Коммерческий полиуретан	4,4'-Метилендифенилдиизо- цианат	Тетраметиленглильадипат	1,4-Бутиленгликоль в качестве удли- нителя, 1,6-циклогександиметанол	[45]
Сегментированный полиуретан	4,4'-Метилендифенилдиизо- цианат	Поли(1,4-бутиленгликоль)адипат $(M_{\rm r}=974~{\rm r}\cdot{\rm Monb}^{-1})$	1,4-Бутиленгликоль в качестве удли- нителя цепи	[46]
Жесткий пенополиуретан (плот- ность 37–39 кг·м ⁻³ , изоцианат- ный индекс 1.2)	Полиметиленполифенилен- изоцианат	Полиэфирполиол на основе яблоч- ной кислоты и 1,6-гексиленгли- коля с гидроксильным числом 430 мг КОН·г ⁻¹ , 0.13 мас%	Дилаурат дибутилолова, силиконо- вое масло, N,N-диметилцикло- гексиламин в качетсве катализа- тора, дихлорфторэтан в качестве вспенивающего агента	[47]
Полиуретановый клей	4,4'-Метилендифенилдиизо- цианат (31.25 г)	Поли(1,4-бутиленгликоль)ади- пат ($M_{\rm r}$ = 1000 г·моль ⁻¹ , 35 г), поли(1,4-бутиленгликоль)ади- пат ($M_{\rm r}$ = 2000 г·моль ⁻¹ , 20 г), полиэтиленортофталат ($M_{\rm r}$ = = 2000 г·моль ⁻¹ , 30 г), полите- трагидрофурандиол ($M_{\rm r}$ = = 1000 г·моль ⁻¹ , 5 г), пентари- тридиакрилат	Катализатор 2,2-диморфолинодиэти- ловый эфир (0.1 г)	[48]

Таблица 1 (продолжение)

	Литературный	источник	[49]	: сил- IBato-		[51]		B Kâ-	[52]		[53 54]	[+с,сс] -ицду	[55, 56]
		добавки	Her	Полиэдрические олигомерные сесквиоксаны в качестве сши щего агента и антипирена	Her	Her	Her	Трис(1-хлор-2-пропил)фосфат честве антипирена	Нет данных	Нет данных	Нет	1,4-Бутиленгликоль в качестве нителя цепи	Нет данных
Состав полиуретана	Состав полиуретана	спирт	Поли(1,4-бутиленгликоль)адипат и поли(1,6-гексиленгликоль)адипат	Полиэфир(сорбит)полиол	Простой полиэфир на основе про- пиленоксида, этиленоксида и глицерина	Ароматический полиэфирполиол	Разветвленные сложные полиэфир- полиолы	Полиэфирполиолы	Нет данных	Нет данных	Политетрагидрофуран	Поли(1,4-бутиленгликоль)адипат	Нет данных
		изоцианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	Смесь диизоцианатов	Смесь диизоцианатов	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат
	Полиуретан/изоцианатный индекс/	элементый состав	Клеевой полиуретан DESMOCOLL 540, Bayer (63.9% C, 8.3% H, 26.2% O, 1.6% N)	Жесткий полиуретан	Полужесткий полиуретан	Жесткий полиуретан	Полиизоцианурат	Полиизоцианурат с добавкой ан- типирена	Отходы гибкого пенополиуретана	Вязкоупругая пена	Полиэфир-полиуретан	Полиэфир-полиурстан	Отходы жесткого пенополиуре- тана (изоляционный материал холодильника, Shanghai Saikun, China) (66.3% С, 8.6% H, 4.7% N)

(mpononneume)	Литературный	источник			[[2]]	[/c]				[58]	[65]	[60]
I MULTINITA I		добавки	Полистирол, акрилонитрил	Нет	Her	Адипиновая кислота	1,4-Бутиленгликоль в качестве удли- нителя цепи	1,4-Бутиленгликоль в качестве удли- нителя цепи	Нет данных	Нет данных	Триэтилендиамин, диметилсилико- новое масло, триэтаноламин, ди- бутиллаурат олова	Нет данных
	Состав полиуретана	спирт	Полиэтиленгликоль	Полипропиленгликоль	Полипропиленгликоль	Полиэтиленгликоль	Полиокситетраметиленгликоль	Полиокситетраметиленгликоль	Полиол (<i>M</i> _r = 3000 г·моль ⁻¹)	Полиол ($M_{\rm r} = 300 \ {\rm r} \cdot {\rm Monb}^{-1}$)	Полиол LY-4110 с гидроксильным числом 430 мг КОН·г ⁻¹	Нет данных
		изоцианат	Смесь 2,4-/2,6-толуолдиизо- цианата	Смесь 2,4-/2,6-толуолдиизо- цианата	Смесь 2,4-/2,6-толуолдиизо- цианата	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	4,4'-Метилендифенилдиизо- цианат	Смесь 2,4-/2,6-толуолдиизо- цианата	4,4'-Метилендифенилдиизо- цианат	Полиарилполиметиленизо- цианат (32.5% NCO)	Нет данных
	Полиуретан/изоцианатный индекс/	элементый состав	Амортизационный материал из гибкого полиуретана	Губка из гибкого полиуретана	Изоляционный материал 1 из гиб- кого пенополиуретана	Изоляционный материал 2 из жест- кого пенополиуретана	Гибкая губка из жесткого пенопо- лиуретана	Чехол для смартфона из жесткого пенополиуретана	Гибкий пенополиуретан с плотно- стью 45 кг·м ⁻³ (58% C, 8.6% H, 4.4% N)	Жесткий пенополиуретан с плот- ностью 54 кг·м ⁻³ (57% С, 6.8% Н, 8% N)	Жесткий пенополиуретан	Пенополиуретан Uratex Philippines

Таблица 1 (продолжение)

Разрыв уретановой связи в полимерах при 250– 300°С протекает по трем направлениям (схема 2) [15–17, 61]: диссоциация на изоцианат и спирт (1) [18], расщепление до первичного амина, олефина и CO₂ (2) и элиминирование с выделением CO₂, приводящее к образованию вторичного амина (3) [15–17, 61]. Параллельное протекание процессов (1) и (2) при разложении полиуретанов, как правило, приводит к перегруппировке функциональных групп либо к замене изоцианатной на аминогруппу с образованием моно- и диаминозамещенного производного диизоцианата [62].

Расщепление уретановой связи до первичного амина протекает через переходное состояние шестичленного кольца с карбаминовой кислотой (—R—NH—COOH) в качестве промежуточного соединения, диссоциация которой происходит через согласованное внутримолекулярное замещение CO₂ с переходным состоянием четырехчленного кольца. Образование вторичного амина (3) и CO₂ также протекает через внутримолекулярное замещение с переходным состоянием четырехчленного кольца [17].

Помимо основных трех направлений процесса разложения полиуретанов возможно протекание и побочных реакций [17, 63]. Образование вторичных и третичных аминов протекает вследствие нуклеофильной атаки атома α-углерода уретановым кислородом (схема 3).

Образующиеся в процессе диссоциации уретановой связи полиуретанов изоцианаты подвергаются

Схема 4 Димеризация и тримеризация изоцианатов [63]

Изоцианурат

процессам димеризации (в результате декарбоксилирования выделяются карбодиимиды) и тримеризации с выделением изоциануратов (схема 4) [63]. Димеры изоцианатов при взаимодействии с полиолами образуют сеть, состоящую из замещенных структур мочевины, разложение которой, в свою очередь, приводит к формированию вторичного амина [17].

Разрыв метиленовой связи во фрагменте 4,4'-метилендифенилдиизоцианата в полиуретановой структуре приводит к формированию фенилизоцианата и метилфенилизоцианата [17] (схема 5).

Пиролиз полиуретанов

На состав продуктов пиролиза полиуретанов влияют не только различные условия термического разложения (температура, скорость нагрева, атмосфера и т. д.), использование различных пиролитических устройств, но и природа изоцианатов и различных добавок, пластификаторов, нейтрализаторов и катализаторов, использующихся при их синтезе. Так, например, разнообразие продуктов пиролиза полиуретанов уменьшается с увеличением изоцианатного индекса, отношения [NCO]:[OH], с 1.05 до 2 [43].

Пиролиз полиуретанов в инертной атмосфере

Разложение полиуретанов на основе гексаметилендиизоцианата. Алифатические изоцианаты, а именно 1,6-гексаметилендиизоцианат, обычно используют в производстве гибких эластомеров [21, 22] и полиуретановых лаков, устойчивых к внешним

Схема 5

условиям, не обесцвечивающихся с течением времени, в состав которых также добавляют стеарат цинка [23, 24].

Быстрый пиролиз полиуретана, полученного в результате взаимодействия трифункционального изоцианата на основе 1,6-гексаметилендиизоцианата (схема 6) с ацетобутиратом целлюлозы, при 550°С в инертной среде (N₂) приводит к образованию газообразных метана, этилена, пропилена и пропана, уксусной и масляной кислот, диметилоксазола и 1,6-гексаметилендиизоцианата и в незначительных количествах 1-бутена, *о-, п-, м-*ксилолов [21].

Повышение температуры пиролиза полиуретанов на основе 1,6-гексаметилендиизоцианата (11 мас%) [22] (табл. 1) до 600°С способствует образованию моноцианатов, полученных в результате деградации 1,6-гексаметилендиизоцианата. Доля извлечения моноцианатов в процессе разложения полимера достигала 84%. Основными продуктами разложения поли(1,4-бутиленгликоль)адипата являются циклические соединения, такие как циклопентанон и тетрагидрофуран, 1,4-бутиленгликоль и продукт его дегидратации — 1,3-бутадиен. Адипиновой кислоты в продуктах пиролиза обнаружено не было, но были идентифицированы валериановая кислота и адипиновый ангидрид.

Полиуретан на основе 1,6-гексаметилендиизоцианата и полиэфира этиленгликоля и фталевого ангидрида пиролизуется уже при 220°С [23], в результате чего образуются этан, бутен, этан-, пропан-, бутан-, пентанизоцианаты, фталевый ангидрид, бензойная кислота, гликолевые эфиры бензойной и фталевой кислот.

Влияние времени пребывания газообразных продуктов в печи при пиролизе отходов лака на основе полиуретана (табл. 1) при 850°С исследовали в [24]. Основными компонентами газовой фазы являлись оксиды углерода, HCN, метан, этилен, выходы которых росли с увеличением времени пребывания частиц в печи, этан, пропилен и пентан, количество которых, наоборот, снижалось (табл. 2). Конденсированная фракция содержала в основном бензол, толуол, стирол и полициклические ароматические соединения.

В результате перегруппировки уретановой связи полимера были образованы бензонитрил, акридин, N-гидроксиметилкарбазол и изохинолин. Доля тяжелых полиароматических соединений, таких как нафталин, бифенил, флуорен, пирен, аценафтилен, фенантрен, антрацен, фенилнафталин и флуорантен, с увеличением времени пребывания повышалась, тогда как содержание толуола, стирола, 1-пропилбензола, метил- и винилнафталина, метилантрацена

и аценафтена снижалось. В аналогичной зависимости увеличивалось количество газовой фракции — 33, 47 и 60% и уменьшалось содержание смолы и сажи — 31, 20 и 15% соответственно.

Разложение полиуретанов на основе изофорондиизоцианата. Циклоалифатический диизоцианат является сырьем для производства свето- и атмосферостойких полиуретановых покрытий, адгезивов горячего плавления [16, 20, 22]. В двухкомпонентных полиуретанах, применяющихся в автомобильной промышленности, изофорондиизоцианат используется в качестве аддукта с пропиленгликолем и другими трехфункциональными спиртами. Также полиуретаны на основе циклического диизоцианата применяют в производстве отвердителей для порошковых красок, промышленных красок на основе органических растворителей.

Разложение полиуретана на основе изофорондиизоцианата, полипропиленгликоля и 1,4-бутиленгликоля, использующегося в качестве удлинителя цепи (схема 7), начинается при 250°С [16]. Максимальная потеря массы происходит при 300°С, тогда как 100% массопотери достигается при 600°С; дальнейшее повышение температуры приводит к разрыву связей в уже образованных продуктах и протеканию побочных процессов (крекинг, циклизация, ароматизация и т. д.).

Процессы пиролиза полиуретана подразделяют на три группы:

— выделение триэтиламина и N-метил-2-пирролидона обусловлено наличием добавки и растворителя в полимере;

 — образование второй группы продуктов, включающей 1,4-бутиленгликоль, изомеры изофорондиизоцианата, СО₂, 3-аминометил-3,5,5-триметилци-

Таблица 2

Продукты пиролиза отходов лака на основе полиуретана в ppm при 850°С в лабораторной печи (N₂, 1 — 100.9 мг образца, время пребывания газов 0.1 с, 2 — 28.7 мг образца, время пребывания газов 4 с, 3 — 17 мг образца, время пребывания газов 4.5 с) [24]*

Компонент	1	2	3	Компонент	1	2	3
CO ₂	89000	138000	180000	Бензонитрил	6600	3600	5400
СО	56400	107000	166000	1-Пропилбензол	5600	1800	2200
Метан	23000	39500	34400	Метилнафталин	4900	1100	1600
Этан	500	70	30	Винилнафталин	1100	800	
Этилен	32500	45500	44000	Аценафтилен	2100	3900	6800
Ацетилен	2600	9300	11800	Фенантрен	2200	2900	5000
HCN	3000	2800	4300	Антрацен	1300	1000	2600
Пропилен	2800	400	300	Акридин	600		
Пентан	1200	300	50	N-Гидроксиметилкарбазол	400		
Бензол	52500	72300	85600	9-Этенилантрацен	500	400	800
Толуол	8900	6700	3700	Метилантрацен	600	100	400
Стирол	9800	3300	3600	Фенилнафталин	900	100	3700
Нафталин	20200	24500	35800	Флуорантен	1000	2500	4400
Бифенил	2700	2400	3400	Изохинолин	500		
Флуорен	1700	1400	2100	Аценафтен	800	400	600
Пирен	1200	3100	5700				

Схема 7 Образование полиуретана на основе изофорондиизоцианата

клогексилизоцианат, связано с первичным разрывом уретановой и сложноэфирной связей;

— третья группа компонентов, таких как спирты, сложные эфиры кислот (табл. 3), образована в результате термического разложения полиола с последующими процессами дегидратации, переноса водорода и реакции сложноэфирного обмена.

Диссоциация уретана на первичный амин, олефин по уравнению (3) [15] приводит к выделению 2-метил-2-пропен-2-ола и 5-гексен-1-ола (табл. 3) [16]. Преобладающими продуктами пиролиза полимера являются 2-оксепанон (до 19.4%) и 1,6-гексиленгликоль (до 15.3%), доля которых значительно снижается при повышении температуры до 750°С (16.3 и 8.3% соответственно). Также повышение температуры способствует образованию более разнообразных продуктов за счет глубокого крекинга, дегидратации, переноса водорода: при низких температурах (250°С) было обнаружено всего 14 соединений, а при высоких (400– 700°С) — 20 соединений (табл. 3). Оптимальными температурами пиролиза оказались 400–550°С [16].

Быстрый пиролиз полиуретановых клеев при 600°С (5 с) в микрореакторе приводит к разложению полимера, продуктами являются: изофорондиизоцианат (40.4%), полипропиленгликоль (20.8%), гидроксилированный полибутадиен (10.4%), триэтиламин (2.1%) и этилендиамин (3.2%) (схема 8) [20]. Посредством расщепления связи (1) образуется этилендиамин, разрывы связей основной цепи

^{*} Разрешение на публикацию получено 22.12.2021, © Elsevier.

· · · · · · · · · · · · · · · · · · ·	-						
Компонент	250°C	350°C	400°C	450°C	550°C	600°C	700°C
CO ₂	0.86	1.96	2.28	2.62	2.94	9.16	15.85
Тетрагидрофуран			0.82	0.94	0.96	0.81	0.99
2-Метил-2-пропен-1-ол		0.56	1.8	1.83	2.25	2.32	2.54
Триэтиламин	3.71	3.89	3.92	4.01	4.09	3.59	3.65
Оксепан			0.15	0.21	0.25	0.12	0.28
Циклопентанальдегид			0.43	0.54	0.47	0.48	0.6
5-Гексен-1-ол			0.93	0.91	2.35	5.33	7.33
1,4-Бутиленгликоль	0.96	1.1	1.24	1.42	1.65	1.3	0.86
2-Метилоксиранилметиловый эфир 2-пропено-	0.15	0.13	0.25	0.19	0.19	0.12	0.15
вой кислоты							
N-Метил-2-пирролидон	0.43	0.46	0.53	0.48	0.42	0.34	0.26
Циклопентанол			0.22	0.18	0.35	0.17	0.16
2-Оксепанон	19.36	18.84	18.7	18.5	18.56	18.85	16.31
1,6-Гексиленгликоль	15.31	14.59	13.08	14.13	12.8	9.76	8.51
2-Метилциклогексиловый эфир 2-пропеновой	2.19	1.62	1.45	1.32	1.18	1	0.48
кислоты							
Диизоцианат изофорона	3.3	3.81	4.57	5.64	5.97	6.12	7.29
Диизоцианат изофорона	6.68	7.71	9.17	11.16	12.35	12.35	14.71
Ундек-10-ениловый эфир циклопентанкарбоно- вой кислоты	4.31	7.04	6.11	8.18	6.8	3.86	2.62
3-Аминометил-3,5,5-триметилциклогексилизо- цианат	12.5	10.61	9.31	8.1	6.37	4.59	2.38
5-Гексен-1-иловый эфир додекановой кислоты	8.2	5.38	4.89	5.34	4.75	2.24	
1,5,12,16-Тетраокациклодокозан-2,4,13,15-тет- раон	9	7.67	5.11	5.04	3.44	1.26	

Таблица 3 Продукты пиролиза полиуретана на основе изофорондиизоцианата при 250–700°С (12 с, Не, скорость 89.3 мл мин⁻¹) [16]*

Примечание. «—» — не обнаружен.

(1) и (2), (2) и (3), (6) и (7) приводят к выделению изофорондиизоцианата, расщепление связи (2) — к выделению полипропиленгликоля, разрыв связей (4) и (5) с последующим декарбоксилированием — к выделению газообразного CO₂. Диметилпропионовой кислоты в продуктах разложения полимера не обнаружено, но был получен 2,2-диметилпропионовый ангидрид (2.3%), образование которого сопровождается выделением воды (1.5%). Частичное разложение гидроксилированного полибутадиена, формирующегося в результате разрыва связей (7) и (8), приводит к образованию алканов C₁₋₄ (метан, этан, пропан, бутан 1.2%), бутена-1 (4.1%) и бутадиена (1.6%), а декарбонилирование — к выходу CO₂ (10.7%).

Доля извлечения изомерных *цис*- и *транс*-изофорондиизоцианатов при разложении полиуретанов на их основе (17 мас%) и поли(1,4-бутиленгликоль)адипата в пиролизере при 600°С составляла 64% [22], что меньше, чем в случае разложения полимера на основе 1,6-гексаметилендиизоцината. Поли(1,4бутиленгликоль)адипат в данных условиях разлагается на 1,4-бутиленгликоль, который в свою очередь дегидратируется до 1,3-бутадиена и циклизуется в тетрагидрофуран; декарбоксилирование адипиновой кислоты приводит к выделению валериановой кислоты, а дегидратация — к образованию адипинового ангидрида.

^{*} Разрешение на публикацию получено 22.12.2021, © Elsevier.

Схема 8

Разложение полиуретанов на основе 2,4-/2,6-толуолдиизоцианата. Смесь 2,4-/2,6-толуолдиизоцианатов в основном применяется в производстве формованных и эластичных блочных пенополиуретанов (матрацы, сиденья), полиуретанов, при изготовлении адгезивов, различных покрытий, лаков, уплотнительных материалов (детали для внутреннего оформления транспортных средств) [15, 17–19, 22, 23, 25–30, 57, 58].

Исследование влияния молекулярной массы полиэтиленгликоля, используемого в синтезе полиуретана на основе толуолдиизоцианата, на разложение полимера (схема 9) в [17] показало, что чем длиннее цепь полиола, тем выше температура разложения полимера. Полиуретан, имеющий в своем составе полиэтиленгликоль молекулярной массы 200 г моль-1, начинает разлагаться при 96°С, тогда как остальные (*M*_г полиэтиленгликоля 400, 1000, 2000 г·моль-1) — при 130°С. Полное разложение полиуретана на основе низкомолекулярного полиола $(M_{\rm r} = 200 \ {\rm r} \cdot {\rm моль}^{-1})$ наблюдалось при 320°C с образованием 1 мас% твердого остатка, на основе полиола $(M_r = 1000 \ r \cdot \text{моль}^{-1})$ — при 450°С, а на основе полиэтиленгликоля с $M_{\rm r} = 2000 \ {\rm F} \cdot {\rm моль}^{-1}$ — при 560°C с образованием остатка 5 мас%.

Разрывы уретановой и сложноэфирной связи в процессе термической обработки полиуретана при 320°С, содержащего низкомолекулярный полиол $(M_{\rm r} = 200 \ {\rm r} \cdot {\rm моль}^{-1})$, приводят к выделению *n*-толуолизоцианата и тетраэтиленгликоля и твердого остатка <1 мас%. Разложение же полимера, в составе которого имелся высокомолекулярный полиол $(M_{\rm r} = 2000 \ {\rm r} \cdot {\rm моль}^{-1})$, сопровождается образованием изоцианата в интервале температур 130-420°С, карбодиимида, формирование которого обусловлено процессом декарбоксилирования изоцианата, в интервале 230–400°С, *n*-толуидина в интервале 250–340°С, СО, СО₂ в интервале 140–530°С и Н₂О. В результате разложения полиольной цепи образуются олигомеры диэтиленгликоль, триэтиленгликоль, моновиниловый и моноэтиловый эфиры гликоля.

Схема 9

Структура полиуретана на основе толуолдиизоцианата и полиэтиленгликоля [17]

Гибкий пенополиуретан на основе толуолдиизоцианата и полипропиленгликоля пиролизуется при 240°С, тогда как влагоотверждаемый герметик, состоящий из тех же компонентов, разлагается уже при 260°С с образованием диизоцианата, аминотолуолизоцианата и фрагментов полиольной цепи [23]. Разрывы связей при разложении эластомера, содержащего толуолдиизоцианат, поли(1,4-бутиленгликоль) и метилен-*бис*-ортохлоранилин (схема 10), использующийся в качестве отвердителя, при 500°С сопровождаются выделением CO₂, 1,4-бутиленгликоля, толуолдиизоцианата и его NH₂-замещенных производных, а также метилен-*бис*-ортохлоранилина.

Исследование продуктов двойного пиролиза материалов из гибкого пенополиуретана (табл. 1) [25, 26] показало, что они являются простыми эфирами 2,6-толуолдиизоцианата и полипропиленгликоля [25] и 2,6-толуолдиизоцианата и поли(диэтиленгликоль)адипата [26]. На первой стадии пиролиза полиуретана (200-320°С) в [25] происходит выделение сложных эфиров фталевой кислоты, используемых в качестве пластификаторов [бис(2-этилгексил)фталат, бутилбензилфталат, диэтилфталат, ди-изо-бутилфталат, ди-н-бутилфталат], и частичная деполимеризация уретановой связи согласно [15, 16] с образованием 2,6-толуолдиизоцианата, его аминозамещенного производного (2-амино-6-изоцианаттолуол), 4-метил-2,6-ди-изо-бутилфенола, 2,4-ди-изо-бутилфенола, гексадекановой кислоты, сквалена и 4-циклогексилен-1,4-гликоля. Вторая стадия пиролиза (320–500°С) связана с полным расщеплением полимерной сетки с выделением сшивающих агентов, таких как н-бутан, н-этилацетамид, диэтиламин, бутанамид, тетраметилоксиран, различные олигомеры полипропиленгликоля [1-(2-аллилокси-1-метилэтокси)-2-пропанол, 3-(3-изопропокси)пропоксипропанол, тример пропиленгликоля, 1-(1-метилпропокси)бутан], 1-изоцианат-2-метилбензол [25].

Пиролиз гибкого пенополиуретана на основе смеси толуолдиизоцианатов и сложного полиэфира адипиновой кислоты диэтиленгликоля (табл. 1) при 650°С в потоке Не [26] приводит к образованию изомеров 2,4- и 2,6-толуолдиизоцинатов и их моно- и диаминозамещенных производных, полученных в процессе частичного гидролиза изоцианатной группы, CO₂, адипинкетона, этиленгликоля и диэтиленгликоля, выделяемых в процессе разрыва полиольных связей. В результате термического разложения гибкого пенополиуретана на основе полипропиленгликоля (табл. 1) были получены помимо CO₂ и диизоцианатов продукты расщепления, дегидратации и циклизации полиола — пропиленгли-

коль, дипропиленгликоль, 1-пропоксипропан-2-ол и пропоксиацетон.

Полиуретан, полученный путем полимеризации толуолдиизоцианатов, поликапролактогликоля и 1,4-бутиленгликоля, не разлагается при температурах ниже 300°C [15], поэтому незначительные выходы продуктов наблюдаются только при температурах выше 350°C (табл. 4). Преобладающим продуктом пиролиза полимера является 2-оксепанон (до 49.34%), капролактон, доля которого значительно снижается при повышении температуры до 750°C (32.05%) в связи с его разложением. Также повышение температуры способствует образованию большего количества различных продуктов за счет глубокого крекинга, дегидратации, переноса водорода: при низких температурах (350°С) было обнаружено всего 11 соединений, а при высоких (650–750°С) — уже 25 (табл. 5). Оптимальными температурами разложения полимера оказались 650–750°С.

Образование CO₂, 1-пентанола, 1- и 2-метилбензол-1,3-диизоцианатов, 2- и 4-метил-1,3-бензолдиамина в ходе пиролиза полиуретана [15] происходит в результате первичного разрыва уретановой и сложноэфирной связи (1, 2); 1,3-циклопентадиена, циклопентена, циклогексанона, 2-пропеновой кислоты, 1-циклопропил-2,5-гексеновой и гексановой кислот, 2-оксепанона, гептилового эфира циклопентакарбоновой кислоты — в результате расщепле-

Таблица 4 Продукты пиролиза полиуретана на основе толуолдиизоцианата при различных температурах (12 с, He, скорость 89.3 мл[•]мин⁻¹) [15]*

Продукт	350°C	450°C	550°C	650°C	750°C
CO ₂	2.31	3.8	5.81	9.58	18.16
1-Пентен			—	0.8	2.5
1,3-Циклопентадиен				1.07	3.83
Циклопентен				0.9	2.42
1,5-Гексадиен				0.54	1.57
2-Метил-2-пропен-1-ол	1.02	1.96	2.34	2.1	1.79
Триэтиламин	6.56	6.82	6.96	5.75	4.29
Циклогексанон		_	—	0.27	0.49
2-Пропениловый эфир 2-пропеновой кислоты			1.07	3.04	1.68
1-Пентанол			0.1	0.29	0.24
Циклопентанон		0.11	1.84	4.7	4.48
2-Метил-2-пропеновая кислота	0.58	1.67	2.85	2.35	1.1
1-Циклопропил-2-пропен-1-он		_	0.11	1.42	1.17
2-Метил-2-циклопентен-1-он			0.15	1.64	2.19
2-Циклогексен-1-он			0.17	3.7	3.54
5-Гексеновая кислота		0.74	1.95	1.63	3.28
Гексановая кислота		0.12	0.36	0.29	0.35
1-Метил-2-пирролидинон	1.66	1.8	2.17	1.04	0.73
2-Оксепанон	49.34	47.98	43.59	38.76	32.05
2-Метилбензол-1,3-диизоцианат	4.05	3.51	3.48	2.45	2.15
1-Метилбензол-2,4-диизоцианат	9.81	8.82	8.32	5.4	4.34
2-Метил-1,3-диаминобензол	1.52	1.38	0.98	0.81	0.5
4-Метил-1,3-диаминобензол	1.35	1.02	0.95	0.8	0.61
Гептиловый эфир циклопентакарбоновой кислоты	6.6	498	4.18	1.25	0.28

Примечание. «—» — не обнаружено.

* Разрешение на публикацию получено 22.12.2021, © Elsevier.

Температура	Идентифицированный продукт						
дистилляции фракции, °С	250°C	300°C	350°C	400°C			
-196÷-140	CO ₂	Пропилен, СО2	Пропилен, СО2	Пропилен, СО2			
-140÷-60	Ацетальдегид, С ₃ H ₆ O изомеры	Формальдегид, ацеталь- дегид, С ₃ Н ₆ О изомеры	Формальдегид, ацеталь- дегид, С ₃ Н ₆ О изомеры	Формальдегид, ацеталь- дегид, С ₃ Н ₆ О изомеры			
-60÷-40	Вода	Вода	Вода, высокомолекуляр- ные фрагменты поли- ола	Вода, высокомолекуляр- ные фрагменты поли- ола			
-40÷25	Низкомолекулярные фрагменты полиола, толуолдиизоцианат	Низкомолекулярные фрагменты полиола, толуолдиизоцианат	Высокомолекулярные фрагменты полиола	Высокомолекулярные фрагменты полиола			

Таблица 5 Идентифицированные компоненты четырех фракций конденсированных продуктов [19]*

ния сложноэфирной связи в уретане с последующей дегидратацией и переносом водорода; а 1-пентена, 1,5-гексадиена, 2-метил-2-пропен-1-ола, представляющих собой соединения с терминальной двойной связью, — в процессе диссоциации уретана до первичного амина, олефина и СО₂.

Разложение эластичного пенополиуретана (изоцианатный индекс 1.08, табл. 1) на основе толуолдиизоцианата и простого полиэфирполиола (*M*_r = = 3000 г·моль⁻¹) [19] при низких температурах протекает по двум конкурирующим направлениям разрыва уретановых связей — деполимеризация пенополиуретана с выделением толуолдиизоцианата и полиола и диссоциация уретановых связей с выделением диаминотолуола, СО2 и полиольных цепей с концевыми алкеновыми группами (схема 2) [17], среди направлений разложения преобладает первый процесс. Выделение СО₂, образующегося в процессе разрыва уретановой связи через четырехчленное и (или) шестичленное переходное состояние (схема 2) [17], наблюдается в течение всего процесса разложения полиуретана [19], но в продуктах деградации не были обнаружены амины. Это говорит о том, что они сразу при образовании взаимодействуют с изоцианатами с образованием полимочевины (схема 4) [63]. В газовой фракции уже при 300°С были идентифицированы помимо СО₂ водород и метан, выделение которых продолжалось вплоть до 400°С.

Вторую стадию деградации полимера можно отнести к вторичным процессам разложения, в частности, полиола и полиоловой цепи с концевыми алкеновыми группами, формирующейся на первой стадии. Среди продуктов преобладали конденсирующиеся пропилен, формальдегид, ацетальдегид, изомеры C₃H₆O (пропаналь, пропиленоксид, ацетон) и низко/ высокомолекулярные фрагменты полиольных цепей (табл. 5), образующиеся в результате случайного разрыва связи С—С и С—О (схема 11).

Извлечение составляющих 2,4- и 2,6-толуолдиизоцианата при пиролизе гибкого полиуретана на основе поли(1,4-бутиленгликоль)адипата (8—35 мас%

^{*} Разрешение на публикацию получено 22.12.2021, © Elsevier.

Наличие антипирена в структуре пенополиуретана на основе толуолдиизоцианата (изоцианатный индекс 1.08, табл. 1) значительно меняет ход процесса разложения полимера [27]. В отличие от двухэтапного разложения пенополиуретана [19] добавка 13 мас% полифосфата аммония в структуру гибкого полимера [27] приводит к деструкции полимера в четыре стадии, две из которых связаны с разложением антипирена до полифосфорной кислоты и фосфатных фрагментов. Образование летучих продуктов наблюдается при более низких температурах, чем в [19]. Это связано с тем, что первичное расщепление уретановых связей полимера посредством деполиконденсации катализируется кислотными гидроксильными группами, формирующимися при разложении антипирена [27]. Также добавка 13 мас% полифосфата аммония в структуру полиуретана способствует увеличению выхода полукокса (20 мас% при 360°С), тогда как при разложении чистого полимера при 360°С образуется всего 6 мас% твердого остатка, т. е. антипирен способствует процессу коксования продуктов. Исследования продуктов разложения термостабильного полимера показали [27], что вместо формальдегида, ацетальдегида и изомеров C₃H₆O из чистого полиуретана [19] образуются аммиак и пропаналь в большем количестве из термостойкого полимера. Наличие 2,5-диметил-1,4-диоксана в конденсируемой фракции [27] связано с каталитической реакцией конденсации полиольных групп в присутствии полифосфата (схема 12).

Пиролиз изношенных матрацев (табл. 1) на основе гибкого пенополиуретана [29, 30] в атмосфере N₂ протекает в три стадии (275, 380 и 700°С) в отличие от пиролиза полимеров [13, 14]. Появление третьего этапа при 700°С в процессе пиролиза обусловлено разложением при данной температуре CaCO₃, содержащегося в составе пенополиуретана. При термической обработке полимера при низких температурах преобладающими продуктами являются газообразные аммиак, цианистый водород и нитрильные соединения (табл. 6) [30], тогда как повышение температуры до 850°С способствовало росту выхода полициклических ароматических и гетероциклических углеводородов (бензонитрил, анилин, хинолин, инден и т. д.). Образование большего количества аммиака при 550°С в атмосфере азота, чем при 850°С, связано с гидрированием цианистого водорода.

Основными продуктами, полученными в процессе пиролиза полиуретана, являются низшие C_{1-6} алканы и алкены, такие как пропилен, метан, этилен, этан, 1,3-бутадиен, пропан, ацетилен, бензол. В результате пиролитического разложения полиуретана образовывалось значительное количество неконденсирующихся соединений (альдегиды, кетоны, нитрилы и т. д.): 429 ppm при 550°С и 168 ppm при 850°С, количество азотсодержащих компонентов составляло 490 ppm при 550°С и 2370 ppm при 850°С. Пропилен является преобладающим продуктом вследствие разложения полиуретана, простого полиэфира и алифатических оксигенированных соединений, присутствующих в структуре полиуретана, и при 550, и при 850°С.

Изучение процесса образования токсичных полициклических ароматических углеводородов показало, что значительное выделение полиароматических соединений наблюдается при пиролизе при 850°С, например, доля нафталинов в данных условиях достигает 4400 ppm (рис. 1), доля всех полициклических ароматических углеводородов — 6871 ppm. Образование значительного количества полиароматических углеводородов в инертной атмосфере при повышенных температурах обусловлено процессами ароматизации соединений (дегидрирование насыщенных углеводородов, циклизация, реакция Дильса– Альдера) с образованием бензола, затем нафталина, далее фенантрена и т. д. [39].

Основными азотсодержащими соединениями являлись бензонитрил и его замещенные производные, анилин, индол, изохинолин, бензолизоцианат и хинолон [30].

Схема 12

Процесс разложения полиолов, катализируемый кислотными группами антипирена, входящего в состав полиуретана [27]

550°C, N ₂	850°C, N ₂	Компонент	550°C, N ₂	850°C, N ₂	Компонент	550°C, N ₂	850°C, N ₂
	Газовая х	роматография в	сочетании с	с детектором	и теплопроводности		
103	132	Пропилен	98	18	1,3-Бутадиен	5710	7915
20	12	Пропин	378	759	н-Пентан	117	
14	15	Ацетилен	169	6344	изо-Пентан	337	
27	31	<i>изо-</i> Бутан	340		1-Пентен	737	
28	135	н-Бутан	—	1437	1-Гексен	284	—
12	6859	изо-Бутен	2379	159	1-Гептен	224	—
18	103	<i>цис</i> -2-Бутен	1237	229	Бензол	821	33
11	332	2-Бутин		648	Ксилолы	2262	
183	317						
		Газовая х	кроматомасс	-спектромет	рия		
201		2-Пропанон	30		Этинилэтилен	_	13
115	48	CH ₂ =CHCN	2617	12	Диизопропиловый эфир	20	—
24	54	Пропаналь	13		1,3-Циклопентадиен		7700
37		CH ₃ CN	1337	12	2-Метилпиридин		15
43	555	CH ₃ OH	4358	1953	Метилглиоксаль	9514	
429	169				Тетраметилоксиран	6279	
	550°C, N ₂ 103 20 14 27 28 12 18 11 183 201 115 24 37 43 429	550°С, N2 850°С, N2 Газовая х 103 132 20 12 14 15 27 31 28 135 12 6859 18 103 11 332 183 317 201 — 115 48 24 54 37 — 43 555 429 169	550°С, N2 850°С, N2 Компонент Газовая хроматография в Пропилен П 103 132 Пропилен П 20 12 Пропин 1 14 15 Ацетилен 1 27 31 изо-Бутан 1 28 135 н-Бутан 1 12 6859 изо-Бутен 1 18 103 µuc-2-Бутен 1 18 317 Газовая х 201 — 2-Пропанон 115 48 СН2=СНСМ 37 — СН3СМ 43 555 СН3ОН	550°С, N2 850°С, N2 Компонент 550°С, N2 Газовая хроматография в сочетании ография в сочетание опрасование опрасование ография в сочетание ограф	550°С, N2 850°С, N2 Компонент 550°С, N2 850°С, N2 Газовая хроматография в сочетании с детектором 103 132 Пропилен 98 18 20 12 Пропилен 98 18 20 12 Пропин 378 759 14 15 Ацетилен 169 6344 27 31 изо-Бутан 340 — 28 135 н-Бутан — 1437 12 6859 изо-Бутен 2379 159 18 103 цис-2-Бутен 1237 229 11 332 2-Бутин — 648 183 317 — 7 — 201 — 2-Пропанон 30 — 215 48 СН2=СНСN 2617 12 24 54 Пропаналь 13 — 37 — СН3СN 1337 12 43 555 СН3ОН </td <td>550°С, N2 850°С, N2 Компонент 550°С, N2 850°С, N2 Компонент Газовая хроматография в сочетании с детектором теплопроводности 103 132 Пропилен 98 18 1,3-Бутадиен 103 132 Пропилен 98 18 1,3-Бутадиен 20 12 Пропин 378 759 н-Пентан 14 15 Ацетилен 169 6344 изо-Пентан 27 31 изо-Бутан 340 — 1-Пентен 28 135 н-Бутан — 1437 1-Гексен 12 6859 изо-Бутен 2379 159 1-Гептен 18 103 µuc-2-Бутен 1237 229 Бензол 183 317 — 648 Ксилолы 183 317 — 9 14 диизопропиловый эфир 24 54 Пропаналь 13 — 1,3-Циклопентадиен 37 — СН₃СN 1337</td> <td>550°С, N2 850°С, N2 Компонент 550°С, N2 850°С, N2 Компонент 550°С, N2 Газовая хроматография в сочетании с детектором теплопроводности 103 132 Пропилен 98 18 1,3-Бутадиен 5710 20 12 Пропилен 98 18 1,3-Бутадиен 5710 14 15 Ацетилен 169 6344 изо-Пентан 337 27 31 изо-Бутан 340 — 1-Пентен 737 28 135 н-Бутан — 1437 1-Гексен 284 12 6859 изо-Бутен 2379 159 1-Гептен 224 18 103 иис-2-Бутен 1237 229 Бензол 821 11 332 2-Бутин — 648 Ксилолы 2262 183 317 — Этинилэтилен — 201 — 2-Пропанон 30 — Этинилэтилен — <</td>	550°С, N2 850°С, N2 Компонент 550°С, N2 850°С, N2 Компонент Газовая хроматография в сочетании с детектором теплопроводности 103 132 Пропилен 98 18 1,3-Бутадиен 103 132 Пропилен 98 18 1,3-Бутадиен 20 12 Пропин 378 759 н-Пентан 14 15 Ацетилен 169 6344 изо-Пентан 27 31 изо-Бутан 340 — 1-Пентен 28 135 н-Бутан — 1437 1-Гексен 12 6859 изо-Бутен 2379 159 1-Гептен 18 103 µuc-2-Бутен 1237 229 Бензол 183 317 — 648 Ксилолы 183 317 — 9 14 диизопропиловый эфир 24 54 Пропаналь 13 — 1,3-Циклопентадиен 37 — СН ₃ СN 1337	550°С, N2 850°С, N2 Компонент 550°С, N2 850°С, N2 Компонент 550°С, N2 Газовая хроматография в сочетании с детектором теплопроводности 103 132 Пропилен 98 18 1,3-Бутадиен 5710 20 12 Пропилен 98 18 1,3-Бутадиен 5710 14 15 Ацетилен 169 6344 изо-Пентан 337 27 31 изо-Бутан 340 — 1-Пентен 737 28 135 н-Бутан — 1437 1-Гексен 284 12 6859 изо-Бутен 2379 159 1-Гептен 224 18 103 иис-2-Бутен 1237 229 Бензол 821 11 332 2-Бутин — 648 Ксилолы 2262 183 317 — Этинилэтилен — 201 — 2-Пропанон 30 — Этинилэтилен — <

Таблица 6 Продукты пиролиза полиуретана в ppm (550–850°C, N₂) [30]*

Примечание. «—» — не обнаружено, концентрация ниже 10 ppm.

Как и в случае образования полиароматических углеводородов, наибольший выход хлорбензолов [30], среди которых преобладал хлорбензол, достигался при пиролизе при повышенных температурах — 360 ppm (табл. 7). Повышение температуры процесса в случае пиролиза полимера приводит к значительному росту выхода полихлорированных диоксанов, фуранов и бензолов, наибольший выход которых достигался при 850°C.

Разложение полиуретанов на основе 4,4'-метилендифенилдиизоцианата. Основное применение изомерных 2,2'-, 2,4'- и 4,4'-метилендифенилдиизоцианатов — производство жестких полиуретанов и пенополиуретанов, полиизоциануратов, обладающих высокими теплоизоляционными свойствами (строительный теплоизоляционный материал, декоративные панели, монтажная пена, изоляционный материал холодильных установок), а также строительных адгезивов (герметиков, клеев и т. д.) [17, 22, 23, 31–37, 39–49]. Жесткие полиуретаны представляют собой сегментированные полимеры, состоящие из мягких (полиолы, полиэфиры) и жестких (4,4'-метилендифенилизоцианат) сегментов (схема 13).

Таблица 7

Выход хлорированных ароматических соединений в продуктах пиролиза полиуретана при 550 и 850°C [30]**

Компонент	Пиролиз 550°С, N ₂	Пиролиз 850°С, N ₂	
Хлорбензол, 1,2-, 1,3-, 1,4-дихлорбензол	42 ppm	360 ppm	
Хлорфенолы	4 ppm	2 ppm	
Полихлордибензо- <i>п</i> -диоксаны и фураны	75 ppm	2375 ppm	
Полихлорбензолы	289 ppm	1419 ppm	

* Разрешение на публикацию получено 22.12.2021, © Elsevier. ** Разрешение на публикацию получено 22.12.2021, © Elsevier.

Рис. 1. Выход основных полициклических ароматических углеводородов, образующихся в результате пиролиза гибкого пенополиуретана при различных температурах [30].*

Исследование разложения полиуретанов на основе 4,4'-метилендифенилдиизоцианата и полиэтиленгликоля различных молекулярных масс в N₂ (схема 14) [17] показало, что процесс пиролиза полимера, содержащего низкомолекулярный полиол (M_r = = 200 г·моль⁻¹), протекает до образования 20 мас% твердого остатка, тогда как полимер на основе высокомолекулярного полиэтиленгликоля (M_r = = 2000 г·моль⁻¹) разлагается с формированием 8 мас% полукокса при 650°С. Основные потери массы во всех случаях пиролиза происходят в интервале температур 300–450°С.

Термическое разложение полиуретана, в составе которого содержится полиол ($M_r = 200 \text{ г} \cdot \text{моль}^{-1}$), протекает с образованием CO₂ при температурах 150–650°C, метана (440–650°C), NH₃ (440–650°C), HCN (450–650°C), *n*-толуидина/анилина (330–600°C) и полиэфирной цепи (240–600°C), содержащей виниловую и этоксиэфирную группы (табл. 8). Аналогичные продукты были получены и при пиролизе полиуретанов на основе полиолов с $M_r = 400$, 1000 и 2000 г \cdot моль⁻¹, за исключением того, что в

процессе их разложения наблюдалось большее выделение воды при температуре 360–650°С и СО в интервале 260–540°С.

Полиуретан, содержащий помимо диизоцианата поли(1,4-бутиленгликоль) и диаминофенилметан [23], использующийся в качестве удлинителя цепи, разлагается в два этапа: при 270°С происходит выделение удлинителя цепи и образование аминозамещенных соединений посредством перегруппировки изоцианатных групп; повышение температуры до 400°С способствует выделению продуктов разложения поли(1,4-бутиленгликоля).

Пиролиз отходов пенополиуретановых пластиков (изоляционный материал холодильных установок, табл. 1), содержащих хлорфторуглероды (фреоны), исследовали в [31] с целью изучения механизма разложения материала и образования различных галогензамещенных соединений. Значительная потеря массы (60.7%) при разложении полимера происходит в интервале температур 236–411°С, повышение температуры до 630°С способствовало дальнейшей деструкции полиуретана с образованием 27.69 мас% твердого остатка. Процесс пиролиза полиуретана можно разделить на четыре стадии, учитывая выделяющиеся продукты (схема 15): на начальной стадии

^{*} Разрешение на публикацию получено 22.12.2021, © Elsevier.

Таблица 8

Продукты пиролиза полиуретана на основе 4,4'-метилендифенилдиизоцианата и полиэтиленгликоля молекулярной массы 200 г·моль⁻¹

	NOMIIOHEHT	Бензол	Толуол	п-Ксилол	Анилин	м-Толуидин	м-Этиланилин	5-Метилхинолин	
rypa, °C	440–700	+	+	+	+	+	+	+	
Темпера	330-440	I	Ι	I	I	I	Ι	I	
	NUMITOHEHTEI	и-Толуидин	2-(Фенилметил)бензоламин	4,4'-(Метилен-бис)бензоламин	3,3'-Аминодифенилметан	1,1'-Бифенил-3,3'-диметил-4,4'-амин	4-Метилбензонитрил	3-Метилдифениламин	3,4-Метиленбензоламин
rypa, °C	440–700	+	+	+	+	+	+	+	+
Темпера	330-440	+	+	+	+	+	Ι	I	I

(*T* < 200°С) часть сложноэфирных связей расщепляется с образованием ароматических нитросоединений и простых эфиров, которые в свою очередь при повышении температуры (второй этап, 200-500°С) разлагаются на дибутиловый эфир и нитробензол, а фреоны — частично на HCl и HF. На третьем этапе (500-700°С) происходит взаимодействие галогеноводородов с продуктами разложения дибутилового эфира с образованием галогенпроизводных углеводородов, также выделяются низкомолекулярные газообразные соединения. Проведение процесса при более высоких температурах способствует разложению галогенсодержащих фреонов.

Выделение наибольшего количества HCl в процессе пиролиза пенополиуретана наблюдается при температурах 500-600°С, NH₃ и H₂O — 550-750°С, HCN, фторметана CH₃F, хлорметана CH₃Cl, дифторметана СН₂F₂, трихлорметана СНСl₃, хлорэтана C₂H₅Cl — 600-750°С, НГ — 700-800°С. Помимо указанных газообразных хлорзамещенных углеводородов в газовой фазе были обнаружены трифторметан СНF₃, дихлорметан ССН₂Сl₂, трифторпропен С₃Н₃F₃, трифторацетон С₃H₃F₃O, хлорбензол С₆H₅Cl, *о*-хлоранилин C₆H₄ClNH₂, трихлофторметан CClF₃, дихлорбензол C₆H₄Cl₂, 2,4-дихлоранилин C₆H₃Cl₂NH₂, пентахлорбензол C₆HCl₅.

Высокотемпературный пиролиз (1000–1300°С) отходов полиуретановых пластиков (изоляционный материал холодильных установок, табл. 1) в реакторе с неподвижным слоем в потоке N₂ [32] проводили с целью исследования механизма образования сажи. Большинство образующихся в процессе пиролиза полиуретана углеводородных соединений, алифатических и ароматических, при повышении температуры

Схема 15

Схема разложения полиуретана и выделения галогенпроизводных фреонов [31]

подвергаются крекингу и риформингу с выделением газообразных компонентов (С2-6), также полимеризации в полициклические ароматические соединения, имеющие от одного до четырех бензольных колец (табл. 9). Выход сажи при 1000°С и 2 с составляет 11 мас%, тогда как при 1300°С и 0.2 с — уже 24.5%, при этом доля смолы снижается с 36.3 до 19%, а выход пиролизных газов соответственно растет с 36.3 до 40.6%. Значительную часть газов составляет водород, образуемый в процессе циклизации и дегидрирования углеводородов с образованием полиароматических соединений, 51.7-69.80%, доля которого увеличивается с ростом температуры. Помимо него обнаружены оксиды углерода, метан, этилен и ацетилен. Большая часть полициклических ароматических углеводородов с 4 и более кольцами начинают образовываться при 1100-1200°С (табл. 9).

При высоких температурах происходит разрушение полимерной сетки с образованием 4,4'-метилендифенилдиизоцианата в качестве основного продукта, разрывы связей С—N и CO в котором приводят к образованию 4,4'-диаминодифенилметана, анилина, метиланилина и бифенила и CO, CO₂. Разложение ароматических соединений до бензола и бензольного радикала и дальнейшее присоединение ацетилена по реакции Дильса–Альдера и взаимодействие радикалов друг с другом приводит к образованию ароматических соединений, имеющих от двух и более колец. Подобное увеличение молекулярной массы и дальнейшая конденсация подобных частиц способствует образованию небольших кластеров, частиц сажи, агломерация которых приводит к росту размера частиц до 20–50 нм.

Исследование термического разложения жестких пенополиуретанов (индекс NCO 30%) на основе полимерного 4,4'-метилдифенилдиизоцианата с/без *mpuc*-(1-хлор-2-пропил)фосфата и модифицированного арамидного волокна в качестве антипиренов про-

Компонент	1000°C	1100°C	1200°C	1300°C
1-Этенил-4-метилбензол		0.97		
Нафталин	15.13	_		
Бифенил	1.27	_		
Бифенилен	12.57	2.27		
Флуорен	1.42			
Фенантрен	24.3	14.81	5.34	
Антрацен		2.48	10.23	0.94
1,4-Дигидро-1,4-этенантрацен		_		1.92
4Н-Циклопентан(def)фенантрен	1.36	1.95		
2-Фенилнафталин	0.93	0.48		
Флуорантен	22.6	54.49	11.04	
Перилен	_		42.23	
Бензо(е)пирен	_	0.69		32.45
Пирен	_	_		0.78
Бензо(е)аценафтилен	_			7.43
Бензо(с)фенантрен	_	0.38		
Бензо(ghi)флуорантен	5.16	20.09		
Бензо(а)антрацен	—	0.57	10.54	—
Нафтацен	1.7	_	—	1.12
Трифенилен	2.29	—	3.53	10.24

Таблица 9

Выход ароматических соединений (%), обнаруженных в саже, полученной в процессе пиролиза отходов полиуретана при 1000–1300°С [32]*

Примечание. «—» — не обнаружено.

* Разрешение на публикацию получено 22.03.2022, © Elsevier.

водили [33] при температурах 100-700°С. На первом этапе (100-200°С) деструкция полимера приводит к выделению вспенивателя, 1,1-дихлор-1-фторэтана, метиленхлорида, метоксифлурана, воды, диметилового эфира, низкомолекулярных спиртов, полиола и изоцианатов (схема 16). При 200°С начинают разлагаться антипирены до триэтилфосфата, 1-хлор-2-пропанолфосфата и 2-бутилметилфосфонофлуоридата. Повышение температуры до 200-300°С приводит к разрыву связи — С в изоцианатах с выделением газообразного аммиака; при 300-350°С происходит разложение изоцианатов. На следующем этапе (350-500°С) происходит обезвоживание полиола, катализируемое фосфорной кислотой, с образованием виниловых эфиров, замещенных 1,4-диоксанов (1,4-диоксан-2,5-дион, 2,5-диметил-1,4-диоксан) [64], СО2, воды, олефинов, полимочевины. При температуре выше 500°С остатки материала продолжают разлагаться на летучие компоненты (алифатические спирты с разветвленными цепями (1-метокси-2-пропанол, изопропиловый спирт, 1,1'-окси-бис-2-пропанол), бензолалкилы, СО₂) [33].

При 250°С пиролиз жесткого полиуретана (табл. 1) [34] сопровождается разрывом уретановой связи с выделением летучего 4,4'-метилендифенилдиизоцианата, 1,1'-оксиди-2-пропанола и 1,1'-[(1-метил-1,2этандиил)-бис-(окси)]-2-пропанола, образующихся при разложении полипропиленгликоля. Дальнейшее повышение температуры пиролиза до 340°С приводит к разложению жестких сегментов с выделением замещенного пропанола, 2-гидрокси-1-(гидроксиметил)этилового эфира гексадекановой кислоты и небольшого количества диизоцианатов, которые затем дегидратируются до анилинов (4,4'-метилендианилин и *п*-метоксибензилиден-*п*-анилин). При *T* > 460°С из полимерной сетки выделяются многоатомные 1,2-пропандиол, дипропиленгликоль, 2-(2-гидроксипропокси)-пропанол-1 и алифатические 17-метилморфинан-3-ол и 2-метил-6-метиленоктан-2-ол и происходит разрушение жесткого сегмента с образованием 1,1'-[(1-метил-1,2-этандиил)-бис-(окси)]-2-пропанола, 4,4'-диаминодифенилметана и простых эфиров (глицерилмоноолеат и глицериновый эфир жирных кислот).

В [35] пиролиз отработанных полиуретановых шин (табл. 1) при 350 и 600°С приводил к образованию в основном 4,4'-диаминодифенилметана и 2-гексена в пиролизном масле и СО, метана и ацетилена — в газовой фазе (схема 17). Помимо них были получены алканы, алкены, бензол и его производные, NH₃, кетоны, сложные и простые эфиры, кислоты и спирты. При 350°С в продуктах преобладали макромолекулы, такие как октадециловый эфир гексадекановой кислоты (9.02%) и диоктиловый эфир (7.49%), доля которых снижается при повышении температуры до 0.16 и 0.68% соответственно. Повышение температуры способствует разложению изоцианатов до бензола и его производных. Кислородсодержащие соединения, такие как пропаналь, тетрагидрофуран, 3-гидрокси-2-бутанон, 2-метил-3-пентанол, 2-гидрокси-3-метил-2-циклопентен-1-он и 2-гексилоксиэтанол, образованы в результате дегидратации полученных спиртов и последующей циклизации соединений.

Влияние скорости нагрева и температуры на образование газообразных продуктов пиролиза жесткого полиуретана на основе 4,4'-метилендифенилдиизоцианата и пропоксилированного триметилолпропана (табл. 1) изучали в [36]. Разложение полиола, приводящее к образованию большинства продуктов, протекает посредством радикального разрыва цепи. В цепи пропоксилированного триметилолпропана более слабыми звеньями являются связи С—О, разрыв которых приводит к формированию нестабильного оксида пропилена, который в свою очередь преобразуется в пропаналь. Выделение метана, этана, пропана происходит благодаря взаимодействию радикалов водорода и радикалов, образованных в результате разрыва третичной и четвертичной С—С-связи.

Исследуя эволюцию образования газовой фракции, можно выделить четыре диапазона температур (табл. 10):

 — 250–350°С — исключительное образование CO₂ в результате разрыва уретановой связи полимера и пропилена из пропенилового эфира;

— 350–500°С — выделение этилена, этана, пропана, этаналя и пропаналя; снижается выход CO₂ (при 400°С не обнаруживается) и увеличивается выход метана;

— 500–650°С — наибольший выход метана, этилена, пропилена и пропаналя при 600°С;

— 650–800°С — значительное выделение этилена, пропана, этаналя и пропаналя при 700°С.

Увеличение скорости нагрева процесса с 10 до 20 град мин⁻¹ приводит лишь к повышению объема выделяемых газов.

В результате термического разложения жесткого полиуретана, содержащего полиэтиленоксид (табл. 1), в N₂ были получены следующие продукты: фреон 1,1-дихлор-1-фторэтан, наибольший выход которого наблюдался при 165°С, 2-метил-4,6-диизопропилфенол — при 230°С, диэтиловый эфир, 2,2-диметилпентанол-3, метилэтиленоксид-н-пропиловый эфир — при 370°С, *п*-метиланилин, метилбензиламин, толуол, этилбензол, этандиаминобензол — при 485°С [37]. Среди газообразных продуктов были идентифицированы CO₂, HCN, диметиловый эфир и NO₂.

Механизм термического разложения полиуретана, содержащего *трис*-(1-хлор-2-пропил)фосфат и модифицированное арамидное волокно в качестве антипиренов [33]

при скорости нагрева 10 (а) и 20 град мин ⁻¹ (о) в N ₂ при 275–800 °C [36]*								
Продукт		275°C	300°C	400°C	500°C	600°C	700°C	800°C
Метан	а	0	7	94	158	282	108	29
	б	0	0	133	240	500	322	189
Этилен	а	0	0	11	11	24	40	14
	б	0	0	20	33	64	120	105
Этан	а	0	0	59	31	7	0	0
	б	0	0	59	106	22	9	6
Пропилен	а	105	598	128	59	98	81	10
	б	0	222	428	288	241	241	106
Пропан	а	0	0	63	0	0	0	0
	б	0	0	33	21	0	0	0
Этаналь	а	0	0	6	0	0	12	0
	б	0	0	13	15	30	39	21
Пропаналь	а	7	32	75	57	82	85	28
	б	0	280	217	154	150	105	26

Таблица 10

Площадь хроматографического пика идентифицированного продукта при разложении полиуретана при скорости нагрева 10 (а) и 20 град·мин⁻¹ (б) в N₂ при 275–800°С [36]*

Продукты пиролиза отходов полиэфира-полиуретана (схема 18) на основе 4,4'-метилендифенилдиизоцианата и мягких сегментов из полиэтиленоксид-полипропиленгликоля [38] в реакторе с псевдоожиженным слоем при различных температурах (700–800°С) полимера представляют собой пиролизный газ (65–66 мас%), состоящий в основном из СО, метана и этилена (табл. 11), и масло (15– 18 мас%), содержащее ароматические бензол, нафталин и гетероциклические соединения.

Повышение температуры приводило к большему образованию СО, цианистого водорода и ароматических соединений благодаря большему расщеплению полимерной сетки, а также снижению выхода смолы, содержащей до 25 мас% кислорода и азота. Диолов и диизоцианатных соединений обнаружено не было, поскольку при повышенных температурах они разлагаются на углеводороды с меньшей молекулярной массой.

Основная потеря массы жесткого термопластичного полиуретанового эластомера на основе 4,4'-метилендифенилдиизоцианата и тетрагидрофурана (табл. 1) [39] происходит в интервале 300–450°С, в результате пиролиза полимера в N₂ образуется 15 мас% твердого остатка. Процесс разложения полимера начинается с выделения CO₂, H₂O, HCN, низших нитрилов и 1,4-бутиленгликоля, использу-

Схема 18

Структура полужесткого полиуретана, содержащего полиэфир [38]

* Разрешение на публикацию получено 22.03.2022, © Elsevier.

Компонент	700°C	800°C	Компонент	700°C	800°C
CO ₂	1.73	0.89	Метан	16.08	16.68
СО	33.98	35.72	Этилен	7.17	4.89
HCN	0.45	4.19	Пропилен	1.32	0.2
Другие газы	4.6	3.33	Нафтены	< 0.01	< 0.01
Бензол	1.39	4.67	Толуол	0.14	0.6
Другая ароматика	1.67	3.41	Нафталин	0.39	2.06
Кислородсодержащие компоненты	0.01	< 0.01	Анилин	0.9	0.64
Азотсодержащие компоненты	1.52	2.16	Бензонитрил	1.1	1.85
Неидентифицированные соединения	7.93	2.22	Смола	13.49	8.22
Полукокс	2.34	4.86	Вода	3.8	4.14

Таблица 11

Массовый баланс (мас%) пиролиза отходов полужесткого полиуретана в реакторе с псевдоожиженным слоем (700–800°С, 6 кг, 3.5 ч, скорость подачи сырья 0.5 кг ч⁻¹, N₂) [38]*

ющегося в качестве удлинителя цепи. Повышение температуры до 950°С приводит к большему выделению 1,4-бутиленгликоля, выход которого составляет 32.5% при данной температуре, выделению большего количества бензонитрила (1.3%), а также формированию значительного количества полиароматических углеводородов (табл. 12), как и в работе [30].

Влияние различного соотношения твердых и мягких сегментов полиуретановых эластомеров изучали в работах [40, 41, 65]. В [40] проводили быстрый и медленный пиролиз полиуретановых эластомеров (изоцианатный индекс 1.01), синтезированных из 4,4'-метилендифенилдиизоцианата и политетрагидрофурана (полиол) и имеющих различное соотношение твердый/мягкий сегмент (табл. 13). Разложение сегментированных полимеров при медленном пиролизе протекало в три этапа. В температурной зоне 280– 340°С происходило расщепление жесткого сегмента в полиуретанах 211М, 321М, 431М и 871М с образованием 1,4-бутиленгликоля, 4,4'-метилендифенилдиизоцианата и CO₂. На второй стадии (340–370°С) разложение мягких сегментов в полиуретанах 101, 201, 101М, 211М и 321М сопровождается выделением пиролизатов, содержащих CO₂, полиол, 4,4'-метилендифенилдиизоцианат и его аминопроизводные. Образование 4,4'-метилендифенилдиизоцианата подавляется в результате роста выхода аминозамещенных компонентов. При 370–450°С продолжалась деструкция мягкого сегмента уже во всех полиуретановых эластомерах.

При быстром пиролизе полиуретанов 101 и 101М, не содержащих жестких доменов, образование ди-

Таблица 12

Количества образуемых полициклических ароматических соединений (мг·г⁻¹ сырья) в процессе пиролиза при 800 и 950°С в N₂ [39]**

Соединение	800°C	950°C	Соединение	800°C	950°C
Нафталин	7.2	11.7	Бензо(а)антрацен	0.3	1.8
Аценафтилен	1.8	5.7	Хризен	0.3	2.5
Аценафтен	5.1	0.3	Бензо(b)флуорантен	0.05	1.7
Флуорен	2	0.8	Бензо(k)флуорантен	0.05	1.3
Фенантрен	1.9	6	Бензо(а)пирен	0.05	1
Антрацен	0.5	0.6	Бензо(ghi)перилен	0.01	0.8
Флуорантен	0.2	2.4	Инден	0.01	1
Пирен	0.5	3.3			

* Разрешение на публикацию получено 22.12.2021, © Elsevier.

^{**} Разрешение на публикацию получено 22.12.2021, © Elsevier.

Предполагаемая структура сегментированного полиуретанового эластомера							
Условия быстрого пиролиза: 300°С в течение 60 мин; 350, 450, 850°С в течение 10 мин; условия медленного пиролиза: 200–850°С при скорости нагрева 10 град мин ⁻¹ [40]*							
Образец	Соотношение 4,4'-метилендифенилдиизоацианат/ 1,4-бутиленгликоль/поли- (окситетраметиленгликоль)	Предполагаемая структура сегментированного полиуретана					
Полиуретан 101	1:0:1	991					
Полиуретан 101М	1:0:1	1911					
Полиуретан 211	2:1:1	991					
Полиуретан 211М	2:1:1	1911					

1911

1911

1911

Таблица 13

Примечание. Голубой блок — мягкий сегмент, желтый блок — жесткий сегмент.

3:2:1

4:3:1

8:7:1

изоцианата, основного мономера, не происходило. Высокая температура процесса способствовала расщеплению полиуретанов до соединений с концевыми аминогруппами. Таким образом, разложение мягких сегментов протекает при более высоких температурах, тогда как жесткие сегменты, содержащие, например, дифенилметан, разлагаются первыми.

Исследование влияния различного соотношения твердых и мягких сегментов полиуретановых эластомеров (изоцианатный индекс 1.01) [41] на селективность разрыва уретановой связи в процессе пиролиза полимера при 800°С показало, что уретановые связи в жестких сегментах расщепляются через переходное состояние с шестичленным кольцом (схема 19а) [65] с образованием концевых ненасыщенных алкильных и карбаминовых кислотных групп (R-NHCOO), которые в свою очередь разлагаются на амины и СО₂. В полиуретанах с высоким содержанием мягких сегментов (схема 19б) [65] разрыв уретановых связей протекает через переходное состояние с четырехчленным кольцом с выделением концевых изоцианатных и гидроксильных групп, т. е. изоцианатов и спиртов. Таким образом, селективность процесса [41] может быть объяснена различными конформациями уретановых связей: в доменах жесткого сегмента — водородными связями между звеном N-H и C-O групп, а в богатых мягкими сегментами — водородными связями между N—Н в уретане и С—О в полиоле.

Увеличение изоцианатного индекса жестких пенополиуретанов на основе простого полиол-полиэфира (табл. 1) с 1.05 до 2 [43] приводит к уменьшению числа различных продуктов пиролиза. Это обусловлено тем, что чем выше индекс, т. е. чем большее количество диизоцианата используется в синтезе полимера, тем выше степень сшивки.

В отличие от пиролиза полиуретанов на основе толуолдиизоцианата и изофорондиизоцианата (табл. 1) [23] в процессе термического разложения жесткого полиуретана практически весь 4,4'-метилендифенилдиизоцианат подвергается перегруппировке изоцианатной группы с образованием диаминодифенилметана. Аналогичный результат наблюдался при пиролизе жесткого полиуретана [22]. При термической обработке полиуретана на основе поли(диэтиленгликоль)адипата (табл. 1) при 600°С доля извлечения 4,4'-метилендифенилдиизоцианата составила 7%, тогда как в случае разложения полимеров на основе поли(1,4-бутиленгликоль)адипата и поли(1,6-гексиленгликоль)адипата весь диизоцианат превращался в диамин. Увеличить долю выхода 4,4'-метилендифенилдиизоцианата при пиролизе жесткого полиуретана на основе поли(1,4-бутиленгликоль)адипата с 0 до 13% удалось повышением скорости потока газа-носителя с 50 до 200 мл мин⁻¹.

В работе [44] термическое разложение теплоизоляционного материала из жесткого пенополиуретана на основе полимерного 4,4'-метилендифенилдиизоцианата и простого полиэфирполиола (индекс NCO 30.8%, табл. 1) исследовали в инертной атмосфере. Основная потеря массы при пиролизе полимера наблюдается при 343°С и продолжается вплоть до 400–480°С. В инертной среде полимер при низких температурах разлагается по двум направлениям:

Полиуретан 321М

Полиуретан 431М

Полиуретан 871М

^{*} Разрешение на публикацию получено 22.03.2022, © Elsevier.

при 200°С начинается выделение воды, диметилового эфира, изоцианатов из алифанатов и при 230°С происходит расщепление уретановой связи в структуре полимера на полиолы, которые в свою очередь разлагаются при 250–450°С на СО₂, спирты и эфиры, содержащие олефины, и 4,4'-метилендифенилдиизоцианат и его олигомеры, разлагающиеся при 300°С на СО₂, HCN, метаннитрил и метилендиамин (табл. 14). Дальнейшее повышение температуры (380–560°С) приводит к разложению азотсодержащих соединений на анилин, метилендифенилдиамин и их изомеры.

Разложение коммерческого сегментированного полиуретана на основе 4,4'-метилендифенилизоцианата (табл. 1) и поли(тетраметиленгликоль)адипата в потоке N₂ путем тандемного пиролиза протекало в две стадии [45]. На первой ступени (<300°С) в результате расщепления уретановой связи через NH-переход были образованы летучие пиролизаты: 4,4'-метилендифенилизоцианат, его аминозамещенные производные, 1,4-бутиленгликоль и 1-циклогександиметанол, а также низкомолекулярные олигомеры тетраметиленгликольадипата с концевыми гидроксильными группами. На второй стадии (>300°С) происходит расщепление связей сегмента тяжелого полиэфира и внутримолекулярный обмен с образованием олигомеров циклического сложного эфира тетраметиленгликольадипата, а также дегидратация гидроксильных групп, содержащихся в соединениях, с выделением терминальных ненасыщенных компонентов.

Аналогичные продукты были получены при пиролизе сегментированного полиуретана, состоящего из 4,4'-метилендифенилдиизоцианата и поли(1,4-бутиленгликоль)адипата при 250–325°С в атмосфере Аг [42, 46]. При низких температурах пиролиза (250– 275°С) были обнаружены фрагменты изоцианата, аминозамещенного производного и 1,4-бутиленгликоля. При повышенных температурах происходит пиролиз и элиминирование поли(1,4-бутиленгликоль)адипата с образованием 1,3-бутандиена, а также внутримолекулярная циклизация диолов и сложных эфиров с выделением большого количества различных олигомеров, не содержащих концевые гидроксильные группы [42]. Также протекает процесс дегидратации при T > 300°С с выделением полиэфиров с концевыми двойными связями.

При 300°С наблюдается выделение олигомерных пиролизатов с ароматическими аминными и (или) бутенильными концевыми группами [42], что говорит о том, что скорость процесса диссоциации уретановой связи на амин, олефин и CO₂ увеличивается с повышением температуры разложения полимера, а также олигомеров с концевыми алкильными и альдегидными группами, формирующимися в результате свободнорадикальных процессов. Высокая температура способствует разложению азотсодержащих олигомеров, при 325°С в продуктах пиролиза данных компонентов не было обнаружено [42, 46]. Азот в пиролизате находится в основном в форме метилендианилина либо метилированного метилендианилина.

Разложение жесткого пенополиуретана (изоцианатный индекс 1.2) (схема 20) на основе многофункциональных полиэфирполиолов (табл. 1) проводили в пиролизере в атмосфере N₂ [47].

Деструкция жесткого полимера протекает в две ступени — разложение жесткого сегмента (233– 350°С) с выделением пенообразователя, СО₂, али-

Основные продукты, выделяемые при пиролизе жесткого пенополиуретана при температурах 341 и 465°С в атмосфере азота

Основные продукты, полученные при 341°С	Основные продукты, полученные при 465°С
Диоксид азота	Пропаналь
Триметиленоксид	1-Гептен
2-Пропен-1-ол	Толуол
2-Метил-4-октанон	Анилин
2-(2-Гидроксипропокси)-1-пропанол	Циклический тример диметилсилоксана
Трипропиленгликоль	1,1'-Оксиди-2-пропанол
4-Бензиланилин	<i>п</i> -Метиланилин
4,4'-Метилендианилин	Трипропиленглиголь
	1-[2-(Аллилокси)-1-метиленэтокси]-2-пропанол
	4-Бензиланилин
	3,3'-Диаминодифенилметан
	4,4'-Метилендианилин

фатического углеводорода, затем деградация мягкого сегмента, происходящая в интервале температур 350-470°С, с образованием низкомолекулярного спирта и выходом твердого остатка в пределах 18-25% в зависимости от соотношения спирт/кислота. Преобладающими компонентами деструкции мягкого сегмента являются бензол и его замещенные производные, содержащие группы — CH₃, — NCO, — NH₂, а также олефины, алифатический альдегид, спирт и изоцианат. Первый путь разложения полимера обусловлен расщеплением уретановой связи с выделением толуолизоцианата, распадающегося на бензол- и толуолизоцианат и толуол, и 1,6-гексиленгликоля, дегидратация которого приводит к образованию гексаналя. Второй путь связан с внутримолекулярной циклизацией и последующей диссоциацией до аминотолуола, СО2, 1,5-гексадиена, 1-пентена, 5-гексен-1-ола. Наличие бутина-2 можно объяснить процессом диссоциации уретановой связи между изоцианатом и вторичной гидроксильной группой.

Быстрый пиролиз полиуретанового клея (схема 21) на основе 4,4'-метилендифенилдиизоцианата и различных полиол-полиэфиров (табл. 1) в атмосфере Не приводил к образованию более 20 газообразных продуктов (табл. 15) [48].

Помимо основных продуктов, полученных в результате разрыва уретановой группы (табл. 15), в процессе разложения полиолов и вторичных реакций циклизации спиртов, этерификации карбоновых кислот (1)–(3), дегидратации, миграции водорода, декарбоксилирования и циклизации кислот образуются тетрагидрофуран, 3-бутен-1-ол, 1,3-бутадиен, 1-фенил-3-(4-пиридинил)-2-пропен-1-он, циклопентанон, 3-этокси-2-метил-2-циклопентен-1-он, 1,6-диоксациклододекан-7,12-дион, циклические простые и сложные эфиры (схема 22), выход которых растет с повышением температуры.

В работе [49] изучали процесс разложения коммерческого полиуретана DESMOCOLL 540, состоящего из поли(1,4-бутиленгликоль)адипата или 1,6-гексиленгликоля с 4,4'-метилендифенилдиизоцианатом (табл. 1), в лабораторной печи и в первичном/вторичном реакторе пиролизера Ругоргове. Повышение температуры первичного пиролиза с 500 до 900°С (табл. 16) при 300°С во вторичном реакторе способствовало снижению выхода твердого остатка, наибольшее количество которого достигалось при 600°С, и соответственно росту выхода продуктов, состоящих в основном из газообразных C_{1-5} -углеводородов (алканы, алкены, олефины, диены). Преобладающими компонентами газовой фазы при максимальных 900°С пиролиза являлись этан-этиленовая смесь (6.7%), пропилен (9.4%), бутадиен (2.9%), метил-1,4-пентадиен (2.9%) и бензол (4.6%). Единственным азотсодержащим соединением, обнаруженным в продуктах разложения полиуретана, оказался пропеннитрил (0.04–1.6%).

Изначально высокая температура первичного реактора (900°С) в совокупности с повышающейся температурой вторичного реактора (500–850°С) способствовали большему образованию газообразных продуктов: их выход рос до 46.7% при 750°С (табл. 17). Благодаря протеканию более глубокого крекинга при данных температурах доля метана повышалась до 3.7%, этан-этиленовой смеси — до 13.3%, пропилена — до 8.7%, бутадиена — до 4.5%, бензола — до 11.7% и циклопентанона — до 2.8%. Дальнейшее нагревание до 850°С приводило к крекингу низших углеводородов: как следствие, падало количество образованных этан/этилена до 11.2%, пропилена — до 0.84%, бутадиена — до 0.5%, циклопентанона — до 1.5%, что обусловливало рост выхода метана и бензола, полученного путем реакции Дильса-Альдера.

Обнаружение 1,6-гексиленгликоля в продуктах пиролиза полиуретана в печи (табл. 18) обусловлено его присутствием в коммерческом полимере, 5-гексена-1-ола, гексаналя и метил-1,4-пентадиена дегидратацией, разложением 1,6-гексиленгликоля. Циклопентанон и пентановая кислота были образованы из адипиновой кислоты, входящей в состав полиуретана, фенол и анилин — путем крекинга 4,4'-метилендифенилдиизоцианата. Повышение температуры с 600 до 850°С способствует увеличению выхода оксидов углерода (до 16 и 12%), метана, этилена, бензола. Также повышенная температура печи приводит к образованию в виде летучих соединений 2-метилбутанола-2, 2-метил-3-бутен-2-ола, циклопропилметилкетона, стирола, бензонитрила, фенилэтилена и полициклических ароматических соединений, содержащих от 2 до 4 бензольных колец (табл. 18). Выход газообразных соединений при 850°С достигал 73%, что практически в 2 раза выше выхода данных продуктов при 600°С.

В работе [50] исследовали пиролиз жестких пенополиуретанов на основе полиэфирполиола (сорбита) и полимерного 4,4'-метилендифенилдиизоцианата, модифицированных полиэдрическими олигомерными силсесквиоксанами, использующихся в качестве сшивающего агента и антипирена, улучшающего термическую и окислительную стабильность полиуретана. Добавка сшивающего агента, представляющего собой наноблоки в виде силикатных каркасов размером 1–3 нм (рис. 2), в структуру полимера способствует

Предполагаемый механизм разложения жесткого пенополиуретана

Условия пиролиза: 50–800°С, скорость нагрева 10 град-мин⁻¹, поток N₂ 50 мл·мин⁻¹ [47]

żΞ

Ξ

CH200CH2CHCH2CH2

-CH₂O

 OH_2C-

ZΈ

OCN

 $\equiv CH_2^{\backslash}$

CH₂00CH₂CH₂

	Относительное содержание, %				
Компонент	280°С (1.5 мас%)*	450°С (70 мас%)*	600°С (90 мас%)*		
CO ₂	0	7.3	12.5		
н-Гексаметиламин	0	8.9	7.5		
1,3-Бутадиен	0	5.4	7.9		
Тетрагидрофуран	0	4.2	6.7		
3-Бутен-1-ол	0	1.5	2.2		
Циклопентанон	0	14.9	23.1		
1-Фенил-3-(4-пиридинил-)-2-пропен-1-он	0	2.2	1.9		
1,4-Бутиленгликоль	0	1.5	1.25		
Фталевый ангидрид	0	10.4	8.8		
3-Этокси-2-метил-2-циклопентен-1-он	0	3.2	2.7		
1,6-Диоксациклододекан-7,12-дион	21	10.1	16.2		
4,4'-Метилендифенилдиизоцианат	16.6	6.5	5.5		
Этил-(Е)-гепт-2-он	11.5	1	1.3		
1,4-Бутиленгликолевый эфир 2-пропеновой кислоты	0	0.9	3		
Бутилциклобутиловый эфир адипиновой кислоты	0	0.7	0.9		
Ундеканол-4	0	1.1	1.5		
4,4'-Метилендианилин	7.5	0	0		
Дибензоилметан	16.8	0	0		
3-Фенил-2-пропениловый эфир 3-метил-2-бутеновой кислоты	4.5	0	0		
Секуринин	8.2	0	0		
бис-(2-Бутоксиэтиловый)эфир гександионовой кислоты	14	0	0		

Таблица 15 Продукты пиролиза полиуретана при 280, 450 и 600°С (6 с) в среде Не [48]*

* Потеря массы.

Схема 22

Вторичные реакции, возникающие при пиролизе полиуретана [48]

* Разрешение на публикацию получено 29.03.2022, © Elsevier.

Таблица 16

Продукты разложения полиуретана, полученные при пиролизе при температурах первичного реактора Ругоргове 500–900°С (скорость нагрева 20 град мин⁻¹, 40 с, №, 300°С вторичный реактор) [49]*

Температура первичного реактора	500°C	600°C	700°C	800°C	900°C
Температура вторичного реактора	300°C	300°C	300°C	300°C	300°C
Выход твердого остатка, %	54.2	69.4	47.3	58.9	28.7
Метан	0.007	0.016	0.14	0.3	1.3
Этан-этилен	0.04	0.28	1.7	3.2	6.7
Ацетилен	0.019	0.05	0.39	0.57	1.1
Пропен	0.07	0.64	3.6	5.6	9.4
Пропандиен	0.008	0.0006	0.007	0.04	0.24
Пропин	0	0	0.004	0.015	0.12
Бутан	0.003	0.02	0.06	0.09	0.13
Бутен	0.014	0.1	0.56	0.82	1.31
Бутадиен	0.06	0.2	1.08	1.7	2.9
Бутин	0.01	0.1	0.24	0.4	0.37
Пропеннитрил	0.04	0.3	1.4	1.6	1.2
Циклопентан	0.003	0.002	0.03	0.04	0.15
Циклопентадиен	0.008	0.03	0.17	0.2	0.3
Метил-1,4-пентадиен	1.5	6.5	8.6	9.1	2.9
Бензол	0.1	0.26	1.3	2	4.6
Циклопентанон	0	0	0.2	0.3	1.2
Толуол	4.3	4	5	2.9	4.7
Сумма	6.2	12.5	24.5	28.9	38.6

смещению начальной температуры его разложения в сторону более низких температур: уже при температурах менее 150°С в атмосфере азота происходит испарение влаги пенообразователя и расслоение уретановых связей с образованием низкомолекулярных соединений с эфирными, сложноэфирными и спиртовыми группами. Сами кремнийсодержащие олигомеры начинают разлагаться при 240 и 244°С.

При температуре выше 350°С наблюдается выделение углеводородов (алканов, алкенов, циклоалканов), альдегидов, спиртов, простых метиловых, пропиловых, ароматических бутиловых и сложных эфиров бутановых кислот, гликолей, аминов, циклических соединений и газообразных СО, СО₂, H₂O и NH₃.

В работе [51] было изучено термическое разложение полужесткого, жесткого полиуретана и полиизоцианурата с добавкой *mpuc*-(1-хлор-2-пропил)-фосфата в качестве антипирена и без нее при различных температурах (400-800°С) в установке тандемного пиролизера. Химический состав полиизоцианурата близок к составу полиуретана, за исключением того, что доля 4,4'-метилендифенилдиизоцианата в полиизоцианурате выше, а вместо полиолов на основе простых эфиров в его синтезе используются разветвленные сложноэфирные полиолы. Повышение температуры быстрого пиролиза способствовало большему крекингу образующихся продуктов до водорода, метана и угарного газа (табл. 19). Наибольший выход метана при 800°С обусловлен разложением метиленовых мостиков ароматического диизоцианата, расщеплением боковых метильных групп с выделением водорода в результате конденсации ароматических колец в полукоксе. Помимо них в газовой фракции продуктов были обнаружены этилен, этан, аммиак, цианистый водород, метанол, ацетальдегид и ацетонитрил. Значительное количество выделяющего HCN при пиролизе полиизоцианурата связано со структурными особенностями полимера.

Различие в образующихся продуктах быстрого пиролиза полужесткого (рис. 3, *a*) и жесткого поли-

^{*} Разрешение на публикацию получено 22.03.2022, © Elsevier.

Таблица 17

Продукты разложения полиуретана, полученные при пиролизе при температурах вторичного реактора Ругоргове при 500–850°С (скорость нагрева 20 град. мин⁻¹, 40 с, N₂, 900°С первичный реактор) [49]*

Температура первичного реактора	900°C	900°C	900°C	900°C	900°C
Температура вторичного реактора	500°C	550°C	650°C	750°C	850°C
Выход твердого остатка, %	21.4	22.6	30.3	12.3	17.8
Метан	1.8	2.6	2.8	3.7	5.3
Этан-этилен	8.6	9.4	9.7	13.3	11.2
Ацетилен	1.01	1.04	1.05	1.3	0.5
Пропен	9.1	7.2	7.3	8.7	0.84
Пропандиен	0.24	0.23	0.1	0.06	0.008
Пропин	0.17	0.16	0.09	0.07	0
Бутан	0.18	0.07	0.03	0.03	0.002
Бутен	1.1	0.68	0.67	0.12	0.003
Бутадиен	3.1	2.9	3	4.5	0.5
Бутин	0.35	0.2	0.18	0.14	0.002
Пропеннитрил	0.8	0.2	0.3	0.14	0.02
Циклопентан	0.15	0.14	0.14	0.11	0.008
Циклопентадиен	0.3	0.21	0.23	0.14	0.003
Метил-1,4-пентадиен	1.7	1	0.34	0.02	0.008
Бензол	5.8	6.9	7.8	11.7	13.6
Циклопентанон	1.4	1.9	2.2	2.8	1.5
Толуол	5.8	1.2	0.29	0.03	0
Сумма	41.6	36	36.2	46.7	33.5

Таблица 18

Компоненты пиролизных продуктов (мг на 100 мг сырья), полученных при разложении полиуретана в лабораторной кварцевой печи (0.05–0.06 г, 600 и 850°С, 4–6 с, 240 мл · мин⁻¹ N₂) [49]**

Температура, °С	600	850	Температура, °С	600	850
Выход твердого остатка, %	1.8	0.7	Выход твердого остатка, %	1.8	0.7
CO ₂	0.48	16	СО	0	12
Метан	0.48	7	Этан	0.28	0.42
Этилен	2.8	14	Пропан	0.05	0
Пропен	5.8	1.2	Ацетилен	0	0.81
Бутан	0.038	0.077	Бутен	1.41	0.017
1,3-Бутадиен	1.9	1.3	Пентен	6.6	0
Бутин	0.17	0.073	Гексан	0.55	0.73
Гексен	0.19	0	Метил-1,4-пентадиен	3.18	
Бензол	0.73	7.8	Толуол	0.044	0.4
HCN	0.08	2.9	NH ₃	12	6.1
H ₂ S	< 0.02	< 0.02	H ₂ S	< 0.02	< 0.02
Сумма	37	73			

^{*} Разрешение на публикацию получено 22.03.2022, © Elsevier.

^{**} Разрешение на публикацию получено 22.03.2022, © Elsevier.

Таблица	18	(продолжение)
---------	----	---------------

Температура, °С	600	850	Температура, °С	600	850
Вых	ол летучи	х органич	еских соелинений (ppm)		
Этилацетат	200	380	2-Метил-3-бутен-2-ол	0	260
2-Метил-2-бутанол	0	1300	3-Метилгексан	110	150
Циклопропилметилкетон	0	370	3-Метилциклогексан	150	210
Гексаналь	1100	0	Циклопентанон	710	0
Этилбензол	94	130	Ксилол	100	920
Циклопентен-3-он	280	0	Фенилэтилен	0	970
Стирол	0	14000	5-Гексен-1-ол	15000	0
3-Циклопентил-1-пропанол	240	0	Аллиденциклопентанон	258	0
2-Метил-2-циклопентанон	93	0	Пентановая кислота	1500	0
Этенилметилбензол	2130	910	Анилин	280	5500
Бензонитрил	0	6100	4-Бромбутилбензол	430	0
Гексагидроиндан	1400	0	1-Пропенилбензол	410	10000
Циклооктен	120		Фенол	190	0
2-Метилбензамин	940	1000	Крезол	270	0
1-Метилинден	570	890	2-Фенил-1,3-бутадиен	180	0
Нафталин	120	9300	1,6-Гексиленгликоль	21000	0
Капролактон	360	890	Циклогексанметанол	130	0
1-Метилнафталин	0	3200	(Бициклопентил)-2-он	720	0
Индол	0	1000	Изохинолин	0	2500
5-Метилхинолин	0	130	Этенилнафталин	0	1800
Бифенил	0	450	Аценафтилен	0	3300
Аценафтен	0	277	Нафталенамин	0	420
Флуорен	0	2300	Метил-9-флуорен	0	1000
Фенантрен	0	1700	Антрацен	0	2825
Фенилнафталин	0	600	Дибензосуберенол	0	230
Метилантрацен	0	200	Бензо(def)флуорен	0	570
Гексадекановая кислота	60	0	Флуорантен	0	1600
Пирен	0	1100	2,3-Бензофлуорен	0	330
Метилпирен	0	500	Бензо(с)фенантрен	0	170
Бензо(а)антрацен	0	490	Хризен	0	250
Сумма	48000	49000			

уретана (рис. 3, б) при 600°С обусловлено структурой полимеров, а именно компонентами, составляющими основу полимера. Жесткий полиуретан содержит большее количество 4,4'-метилендифенилдиизоцианата и ароматического полиэфирполиола, тогда как при синтезе полужесткого полиуретана использовали простой полиэфир на основе пропиленоксида, этиленоксида и глицерина.

Низкомолекулярные эфирные соединения, такие как этоксиэтилен, метилоксиран, тетраметилокси-

ран, (1-метилэтокси)метилоксиран, образуются в результате разложения полиэфирполиолов, представляющих собой мягкие сегменты в структуре полимера. Полиэфирные спирты ($M_r = 150-300 \ r \cdot mon months non-1$), наблюдаемые при времени удерживания 60–100 мин (рис. 3, *a*), формируются при крекинге многоатомных спиртов из глицеринового сегмента. Термическое разложение оксиметилендиалкиловых эфиров приводит к выделению формальдегида, наблюдаемого при деструкции обоих видов полиуретана (рис. 3, *a*, *б*).

Рис. 2. Структура сшивающего агента в пенополиуретане [50].

Образование 4-этилфенилизоцианата происходит в результате диссоциации уретановых связей до изоцианата и спирта и разрыва связи С—С непрореагировавшего 4,4'-метилендифенилдиизоцианата, гидролиз которого приводит к выделению в качестве продукта диаминодифенилметана и CO₂. Суммарный выход различных структур диаминодифенилметана составил 1.8 мас% для полужесткого полиуретана. При пиролизе жесткого полиуретана (рис. 3, δ) происходит образование значительного количества ароматических соединений, содержащих одно бензольное кольцо (11 мас%), таких как метил-, винил-, этил- изопропилен-, изобутиленбензолы.

При низких температурах (400°С) пиролиза полиизоцианурат, содержащий антипирен, разлается до метана, формальдегида, этилена, пропилена, пентена-1, пентена-2, 1-хлор-*цис-/транс*-бутена-2, октена-1, октана и других неразветвленных олефинов и алканов, бензола, толуола, анилина, метиланилина, изомеров диаминодифенилметана, фталевого ангидрида, этиленилбензоата, этиленовых эфиров фталевой кислоты *трис-*(1-хлор-2-пропил)-фосфата. Более высокая температура (700°С) приводит к образованию большего количества других соединений за счет глубокого крекинга — цианистого водорода, замещенных бензолов (диметил- винил-, амино-), изомерных бензоилнитрилов, фенилзамещенных 1Н-изоиндол-1,3(2Н)-дионов (рис. 3, *в*).

Наибольший выход 4,4'-диаминодифенилметана достигался при 500°С (4 мас%), бензойной кисло-

				1	1 '	5	1	51				
Vourouour	Полуже	сткий пол	иуретан	Жестк	ий полиу	/ретан	Полиизо	цианурат/ан	нтипирен	Пол	иизоциану	урат
Компонент	400°C	600°C	800°C	400°C	600°C	800°C	400°C	600°C	800°C	400°C	600°C	800°C
CO ₂	4	3.3	2.2	3.1	3	2.1	10	10.7	13.4	9.5	9.7	10.4
C ₂₋₄	0	1.8	3.5	0.5	4.5	4	0.1	0.2	1.6	0.1	0.4	2.9
H_2	0	0.1	0.5	0	0.1	0.8	0	0.1	0.9	0	0.1	1.8
CH ₄	0.1	1.2	6.2	0	0.8	7.3	0	0.2	1.5	0	0.1	1.8
CO	0.2	2.4	17.4	0.2	2.1	27.3	0	0.5	5.1	0	0.2	2
NH ₃	2.1	1.6	1.1	3.2	2.1	0.7	0	0	2.6	0	0	0.2
HCN	0	0	0	0	0	0	0	0	0.5	0	1.3	3.1
CH ₃ OH	0.2	0.6	0	0	1.3	0.1	0	0	0	0	0	0
CH ₃ CHO	2	1.9	1.3	1.6	0	2.5	0	0.4	0.4	0	0.4	2
CH ₃ CN	0.5	1	0.4	1.5	0.8	0	0	0	0	0	0	0
H ₂ O	3.8	4	3.7	4.6	7.1	7.1	2.7	4	3.7	2.4	2.1	2.5

Таблица 19 Выход газообразных продуктов пиролиза полиуретанов [51]*

* Разрешение на публикацию получено 24.03.2022, © Elsevier.

Рис 3. Продукты быстрого пиролиза полужесткого полиуретана при 600°С (*a*), жесткого полиуретана при 600°С (*б*), полиизоцианурата при 700°С (*в*).

Флуорантен используется в качестве внутреннего стандарта [51].*

ты — при 300°С (6.1 мас%), диэтиленгликоля — при 300°С (2.1 мас%), антипирена — при 400°С (3 мас%).

Основным отличием в продуктах пиролиза полиуретанов является большее количество оксигенатов (36.2%) и ароматических углевододоров (13.8%) в случае деструкции жесткого полиуретана (табл. 20). Высокая доля образовавшихся олефинов С3 и С4 при пиролизе полиуретанов (12.6% и 14.4%) в продуктах процесса позволит использовать их в дальнейшем производстве полимеров, например полиэтилена, полипропилена, полиуретанов.

^{*} Разрешение на публикацию получено 24.03.2022, © Elsevier.

Рис 3 (продолжение).

Сравнение выбросов изоцианатов при пиролизе отходов гибкого пенополиуретана и вязкоупругой пены (матрацы) (табл. 1) при температурах 300–850°С проводили в [52]. При низких температурах в обоих случаях в результате разрыва уретановой связи в полиуретане происходило выделение 2,6- и 2,4-толуолдиизоцианатов и 4,4'-метилендифенилдиизоцианата, являющихся основными составляющими полимеров (рис. 4, *a*, *б*).

Помимо основных составляющих полимеров — изоцианатов в продуктах пиролиза при 300°С были образованы шесть различных аминоизоцианатов, а

Компонент, %	Полужесткий полиуретан	Жесткий полиуретан	Полиизоцианурат/антипирен	Полиизоцианурат
СО	2.4	2.1	0.5	0.2
CO ₂	3.3	3.0	10.7	9.7
H ₂ O	3.8	4.6	4.0	2.6
H ₂	0.1	0.1	0.1	0.1
С ₁₋₃ -Алканы	1.6	1.2	0.2	0.4
С ₂₋₃ -Олефины	12.6	14.4	1.0	0.5
С ₅₊ -Алифатика	0.2	0.1	1.5	1.0
Ароматические углеводороды	0.1	13.8	1.0	1.0
О-Содержащие соединения	16.3	36.2	5.3	3.2
N-Содержащие соединения	7.6	5.4	6.6	7.6
Cl-Содержащие соединения	0	0	3.2	0
Полукокс	4.2	0.8	21.2	30.5
Сумма	56	96	55	56

Таблица 20

Выход (мас% сырья) основных продуктов, полученных при пиролизе полимеров при 600°С [51]*

* Разрешение на публикацию получено 24.03.2022, © Elsevier.

Рис. 4. Выбросы изоцианатов при термическом разложении гибкого пенополиуретана (5.95 мас% N) (*a*) и вязкоупругой пены (3.34 мас% N) (*б*).

ИЦК — изоцианатная кислота, МИЦ — метилизоцианат, ЭИЦ — этилизоцианат, ПИЦ — пропилизоцианат, ФИЦ — фенилизоцианат, ГМДИ — 1,6-гексаметилендиизоцианат, 2,6- и 2,4-ТДИ — 2,6- и 2,4-толуолдиизоцианат, ИФДИ — изофорондиизоцианат, 4,4'-МДИ — 4,4'-метилендифенилдиизоцианат.

Условия пиролиза: трубчатый реактор, 50 мг, 150 мл мин⁻¹ N₂, 17 с при 300°С, 15.5 с при 350°С, 14 с при 400°С, 12.7 с при 450°С, 7.1 с при 850°С [52].*

при 400–850°С — пять. Повышение температуры до 850°С приводит к разложению уже имеющихся диизоцианатов на такие соединения, как изоцианатная кислота, этилен-, пропилен-, фенилизоцианат и т. д. Общий выход изоцианатов в интервале температур 300–850°С составил 1.43–11.95 мг·м⁻³ при разложении гибкого пенополиуретана и 0.05–6.13 мг·м⁻³ при разложении вязкоупругой пены. Столь значительная разница в величинах выбросов изоцианатов при пиролизе полимеров обусловлена различным содержанием азота в исходном сырье.

Таким образом, в результате пиролиза полиуретанов образуются диизоцианаты, моно- и диаминозамещенные производные, ароматические соединения, содержащие от одного до четырех колец и различные алкильные заместители, аммиак, цианистый водород, выделяющиеся в результате разрыва уретановой связи, гидролиза изоцианатной группы, разрыва связи С—С, и продукты разложения полиольной и полиэфирполиольной цепи — СО, СО₂, вода, С_{1–5}-алканы, алкены, алкины, диены, многоатомные спирты и различные эфиры (табл. 21) [17–51].

Термическая обработка полиуретанов в окислительной атмосфере

Разложение полиуретанов основе толуолдиизоцианата. В отличие от пиролиза полиуретанов на основе толуолдиизоцианата и полиэтиленгликолей различ-

^{*} Разрешение на публикацию получено 22.03.2022, © Elsevier.

ных молекулярных масс (табл. 1) [17] их термическое разложение в окислительной среде начинается при 135°С. Процесс деполимеризации полиуретана, содержащего в своем составе низкомолекулярный полиол ($M_r = 200 \text{ г} \cdot \text{моль}^{-1}$), завершился при 280°С с образованием изоцианата, CO₂, 2-метил-1,3-диоксолана и 1,4-диоксана — олигомеров этиленгликоля, разложение остальных полимеров протекало в два этапа в интервале температур 280–400, 360–580 и 350–440°С для полимеров, содержащих полиол массой 400, 1000 и 2000 г $\cdot \text{моль}^{-1}$ соответственно, что указывало на разложение длинной полиольной цепи с выделением CO₂ и H₂O.

Окислительное разложение полиольной цепи протекает следующим образом: атака радикала кислорода метиленового водорода полиэтиленгликоля приводит к образованию радикала, посредством которого молекулярный кислород образует аддукт. Образованный таким образом кислородсодержащий аддукт разлагается через шестичленное переходное состояние в результате внутримолекулярной реакции кислоты посредством β-разрыва связи С-С с образованием сложного эфира муравьной кислоты (формиата) и формальдегида. Разложение полиуретана на основе высокомолекулярного полиола ($M_r = 2000 \ r \cdot \text{моль}^{-1}$) сопровождается образованием изоцианата, СО2, формиата и формальдегида, бензонитрила и хинолина, тогда как не было обнаружено карбодиимида и толуолидина, как в случае пиролиза полиуретана в инертной атмосфере [17].

По сравнению с пиролизом гибкого пенополиуретана (табл. 1) в атмосфере N₂, при котором происходит разрыв уретановой связи с образованием длинных цепочек эфиров на первом этапе и последующее их разложение на втором (при повышенных температурах), в окислительной атмосфере при низких температурах разлагаются не только уретаны, но и полиолы [29]. Повышение температуры приводит к дальнейшему разложению полимерной сетки и образующихся компонентов и к обугливанию соединений. При термической обработке полиуретанов в окислительной среде ($N_2:O_2 = 4:1$) при 540°С происходит значительное выделение СО и СО2, образующихся в процессе горения полукокса. Помимо образования СО и СО2 возможно и окисление углеводородов до формальдегида, ацетальдегида и других кислородсодержащих соединений.

При термическом разложении полимера (табл. 1) при низких температурах в O₂ преобладающими продуктами являлись газообразные NH₃, CO₂, метан, этан, бензол, ацетон, акрилонитрил (табл. 22) [30], тогда как повышение температуры до 850°C способствовало росту выхода этана, этилена, ацетилена, пропилена, пропина, HCN, этинилэтилена, акрилонитрила и ацетонитрила. Значительным отличием в составе продуктов пиролитического и окислительного разложения полиуретанов является отсутствие алканов C_{4–5}, олефинов C_{5–7}, ксилолов, оксигенированных соединений при разложении полимера в среде O₂.

Доля образовавшихся токсичных полициклических ароматических углеводородов значительно ниже по сравнению с долей подобных продуктов пиролиза: 44 ppm при 550°С и 18 ppm при 850°С. Высокая температура и присутствие O_2 способствовали образованию хлорированных диоксинов, фуранов и хлорбензолов (табл. 23). Образование большего количества хлорфенолов в окислительной термообработке полиуретана связано с частичным окислением хлорбензолов.

Разложение полиуретанов на основе 4,4'-метилендифенилдиизоцианата. Разложение жестких полиуретанов на основе полиэтиленгликоля различных молекулярных масс ($M_r = 200, 400, 1000, 2000 \ r \cdot \text{моль}^{-1}$) отличалось от пиролиза тех же образцов [17]. Максимальная потеря массы полиуретана, содержащего низкомолекулярный полиол ($M_r = 200 \ r \cdot \text{моль}^{-1}$), происходила при 300°С, полимера на основе полиола массой 400 г · моль-1 — при 320°С, а полиуретанов, в составе которых содержались полиолы массой 1000 и 2000 г·моль-1, — при 340°С. Все образцы полностью разлагались при температуре около 700°С. Значительные потери массы образцов, содержащих полиэтиленгликоль массой 1000 и 2000 г моль-1, наблюдаемые при 360 и 400°С соответственно, связаны с химической структурой длинноцепочечных полиолов. Основное отличие состава продуктов пиролиза жестких полиуретанов от состава продуктов термоокислительной переработки состоит в том, что в среде кислорода не обнаруживались ароматические амины, полиольная цепь разлагается с образованием фрагментов со сложноэфирными и (или) альдегидными группами низкомолекулярной массы. Выделение оксидов углерода при разложении полиуретана, содержащего низкомолекулярный полиол $(M_{\rm r} = 200 \ {\rm г} \cdot {\rm моль}^{-1})$, протекало в интервале 320-650°С, а полиуретана, содержащего высокомолекулярный полиол ($M_r = 2000 \ r \cdot \text{моль}^{-1}$), — в интервале 320-580°С. В продуктах всех образцов, за исключением полиуретана на основе полиола массой 2000 г \cdot моль⁻¹, был обнаружен дифенилкарбонат, полученный в процессе радикального окисления.

В отличие от пиролиза теплоизоляционного материала из жесткого пенополиуретана на основе полимерного 4,4'-метилендифенилдиизоцианата

Hodu	улты разложения полиурстанов, содеру	жащих различиви диизоциа	наты и полиолы, в инсртнои атмосферс	
Диизоцианат	Продукты разложения диизоцианата	Полиол	Продукты разложения полиола	Литературный источник
1,6-Гексаметилен- диизоцианат	1,6-Гексаметилендиизоцианат, <i>о-/n-/м</i> -ксилолы	Ацетобутират целлюлозы	Метан, этилен, пропилен, пропан, уксусная, масляная кислота, 1-бутен	[21]
	1,6-Гексаметилендиизоцианат	Поли(1,4-бутиленгликоль)- адипат	Циклопентанон, тетрагидрофуран, 1,4-бу- тиленгликоль, 1,3-бутадиен, валериановая кислота, адипиновый ангидрид	[22]
	Этан, бутен, этанизоцинанат, пропан- изоцианат, бутанизоцианат, пентан- изоцианат	Полиэфир полиэтиленгли- коля и фталевый анги- дрид	Фталевый ангидрид, бензойная кислота, гликолевые эфиры бензойной и фталевой кислот	[23]
Нет данных	HCN, бензол, толуол, стирол, поли- циклические ароматические угле- водороды, бензонитрил, акридин, N-гидроксиметилкарбазол, изохи- нолин	Нет данных	СО, СО2, метан, этилен, этан, пропилен, пен- тан	[24]
Изофорондиизоцианат	Изомеры изофорондиизоцианата, 3-аминометил-3,5,5-триметилцикло- гексилизоцианат	Пропиленгликоль	СО ₂ , 2-метил-2-пропен-2ол, 5-гексен-1-ол, 2-оксепанон, 1,6-гексиленгликоль, тетраги- дрофуран, оксепан, циклопентанол	[16]
	Изофорондиизоцианат	Пропиленгликоль, гидрок- силированный бутадиен	Полипропиленгликоль, гидроксилированный бутадиен, СО ₂ , метан, этан, пропан, бутан, бутен-1, бутадиен	[20]
	Изомеры изофорондиизоцианата	Поли(1,4-бутиленгликоль)- адипат	Циклопентанон, тетрагидрофуран, 1,4-бу- тиленгликоль, 1,3-бутадиен, валериановая кислота, адипиновый ангидрид	[22]

Таблица 21

инептной атмосфере ď TITU ПОП И ITER EXITORIATE пазпииные ç È PULLEY Продукты раздоя

(эпнәжиороди)	
Таблица 21	

Іанат	Продукты разложения диизоцианата	поицоп	Продукты разложения полиола	Литературный источник
	п-Толуолизоцианат	Полизтиленгликоль (200 г·моль-1)	Тетраэтиленгликоль	[17]
	<i>п</i> -Толуолизоцианат, карбодиимид, <i>n</i> -толуидин	Полиэтиленгликоль (2000 г [.] моль ⁻¹)	Диэтиленгликоль, триэтиленгликоль, СО, СО2, Н2О, моновиниловый и моноэтило- вый эфиры гликоля	[17]
	Аминотолуолизоцианат	Полипропиленгликоль	Фрагменты полиольной цепи	[23]
	Толуол-2,6-диизоцианат, изомеры 2-амино-6-толуолизоцианата	Полипропиленгликоль	Гексадекановая кислота, 4-циклогек- сен-1,4-диол, н-бутан, н-этилацетамид, бутанамид, тетраметилоксиран, тример пропиленгликоля	[25]
	2,4-/2,6-Толуолдиизоцианаты	Полипропиленгликоль	Пропиленгликоль, дипропиленгликоль, 1-пропоксипропан-2-ол, пропоксиацетон	[26]
	2,4-/2,6-Толуолдиизоцианаты, моно- и диаминопроизводные	Поли(диэтиленгликоль)- адипат	Адипинкетон, этиленгликоль, диэтиленгли- коль	[26]
	1- и 2-метилбензол-1,3-диизоцианаты, 2- и 4-метил-1,3-бензолдиамин	Поликапролактогликоль	СО ₂ , 2-оксепанон, 1,3-циклопентадиен, ци- клопентен, циклогексанон, 2-пропеновая, 5-гексеновая, гексановая кислоты, 1-пен- тен, 1,5-гексадиен, 2-метил-2-пропен-1 ол	[15]
	Толуолдиизоцианат, полимочевина	Полиол Alcupol F-5611	CO ₂ , H ₂ , H ₂ O, метан, пропилен, формаль- дегид, ацетальдегид, пропаналь, ацетон, пропиленоксид	[19]
	Толуолдиизоцианат, полимочевина, NH ₃	Полиол Alcupol F-5611 + + антипирен	СО ₂ , Н ₂ , Н ₂ О, метан, пропилен, формальде- гид, пропаналь, 2,5-диметил-1,4-диоксан	[19]
	NO, NH ₃ , HCN, акрилонитрил, бензо- нитрил, анилин, хинолин, 2-метил- пиридин, инден	Нет данных	СО, СО ₂ , С ₁₋₇ -алканы/алкены, бензол, ксилолы, формальдегид, ацетальдегид, ацетон, метанол, пропанон, пропанол, тетраметилоксиран	[29, 30]

Диизоцианат	Продукты разложения диизоцианата	полиол	Продукты разложения полиола	Литературный источник
4,4'-Метилендифенил- диизоцианат	NH3, HCN, <i>п</i> -толуидин, анилин, фе- нилметилбензоламин, диаминодифе- нилметан, метилбензонитрил	Полиэтиленгликоль (200 г [.] моль ⁻¹)	CO ₂ , метан, виниловый и этоксиэфиры поли- ольной цепи	[17]
	NH ₃ , HCN, <i>n</i> -толуидин, анилин, фе- нилметилбензоламин, диаминодифе- нилметан, метилбензонитрил	Полиэтиленгликоль (2000 г·моль ⁻¹)	CO ₂ , H ₂ O, метан, виниловый и этоксиэфиры полиольной цепи	[17]
	Диаминодифенилметан	Поли(1,4-бутиленгликоль)	СО2, 1,4-бутиленгликоль, бутен-1, бутадиен	[23]
	NH ₃ , HCN, нитробензол, анилин, ни- тротолуол	1,4-Бутиленгликоль + ан- типирен	Дибутиловый эфир, галогензамещенные С ₁₋₃ -углеводороды и бензолы	[31]
	Диаминодифенилметан, анилин, ме- тиланилин, бифенил, полиаромати- ческие углеводороды, содержащие 2-4 бензольных кольца	Нет данных	Н2, СО, СО2, С2-6-углеводороды	[32]
	NH3, полимочевина, бензолалкилы	Нет данных	СО ₂ , H ₂ O, диметиловый, виниловый эфи- ры, замещенные 1,4-диоксаны, олефины, алифатические спирты с разветвленными цепями, нонаналь	[33]
	4,4'-Метилендифенилдиизоцианат, 4,4'-метилендианилин, <i>п</i> -метокси- бензилиден- <i>п</i> -анилин	Полипропиленгликоль	1,1'-Оксиди-2-пропанол, 1,1'-[1-метил-1,2- этандиил)-бис-(окси)]-2-пропанол, эфиры гексадекановой кислоты, пропиленгликоль, дипропиленгликоль и алифатические спир- ты	[34]
	NH3, 4,4'-диаминодифенилметан, бен- зол, дифенилметан, стирол	Полипропиленгликоль	2-Гексен, СО, метан, ацетилен, низшие алка- ны и алкены, тетрагидрофуран, алифати- ческие разветвленные спирты, пропаналь	[35]
	Нет данных	Пропоксилированный три- метилолпропан	CO ₂ , этаналь, пропаналь, метан, этан, этилен, пропан, пропилен	[36]
	HCN, NO ₂ , <i>n</i> -метиланилин, метилбен- зиламин, толуол, этилбензол, этан- диаминобензол	Полиэтиленоксид	CO ₂ , 2,2-диметилпентанол-3, метилэтилен- оксид-н-пропиловый эфир, диметиловый эфир	[37]
	HCN, бензол, нафталин, нафтены, ани- лин, бензонитрил	Полиэтиленоксид-поли- пропиленгликоль	СО, СО2, Н2О, метан, этилен, пропилен	[38]
	HCN, акрилонитрил, ацетонитрил, по- лиароматические углеводороды	Тетрагидрофуран	СО, СО2, Н2О, тетрагидрофуран	[39]

Таблица 21 (продолжение)

Литературный источник	[23] утилен-[44] станон.		1,5-гек- [47] утин-2	-бутен- пиколь, новой, иновой	ны/дис- цикло- саналь,	іны/ал- іоксид, эфиры, ы/алке- ид, ди- нговый	ы/алке- [51] 1,4-ди- 1слота, оты	лканы/ 1тен-1, -1, ок- ензоат,
Продукты разложения полиола	Фрагменты полиольной цепи СО2, Н2О, диметиловый эфир, трим оксил. 2-пропен-2-ол. 2-метил-4-о	пропаналь, 1-гептен	CO ₂ , 1,6-гексиленгликоль, гексаналь, сандиен, 1-пентен, 5-гексен-1-ол, б	СО ₂ , 1,3-бутадиен, тетрагидрофуран, 3 1-ол, циклопентанон, 1,4-бутилент этил-(Е)-гепт-2-он, эфиры пропе бутеновой, гександионовой и адип кислот, бутиленоксил	СО, СО ₂ , С ₁₋₄ -алканы/алкены/алкин ны, циклопентен, циклопентадиен, пентанон, 1,6-гексиленгликоль, гек 5-гексен-1-ол, пентановая кислота	 Н2, СО, СО2, Н2О, метан, С2-4-алкк кены, метанол, метаналь, этилен алифатические неразветвленные метилизопропилкетон Н2, СО, СО2, Н2О, метан, С2-4-алкан ны, метанол, метаналь, этиленокс этиленовый, диэтиловый, этиленокс 	эфиры, неразветвленные полиэфир H ₂ , CO, CO ₂ , H ₂ O, метан, C ₂₋₄ -алкан ны, метанол, метаналь, пентен-1, оксан, 9,12-диеноктадекановая ки пропениловый эфир фталевой кисл	H ₂ , CO, CO ₂ , H ₂ O, метан, C ₂ -4-а алкены, метанол, метаналь, пен 1-хлор- <i>цис-/транс</i> -бутен-2, октен тан, фталевый ангидрид, этиленб
Полиол	Полипропиленгликоль Простой полиэфирполиол		Полиэфирполиол на осно- ве яблочной кислоты и 1,6-гексиленгликоля	Поли(1,4-бутиленгликоль)- адипат, полиэтиленорто- фталат, политетрагидро- фурандиол	Поли(1,4-бутиленгликоль) адипат, поли(1,6-гекси- ленгликоль)адипат	Простой полиэфирполиол на основе пропиленок- сида, этиленоксила, гли- церина Ароматический полиэфир- полиол	Разветвленные сложно- эфирные полиолы	Разветвленные сложно- эфирные полиолы + ан- типирен
Продукты разложения диизоцианата	4,4'-Диаминодифенилметан HCN, NO2, акрилонитрил, ацетони- трил. метиленлиамин. анилин. мети-	тендифениламин, 4-бензиланилин, толуол, <i>n</i> -метиланилин	Бензол, толуол, анилин, бензолизоци- анат, толуолизоцианат, аминотолуол	н-Гексиламин, 4,4'-метилендифенил- диизоцианат, 4,4'-метилендианилин, дибензоилметан	Бензол, пропеннитрил, толуол, фенол, анилин, бензонитрил, фенилэтен	 NH3, HCN, ацетонитрил, диметил- амин, толуол, изомеры метиленди- анилина, этилбензолизоцианат NH3, HCN, ацетонитрил, толуол, ме- тилхинолин, стирол, этилбензол, кумол, бензолпропаннитрил, про- 	пандифенил, пирролметилоензол NH ₃ , HCN, ацетонитрил, анилин, ме- тиленфениланилин, изомеры мети- лендифенилдианилина	NH ₃ , HCN, ацетонитрил, бензол, толу- ол, анилин, метиланилин, изомеры метилендианилина, замещенные ал- килбензолы, бензоилнитрилы, бен-
Диизоцианат	4,4'-Метилендифенил- диизоцианат							

	продуки		sibiloro pusilone	inin nosiniye	or and b pp	$(550, 050, 0, 0_2)$	[50]	
Компонент	550°C, O ₂	850°C, O ₂	Компонент	550°C, O ₂	850°C, O ₂	Компонент	550°C, O ₂	850°C, O ₂
	Γ	азовая хро	матография в соч	етании с де	тектором те	еплопроводности		
NO	95	111	Этилен	11	4479	<i>цис</i> -2-Бутен	170	163
NH ₃	5960	1771	Пропан	211	82	1,3-Бутадиен	385	200
CO ₂	956	146	Пропилен	16	3937	н-Гексан	—	660
СО	121	134	Пропин	—	358	Бензол	2070	1318
Метан	8918	20	Ацетилен	863	2273	Сумма	41	36
Этан	1092	1697	изо-Бутен	305	279			
			Газовая хром	атомасс-сп	ектрометри	я		
CH ₃ CHO	41		Ацетон	9743	—	CH ₃ CN	1546	2915
Пропен	22	27	2-Пропанон	2113	—	CH ₃ OH	11	—
HCN	12	1445	CH ₂ =CHCN	2490	4400	Этинил-этилен	—	9324
НСНО	10		Пропаналь	1325		Сумма	103	50

Таблица 22 Продукты окислительного разложения полиуретана в ppm (550–850°C, O₂) [30]*

Примечание. «—» — не обнаружено, концентрация ниже 10 ppm.

Таблица 23

Выход хлорированных ароматических соединений в продуктах окислительного разложения полиуретана при 500 и 850°С [30]**

Компонент, ррт	550°C, O ₂	850°C, O ₂
Хлорбензол, 1,2-, 1,3-, 1,4-дихлор- бензолы	27	4
Хлорфенолы	8	7
Полихлордибензо- <i>п</i> -диоксины и	592	4822
фураны Полихлорбензолы	1552	2007

и простого полиэфирполиола (индекс NCO 30.8%, табл. 1) [44] разложение полимера на воздухе сопровождается основным выделением продуктов при 320 и 530°С. Наличие кислорода в воздушной среде приводит к ускорению процесса деградации полимера за счет разрушения полиольных структур и к снижению температуры разложения полимера на полиолы и диизоцианаты и их изомеры до 200°С по сравнению с процессом деструкции в инертной среде. Дальнейшая деструкция полиолов также протекает при пониженных температурах — 200–250°С — с образованием низкомолекулярных двухатомных спиртов и их эфиров, например диизопропанол-2-овый эфир, 1,1'-оксиди-2-пропанол, 1,4-бутиленгликоль, нитрилы, СО, бензойная кислота и бензальдегид (табл. 24). При температурах выше 300°С начинается частичное окисление диизоцианатов и их изомеров в присутствии кислорода до бензохинонов, изопропанола, СО, СО₂ и NO₂.

Аналогично результатам работы [44], при разложении жесткого полиуретана (табл. 1) [50] при T > 530°C единственными летучими соединениями являются СО и СО₂, образующиеся при сгорании полукокса. При деструкции полимера на воздухе в отличие от разложения в инертной атмосфере образуются в основном соединения, содержащие карбонильные группы (простые и сложные эфиры), и значительное количество СО и СО₂, изоцианаты и аминопроизводные соединения в таких условиях выделяются в незначительных количествах.

Исследование разложения жестких термопластичных полиуретановых эластомеров на основе 4,4'-метилендифенилдиизоцианата (табл. 1) при повышенных температурах (800, 950°С) в атмосфере воздуха проводили в [39]. По сравнению с продуктами пиролиза полимера на основе тетрагидрофурана в продуктах разложения полимера в окислительной атмосфере при 800°С доля фенилизоцианата и бензонитрила была выше, 1.4–4.4 и 2.1–2.6% соответственно (табл. 25). Основным компонентом продуктов разложения полиуретана, содержащего полибутиладипат в качестве мягкого сегмента, является циклопентанон (до 29.4 мг·г⁻¹ сырья), образование которого происхо-

^{*} Разрешение на публикацию получено 22.12.2021, © Elsevier.

^{**} Разрешение на публикацию получено 22.12.2021, © Elsevier.

дит за счет первичного расщепления сложноэфирной связи бутиладипата с последующим переносом водорода и последующей циклизацией цепи.

Образование полициклических ароматических углеводородов в окислительном разложении полиуретанов не зависит от структуры длинноцепочечных диолов в полимере, что следует из практически одинакового их количества в продуктах термической обработки полиуретанов.

Таким образом, при термоокислительной обработке полиуретанов на основе толуолдиизоцианатов и 4,4'-метилендифенилдиизоцианата практически не образуются мономерные изоцианаты [29, 39, 44, 50]. Практически сразу в окислительной среде происходит разрыв и гидролиз изоцианатной группы до бензолов, анилинов, толуоланилинов, метилендианилинов (табл. 26). Лишь при низких температурах обработки возможно выделение толуолизоцианата [17]. Полиольная и полиэфирполиольная цепь подвегается расщеплению и окислению с образованием низкомолекулярных оксигенированных соединений, таких как формальдегид, ацетальдегид, низшие разветвленные спирты, циклические кетоны, помимо газообразных С_{1–4}-алканов и алкенов и CO, CO₂.

Каталитический пиролиз полиуретана и его отходов

С целью селективного разложения полиуретанов и пенополиуретанов используют такие катализаторы,

Таблица 24

Основные продукты, выделяемые при пиролизе жесткого пенополиуретана при температурах 313, 360 и 550°С в атмосфере кислорода

Основные продукты, полученные при 313°С	Основные продукты, полученные при 360°С	Основные продукты, полученные при 550°С
Диметиловый эфир	NO ₂	1,4-Бутиленгликоль
1,4-Бутиленгликоль	1,4-Бутиленгликоль	Акролеин
Акролеин	Акролеин	2-Пропен-2-ол
2-Пропен-2-ол	Пропаналь	2-Метил-4-октанон
2-Метил-4-октанон	2-Метил-4-октанон	4-Бензиланилин
4-Бензиланилин	4-Бензиланилин	3,3'-Диаминодифенилметан
3,3'-Диаминодифенилметан	3,3'-Диаминодифенилметан	4,4'-Метилендианилин
4,4'-Аминофенилметиленфенилизо-	4,4'-Аминофенилметиленфенилизо-	4,4'-Аминофенилметиленфенилизо-
цианат	цианат	цианат
3,3'-Диаминодифенилметан	3,3'-Диаминодифенилметан	
4,4'-Метилендианилин	4,4'-Метилендифенилдиизоцианат	
	3,3'-Метилендифенилдиизоцианат	
	4,4'-Метилендианилин	

Таблица 25

Выход основных продуктов при первичном расщеплении сложнофирной связи в полиуретанах в процессе окислительного разложения при 800 и 950°С [39]*

Продукт, мг·г ⁻¹ сырья	Полиуретан на основ	ве тетрагидрофурана	Полиуретан на основе пади	оли(1,4-бутиленгликоль) пата
	800°C	950°C	800°C	950°C
Циклопентанон	0	0	20.2	29.4
2-Циклопентанон	0	0	2.2	3.9
Фенилизоцианат	4.4	1.4	2.4	0.8
Бензонитрил	2.1	2.6	1.8	5.4
1,4-Бутиленгликоль	28.3	26.6	45.7	12.2

* Разрешение на публикацию получено 22.12.2021, © Elsevier.

как цеолиты [53, 54] и различные оксиды и соли металлов [54–59].

Каталитический пиролиз полиуретана на основе 4,4'-метилендифенилдиизоцианата и политетрагидрофурана и 4,4'-метилендифенилдиизоцианата, 1,4-бутиленгликоля и поли(1,4-бутиленгликоль)адипата проводили в микропиролизере при 500°С в присутствии Y-цеолитов [53, 54]. Термическое разложение полиуретана на основе простого полиэфира приводит к выделению 4,4'-метилендифенилдиизоцианата, тетрагидрофурана, CO₂, бутана и незначительных количеств анилина и *n*-толуидина, полученных в результате β-разрыва метиленовой группы диизоцианата. Цеолит HUSY катализирует процесс диссоциации полиуретана до вторичного амина и CO₂ с последующей N-циклизацией через шестичленное переходное состояние, декарбоксилирование, фрагментация которого приводит к выделению 1-фенил- и 1-(n-толуол)-пирролидина (схема 23). В результате ароматизации, катализируемой цеолитами, образуются замещенные пирролы. Высокое соотношение катализатор/полимер способствует также росту выходов С₃₋₄-олефинов. Таким образом, при использовании цеолита HUSY основными продуктами разложения полиэфира уретана являются CO₂, бутан, тетрагидрофуран, анилин, n-толуидин, пирролы и пирролидины (схема 23), выходы которых напрямую зависят от количества добавленного катализатора.

В присутствии NaH₄NaY 4,4'-метилендифенилдиизоцианат, полученный при деструкции полиуретана, сразу же разлагается до изоцианатбензола и 1-изоцианат-4-метилбензола, которые частично преобразуются в аминопроизводные (анилин и *n*-толуидин). Главным отличием NaH₄NaY от HUSY является то,

Таблица 26
Продукты разложения полиуретанов, содержащих различные диизоцианаты и полиолы, в окислительной
атмосфере

Диизоцианат	Продукты разложения диизоцианата	Полиол	Продукты разложения полиола	Литературный источник
Толуолдиизоциа- нат	Толуолдиизоцианат	Полиэтиленгликоль (200 г.моль ⁻¹)	СО ₂ , 2-метил-1,3-диоксолан, 1,4-диоксан	[17]
	Толуолдиизоцианат	Полиэтиленгликоль (2000 г.моль-1)	СО ₂ , формиат, формальдегид	[17]
Нет данных	Нет данных	Нет данных	СО, СО ₂ , формальдегид, ацеталь- дегид	[29]
	NH3, акрилонитрил, NO, ацетонитрил, HCN, бензол,	Нет данных	СО, СО ₂ , метан, этан, пропан, пропилен, ацетилен, ацетон, этинилэтилен, <i>изо</i> -бутен, 1,3-бутадиен, 2-пропанон, про- паналь, метанол, полихлорди- бензо- <i>n</i> -диоксины и фураны	[30]
4,4'-Метиленди- фенилдиизоци-	Дифенилкарбонат	Полиэтиленгликоль (200 г.моль-1)	CO, CO ₂	[17]
анат	Дифенилкарбонат	Полиэтиленгликоль (2000 г.моль-1)	CO, CO_2	[17]
	Бензойная кислота, NO ₂ , бензальдегид, 4-метил- анилин, бензохинон, 3,3'-диаминодифенил- метан, 4,4'-метиленди- анилин	Простой полиэфир- полиол	СО, СО ₂ , этиленгликоль, диизо- пранол-2-овый эфир, 1,1'-ок- сиди-2-пропанол, 1,4-бу- тиленгликоль, акролеин, 2-пропен-2-ол, 4-метил-4-ок- танон	[44]
	Нет данных	Полиэфир(сорбит) полиол	CO, CO ₂	[50]
	Фенилизоцианат, бен- зонитрил	Поли(1,4-бутилен- гликоль)адипат	Циклопентанон, 2-циклопента- нон, 1,4-бутиленгликоль	[39]

Ş

что первый не катализирует процесс ароматизации, и поэтому замещенные пирролы в процессе разложения не образуются.

Цеолит HUSY, используемый при разложении полиуретанового эластомера, катализирует процесс циклизации 1,4-бутиленгликоля, выделенного в процессе расщепления эфирных групп и последующего декарбоксилирования до тетрагидрофурана и циклопентанона. 4,4'-Метилендифенилдиизоцианат в данных условиях разлагается на анилин и *n*-толуидин.

Преимуществом цеолита NaH₄NaY при пиролизе эластомера, содержащего 1,4-бутиленгликоль и поли(1,4-бутиленгликоль)адипат, являются его каталитические свойства в процессе образования значительного количества NH₃, который в свою очередь способствует расщеплению сложноэфирных групп и дегидратации с образованием гексадиннитрила [54], выход которого растет с увеличением количества добавленного катализатора.

Повышение температуры с 700 до 1000°С при пиролизе отработанного жесткого пенополиуретана (изоляционный материал в холодильнике) в потоке Ar в реакторе с неподвижным слоем позволило получить до 55.3% газообразных продуктов, среди которых N₂, различные оксиды азота и углерода, H₂O, NH₃ и низшие углеводороды [55]. Добавка различных оксидов и солей щелочных, щелочноземельных и переходных металлов в качестве катализаторов [CaO, MgO, MnO₂, NaOH, Ca(OH)₂, Na₂CO₃, CaCO₃, MgCO₃, FeCl₃], как правило, ускоряет процесс превращения топливного азота в нетоксичный N₂, ингибируя реакцию его окисления до загрязняющих оксидов NO_x. Использование Na₂CO₃ приводит к росту выхода N₂ в 2 раза по сравнению с продуктами некаталитического пиролиза и снижению количества NH₃ и N₂ в полукоксе, но в то же время содержание HCN и NO₂ повышается. NaOH, наоборот, препятствует образованию газообразного N₂ в данных условиях.

Среди Са-содержащих соединений [СаО, Са(OH)₂, CaCO₃] только СаО способствует увеличению выхода N₂ в 3 раза [56], снижению NH₃ в 2 раза, HCN в продуктах процесса не обнаруживается, что говорит о способности СаО преобразовывать HCN в N₂. При добавлении СаО и MgO [55] почти весь топливный азот превращается в неконденсируемые азотсодержащие соединения, выход токсичных азоторганических соединений практически не изменяется.

Среди переходных металлов именно использование Fe и FeCl₃ способствует повышению выхода N₂ в 4 и 2 раза по сравнению с выходами газов, полученными при некаталитическом разложении полиуретана. Доля NH_3 и азотсодержащего полукокса падает, но значительно растет количество образованных HCN и NO_2 , в 5 и в 2 раза соответственно.

Исследование жидкой фазы, полученной при некаталитическом пиролизе отходов жесткого пенополиуретана в присутствии СаО в реакторе с неподвижным слоем (900-1100°С) [56], показало, что основными компонентами масла (до 15%) являлись азотсодержащие гетероциклы (хинолин, изохинолин, 1-метил- и 2,7-диметилхинолины, пиридин и 3-этил-4-метилпирилин, индол и 4-метил-1Н-индол, акридин и 9-метилакридин) и ароматические соединения с нитрильными (бензонитрил, 1-метилбензонитрил) и аминогруппами (4-метил-, 2-этил-, N-этил-, N-пропил-, N,4-диметил-, 2,4-диметил-, 1-фенил- и 4[(4-аминофенил)метил]анилины, N-метилциклогексиалмин). Преобладающим среди всех азоторганических компонентов являлся 4[(4-аминофенил)метил]анилин (50-70%) и анилин и *п*-аминотолуол (16-20%).

Двухступенчатый процесс переработки полиуретановых отходов (табл. 1), таких как амортизационный материал (1) и губка (2) из гибкого полимера, изоляционные материалы (3, 4) из жесткого полиуретана и гибкая трубка (5) и галантерейный аксессуар (6) из пенополиуретана, проводили с целью получения высококачественного синтез-газа [57]. На первом этапе происходило разложение полимерных отходов в реакторе с неподвижным слоем при 500°С в присутствии 50 об% пара и в его отсутствие, вторая стадия заключалась в удалении токсичного HCN с помощью композитного катализатора на основе Ni, Mg и Al при 600-800°С и преобразовании низших углеводородов в синтез-газ. Встроенный в каркас Al³⁺ MgO и наличие дисперсных частиц металлического Ni способствовали усилению адсорбции HCN и диссоциации воды на H₂ на поверхности катализатора за счет синергического эффекта Al, Mg и Ni.

Воздействие пара при пиролизе отхода (1) способствует незначительному росту выхода газообразных и жидких продуктов и соответственно снижению количества твердого остатка (табл. 27), тогда как повышение температуры с 500 до 800°С приводит к увеличению выхода газов с 9.4 до 47.6%, а использование катализатора — до 89.7%, основными составляющими которого являются оксиды углерода, метан и водород, т. е. Al–Mg–Ni усиливает паровой риформинг.

Твердый остаток, полученный в ходе пиролиза отходов полиуретана, представляет собой полимочевину, образованную в результате полимеризации толуолдиизоцианата и толуолдиамина [схема 24 (4)].

5
Ца
ИЦ
a6

Условия пиролиза полиуретановых отходов (1-6) и идентифицированные продукты [57]*

						Поли	уретан					
условия пиролиза	-	-	-	-	-	1	-	2	e.	4	5	9
Температура, °С	500	500	800	800	600	700	800	800	800	800	800	800
Пар, об%	Ι	50	50	50	50	50	50	50	50	50	50	50
Катализатор Ni/Mg/Al	Ι	I	Ι	Окис.	BoccT.	Boccr.	BoccT.	Boccr.	Boccr.	Boccr.	BoccT.	BoccT.
Состав продуктов, %:												
газ, сумма	7.7	9.4	47.6	89.7	32.1	49.6	94.2	91.8	92.6	72.2	92.3	94
∑ соединений, не содержащих азот	7.3	9.1	45.6	86.2	31.4	48.7	92.2	90	90	70.6	90.8	92.5
H ₂	I	Ι	1	6.4	2.2	3.7	7.1	7.5	8.5	8.1	8.7	8.3
CO	1.5	1.7	22.5	38	8.5	18.3	47.6	47.2	46.8	32.3	27.2	42.9
CO2	0.8	1.7	1.6	20.5	6.6	9.2	19.9	18.3	10.3	26.1	38	28.9
CH4	0.4	0.5	10.7	11.8	2.6	9	10.5	11.1	10.1	2.4	5	4.6
С2-алканы/алкены	0.7	0.7	7.9	7.4	4.1	5.4	5.5	4.6	3.1	1.2	10.5	6.3
С3-алканы/алкены	3.8	4.1	1.5	1.7	6.8	5.5	1.2	1.1	0.9	0.4	1.1	0.8
С4-алканы/алкены	0.2	0.3	0.4	0.5	0.7	0.6	0.3	0.2	0.2	0.1	0.3	0.6
∑ азотсодержащих соединений	0.4	0.3	2	3.4	0.7	0.9	2.1	1.8	2.6	1.6	1.5	1.5
NH ₃	0.3	0.2	0.2	1.7	0.5	0.4	1.1	1.1	1.4	0.9	1	1
HCN	0.1	0.1	1.8	1.7	0.2	0.5	0.9	0.7	1.2	0.7	0.4	0.5
NO_x	+	+	+	+	+	+	+	+	+	+	+	+
MacJIO	4.6	5.6	9	9	5.2	3.6	4.2	1.2	1.3	2.1	3.6	2.6
∑ соединений, не содержащих азот	7	2.5	3.5	4.2	1.3	1.6	2.8	0.2	0.2	0.6	0.7	0.7
алифатические соединения	0.8	1.1	Ι	Ι	I	I	I	I	I	I	Ι	Ι
циклические соединения	1.1	1.4	3.5	4.2	1.3	1.6	2.8	0.2	0.2	0.6	0.7	0.7
∑ азотсодержащих компонентов	0.3	0.4	2.4	1.8	3.9	1.7	1.4	1	1.1	1.5	2.8	1.8
-NCO	0.1	0.1	+	+	0.3	+	I	Ι	I	Ι	Ι	Ι
	Ι	0.2	0.4	0.5	2.7	1.1	0.5	0.6	0.2	0.4	0.1	0.1
CN	0.2	0.2	1.3	0.8	0.6	0.5	0.6	0.2	0.4	0.33	0.3	0.4
циклические соединения	Ι	Ι	0.6	0.5	0.4	0.2	0.4	0.4	0.3	0.3	0.3	0.4
другие углеводороды	2.3	2.7	0.1	Ι	0.3	0.3	Ι	I	Ι	Ι	Ι	Ι
кокс	14.4	14.2	7.3	2.1	2.8	2.6	2.3	3.8	0.6	20.4	8.8	7.2
идентифицированные	26.7	29.2	60.9	97.7	40.4	55.9	100.8	96.9	94.5	94.6	104.6	103.8
Примечание. окис. — окисленный ка губка из гибкого полимера, 3, 4 — изоляцион	итализатор нные мате), восст. — риалы из	 восстан жесткого 	лвленный полиурет	скатализа гана, 5 —	гор, 1 — гибкая тр	амортиза। убка из п	ционный	материал ретана, 6	из гибкого — галант	о полиуре ерейный	тана, 2 — аксессуар

При более высоких температурах из изоцианатов выделяется HCN [схема 24 (5)], что объясняет увеличение его количества до 1.7-1.8% при 800° С. Использование восстановленного катализатора при 800° С в присутствии 50 об% пара способствует снижению выхода HCN до 0.9%, что связано с его гидролизом до аммиака и его термической конверсией до N₂ [схема 24 (6, 7)], в то время как выход газообразных продуктов достигает максимума (94.2%), в котором доля CO составляет 47.6%, CO₂ — 19.9%, H₂ — 7.1%.

Исследование каталитического пиролиза других отходов (жесткого, гибкого и пенополиуретана) в присутствии 50 об% пара и восстановленного композита (800°С) показало, что все полимеры превращаются в обогащенный водородом синтез-газ (7.5–8.3%). Меньший выход HCN из отходов пенополиуретана (5, 6) обусловлен низким содержанием азота в самом полимере, а также наличием стерических препятствий, возникающих у 4,4'-метилендифенилдиизоцианата по сравнению с 2,4-/2,6-толуолдиизоцианатами при подходе молекулы к поверхности катализатора и ее активным центрам.

Влияние хлоридов и оксидов различных металлов на пиролиз гибкого и жесткого пенополиуретана в лабораторном реакторе при 800°С изучали в [58]. Разложение гибкого полиуретана характеризуется двумя стадиями потери массы (250 и 400°С), тогда как жесткий полимер разлагается при 300–370°С (рис. 5), столь ощутимая разница в кривых объясняется размером молекул полиольных мономеров. Добавка FeCl₃ снижает температуру начальной потери массы эластомера больше, чем добавка FeCl₂ и других хлоридов, что, возможно, связано с льюисовской кислотностью солей. В случае жесткого полимера, имеющего больше уретановых связей, чем гибкий, добавление солей Fe, Cu, Zn приводит к снижению начальной температуры разложения.

Преобладающим продуктом пиролиза чистого гибкого полиуретана при 800°С являлся ацетальдегид, образующийся в процессе диссоциации уретановой связи до спирта и дальнейшего дегидрирования, бензол и толуол — продукты разложения нестабильного диизоцианата и азотистые ацетонитрил, пиридин, ацетамид и 2-метилпиридин. Добавление FeCl₂ препятствует выделению пиридинов, но при этом образуется незначительное количество 1,4-диоксана в процессе циклизации полиола.

В случае разложения чистого жесткого полимера в присутствии хлоридов металлов увеличивается выход ацетамида и толуола по сравнению с продуктами деструкции гибкого полиуретана (рис. 6). Основными компонентами газовой фракции в обоих случаях являлись СО, СО2, метан, этилен, этан, пропилен и пропан. Наибольший выход СО и метана наблюдался при добавлении FeCl₃: 31.5 и 14% при пиролизе гибкого и 30 и 14% при разложении жесткого полиуретана соответственно. Также добавление оксидов и хлоридов металлов способствовало росту содержания аммиака в газообразных продуктах благодаря их каталитическим свойствам превращения органического азота в NH₃, исключая выделение токсичных HCN и NO_x. При пиролизе жесткого пенополиуретана количество выделяемого NH₃ падало в ряду CuCl₂ (2%) > FeCl₂

Рис. 5. Кривые термогравиметрического анализа гибкого (слева) и жесткого (справа) пенополиуретана в присутствии хлоридов металлов [58].*

* Разрешение на публикацию получено 22.03.2022, © Elsevier.

Cxema 24

^{*} Разрешение на публикацию получено 22.03.2022, © Elsevier.

 $(1.85\%) > ZnCl_2 (1.2\%) >$ чистый (1%), а в случае гибкого полимера — в ряду La₂O₃ (1.4%) > Fe₂O₃ $(0.88\%) > Nd_2O_3 (10.83\%) > ZnO (0.6\%) > CuCl_2$ $(0.53\%) > FeCl_2 (0.51\%) > ZnCl_2 (0.38\%) >$ чистый (0.25%).

При пиролизе чистого пенополиуретана при 800°С образование полукокса незначительно, в то время как при добавлении в реакционную смесь солей металлов его количество достигает 30% (в случае ZnCl₂). Помимо углеродистого остатка, удельная площадь поверхности которого составляет 165–735 м²·г⁻¹, в полукоксе также возможно образование металлического железа, меди и цинка, а также их карбидов.

Оксиды металлов Cu₂O, NiO, MoO₃ и биметаллических CuMoO₄ и NiMoO₄ также ингибируют процесс выделения токсичных газов при пиролизе жестких пенополиуретанов при 650 и 850°C (табл. 28) [59]. Добавление наночастиц оксидов металлов способствует снижению температуры начала разложения полимера, как и в [58], и повышению выхода полукокса как в инертной атмосфере, так и в воздушной [59], что обусловлено их высокими каталитическими свойствами в процессе карбонизации углеродистого остатка. Уменьшение количества NO_x и CO с повышением температуры и добавления оксидов металлов объясняется их взаимодействием с образованием N₂ и CO₂.

В результате одностадийного пиролиза пенополиуретана в присутствии разбавленной H_2SO_4 (200– 300°С, 2–6 ч) [60] образован карбонизированный полимер, промывкой которого с последующим ультразвуковым воздействием и центрифугированием можно получить углеродные точки, представляющие собой сферические частицы размером 5–8 нм и имеющие гидроксильные и карбоксильные функциональные группы. Исследование чувствительности и селективности образованного в процессе кислотного пиролиза полимера продукта показало, что предел обнаружения ионов Ag⁺ достигает 2.8 мкмоль·л⁻¹, что позволяет его использовать в качестве сенсора.

Авторы [66] путем двустадийного пиролиза отходов полиуретана и полиэтилена в присутствии FeCl₃, температура которого значительно влияла на степень графитизации и содержания азота, получали Fe/N/Cкомпозиты, проявившие высокую каталитическую активность и селективность в восстановлении кислорода. На первом этапе термического разложения (500°С, 30 мин) протекал легкий пиролиз, сопровождающийся выделением газов и жидкой фракции, содержащей смесь олефинов (этилбензол, толуол, бензол, нафталин и полициклические ароматические углеводороды). Дальнейшая термообработка при 700-1000°С в присутствии FeCl₃ приводила к образованию углеродистого остатка, структура которого являлась схожей с графитными слоями, внутри которых были заключены частицы металла (Fe₃C, Fe₂O₃, α- и γ-Fe). Азот, содержащийся в полиуретане, в полученном композите был идентифицирован в виде N-пиррольных и N-пиридиновых колец. В зависимости от условий процесса были синтезированы металлсодержащие композиты, площадь поверхности которых варьировалась от 195 до 479 м²·г⁻¹.

Многие катализаторы, используемые в работах [53–59], способствовали большему выделению молекулярного азота и аммиака (табл. 29), катализируя процесс разрыва уретановой связи в полиуретанах с последующим гидрированием нитрильной связи и цианистого водорода и ингибирования образования токсичных газов NO и NO₂. Таким образом, основная доля азота, содержащегося в полимерах, путем их каталитического пиролиза превращалась в N₂ и NH₃.

05	HCN	, ppm	NO _x ,	ppm	CO,	ppm	CO	2, %	0	/o
Ооразец	650°C	850°C	650°C	850°C	650°C	850°C	650°C	850°C	N ₂	воздух
Чистый пенополиуретан	320	360	46.2	40.2	18000	12000	12	12	16.3	0.51
$+ Cu_2O$	180	222	60	19.8	10400	10000	15	16.5	20.8	0.64
+ NiO	258	198	49.8	10.2	12000	10000	11.7	18.2	26.7	4.47
+ MoO ₃	300	198	40.2	30	10600	11000	10.2	11	23.8	2.09
+ CuMoO ₄	198	378	60	36.2	15000	10800	16.2	13.4	26.1	2.67
+ NiMoO ₄	222	198	49.8	25.8	11000	9000	13.8	13.4	20.4	1.52

Таблица 28

Количественный анализ газовых продуктов разложения жесткого пенополиуретана в печи при 850°С и выход полукокса при 800°С в инертной и воздушной атмосфере [59]*

* Разрешение на публикацию получено 22.03.2022, © Elsevier.

Литературный источник	Te-	Te-	aH, [ан, ен,				[55]			
Продукты разложения полиола	CO ₂ , бутадиен, бутан, трагидрофуран	СО2, бутадиен, бутан, трагидрофуран	CO2, тетрагидрофур циклопентанон, проп бутен	CO2, тетрагидрофур циклопентанон, проп бутен	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных
Полиол	Политетрагидрофуран	Политетрагидрофуран	Поли(1,4-бутиленгликоль)- адипат	Поли(1,4-бутиленгликоль)- адипат	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных
 Продукты разложения диизоцианата	Анилин, <i>п</i> -толуидин, 1-фенил-1Н- и 1-(<i>n</i> -то- лил)-1Н-пиррол, 1-фенил- и 1-(<i>n</i> -толил)-1Н-пирро- лидин	Изоцианатбензол, анилин, 1-изоцианато-4-метилбен- зол, <i>n</i> -толуидин, 1-фенил- и 1-(<i>n</i> -толил)-1Н-пирро- лидин	4,4'-Метилендифенилдиизоцианат, изоцианатбензол, анилин, 1-изоцианато-4-метилбензол, <i>п</i> -толуидин	NH ₃ , 4,4'-метилендифенилдиизоцианат, изоцианатбен- зол, анилин, 1-изоцианато-4-метилбензол, <i>n</i> -толуи- дин, гександинитрил	850 ррт N ₂ , 800 ррт NH ₃ , 30 ррт HCN, 10 ррт NO, 250 ррт NO ₂ в газовой фазе, 2.1 г на 1 г N в полукоксе	2400 ррт N ₂ , 610 ррт NH ₃ , 1050 ррт HCN, 30 ррт NO, 1330 ррт NO ₂ в газовой фазе, 3.5 г на 1 г N в полукоксе	4200 ррт N ₂ , 610 ррт NH ₃ , 8 ррт HCN, 20 ррт NO, 640 ррт NO ₂ в газовой фазе, 3.9 г на 1 г N в полукоксе	2400 ррт N ₂ , 750 ррт NH ₃ , 12 ррт HCN, 30 ррт NO, 600 ррт NO ₂ в газовой фазе, 3.6 г на 1 г N в полукоксе	10700 ррт N ₂ , 690 ррт NH ₃ , 1880 ррт HCN, 20 ррт NO, 830 ррт NO ₂ в газовой фазе, 5.8 г на 1 г N в по- лукоксе	12500 ррт N ₂ , 280 ррт NH ₃ , 790 ррт HCN, 15 ррт NO, 420 ррт NO ₂ в газовой фазе, 6.1 г на 1 г N в по- лукоксе	36000 ppm N ₂ , 500 ppm NH ₃ , 1720 ppm HCN, 35 ppm NO. 1120 ppm NO ⁵ в газовой фазе. 5.8 г на 1 г N
Диизоцианат	4,4'-Метиленди- фенилдиизоци- анат										
Катализатор	Цеолит HUSY	Цеолит NaH4NaY	Цеолит HUSY	Цеолит NaH4NaY	NaOH	Na ₂ CO ₃	CaO	Ca(OH) ₂	MgO	MgCO ₃	Fe

Таблица 29 Продукты каталитического пиролиза полиуретанов

(әпнәжи	Литературный источник	[55]	1	[56]		[57]		[02]	[oc]
Таблица 1 (<i>прод</i> с	Продукты разложения полиола	Нет данных	Нет данных	Нет данных	H ₂ , CO, CO ₂ , C ₁₋₄ -угле- водороды H ₂ , CO, CO ₂ , C ₁₋₄ -угле- водороды	H ₂ , CO, CO ₂ , C ₁₋₄ -угле- водороды H ₂ , CO, CO ₂ , C ₁₋₄ -угле- водороды	H ₂ , CO, CO ₂ , C ₁₋₄ -угле- водороды H ₂ , CO, CO ₂ , C ₁₋₄ -угле- водороды	СО, СО ₂ , метан, этилен, этан, пропилен, ацет- альдегид, 1,4-диоксан	СО, СО ₂ , метан, этилен, этан, пропилен, ацет- альдегид, 1,4-диоксан
	Полиол	Нет данных	Нет данных	Нет данных	Полиэтиленгликоль Полипропиленгликоль	Полипропиленгликоль Полиэтиленгликоль	Политетрагидрофуран Политетрагидрофуран	Полиол (3000 г-моль ⁻¹)	Полиол (3000 г·моль ⁻¹)
	Продукты разложения диизоцианата	22000 ppm N ₂ , 200 ppm NH ₃ , 1100 ppm HCN, 20 ppm NO, 710 ppm NO ₂ в газовой фазе, 2.4 г на 1 г N в по- лукоксе	5200 ррт N ₂ , 1300 ррт NH ₃ , 270 ррт HCN, 8 ррт NO, 420 ррт NO ₂ в газовой фазе, 7.5 г на 1 г N в полукоксе	NH3, N2, NO, NO2, хинолин, изохинолин, 1-метил- и 2,7-диметилхинолины, пиридин и 3-этил-4-ме- тилпирилин, индол и 4-метил-1Н-индол, акридин и 9-метилакридин, бензонитрил, 1-метилбензонитрил, 4-метил-, 2-этил-, N-этил-, N-пропил-, N,4-диметил-, 2,4-диметил-, 1-фенил- и 4[(4-аминофенил)метил]- анилины, N-метилциклогексиламин, анилин и <i>п</i> -аминотолуол	NH ₃ , N ₂ , NO, NO ₂ , азотсодержащие компоненты, со- держащие группу —СNO, —NH ₂ , —СN NH ₃ , N ₂ , NO, NO ₂ , азотсодержащие компоненты, со- держащие группу —СNO, —NH ₂ , —СN	NH3, N2, NO, NO2, азотсодержащие компоненты, со- держащие группу — CNO, —NH2, —CN NH3, N5, NO, NO2, азотсодержащие компоненты, со- держащие группу — CNO, —NH2, —CN	 NH3, N2, NO, NO2, азотсодержащие компоненты, со- держащие группу — СNO, — NH2, — СN NH3, N2, NO, NO2, азотсодержащие компоненты, со- держащие группу — СNO, — NH2, — СN 	Ацетонитрил, бензол, пиридин, ацетамид, толуол, 2-метилпиридин	Ацетонитрил, бензол, пиридин, ацетамид, толуол
	Диизоцианат	4,4'-Метиленди- фенилдиизоци- анат			Смесь 2,4-/2,6-толуолди- изоцианатов	4,4'-Метиленди- фенилдиизоци-	анат	Смесь 2,4-/2,6-толуолди- изоцианатов	4,4'-Метиленди- фенилдиизоци- анат
	Катализатор	FeCl ₃	MnO ₂	CaO	Восстановленный Ni/Mg/Al			FeCl ₂	FeCl ₂

Пиролиз полиуретанов. Особенности процесса и состав продуктов реакции (обзор)

Литературный источник				[58]		
Продукты разложения полиола	СО, СО2, метан, этилен, этан, ацетальдегид, 1,4-диоксан	СО, СО ₂ , метан, этилен, этан, ацетальдегид, 1,4-диоксан	CO, CO ₂ , метан, этилен, этан, ацетальдегид	СО, СО ₂ , метан, этилен, этан, пропан, ацетальде- гид, 1,4-диоксан	СО, СО ₂ , метан, этилен, этан, пропан, ацетальде- гид, 1,4-диоксан	СО, СО ₂ , метан, этилен, этан, пропан, ацетальде- гид, 1,4-диоксан
гонгоП	Полиол (3000 г-моль ⁻¹)	Полиол (3000 г·моль ⁻¹)	Полиол (3000 г·моль ⁻¹)	Полиол (3000 г-моль ⁻¹)	Полиол (3000 г-моль ⁻¹)	Полиол (3000 г.моль ⁻¹)
Продукты разложения диизоцианата	Бензол, пиридин, 2-метилпиридин, ацетамид, толуол	Ацетонитрил, бензол, пиридин, толуол	Ацетонитрил, бензол, пиридин, ацетамид, толуол	Ацетонитрил, бензол, пиридин, 2-метилпиридин, ацет- амид, толуол	Ацетонитрил, бензол, пиридин, 2-метилпиридин, ацет- амид, толуол	Ацетонитрил, бензол, пиридин, ацетамид, толуол
Диизоцианат	4,4'-Метиленди- фенилдиизоци- анат					
Катализатор	FeCl ₃	ZnCl ₂	CuCl ₂	Fe(NO ₃) ₂ ·9H ₂ O	Zn(NO ₃)2·6H ₂ O	Cu(NO ₃) ₂ ·3H ₂ O

Таблица 1 (продолжение)

Заключение

Анализ литературной информации по термической обработке различных видов полиуретана и пенополиуретана, включая низкотемпературное разложение и пиролиз как чистых полиуретанов/пенополиуретанов, так и полимеров с добавками антипиренов, а также пиролиз в присутствии различных катализаторов (цеолиты, оксиды и соли щелочных и переходных металлов), позволяет сделать следующие выводы.

— При низкотемпературной переработке механизм разложения полиуретанов/пенополиуретанов заключается в основном в расщеплении уретановой связи с образованием мономеров полиолов, аминов, применяемых в качестве катализатора при синтезе полимера, 4,4'-метилендифенилдиизоцианата в случае жесткого полиуретана и 2,4-/2,6-диаминотолуола в случае эластичного полиуретана.

— В процессе пиролиза полиуретанов при повышенных температурах, как правило, протекают вторичные процессы, такие как дегидратация полиолов с выделением различных оксигенатов (спирты с терминальными двойными связями, кетоны, альдегиды, простые и сложные эфиры), декарбоксилирование с выделением CO₂, циклизация и ароматизация углеводородов с образованием полициклических ароматических соединений, содержащих до 4–5 бензольных колец.

— Термическое разложение полиуретанов в окислительной атмосфере протекает с большей скоростью по сравнению с пиролизом полимера в среде азота и с образованием меньшего количества различных углеводородов и большей концентрацией СО₂. Повышение температуры окислительного пиролиза приводит к росту выхода токсичных полихлорированных фуранов, фенолов и диоксанов (до 5000 ppm) в продуктах процесса пиролиза.

— Добавка цеолита HUSY в процессе термообработки полимера способствует процессам циклизации азот- и кислородсодержащих соединений до замещенных пирролидонов и фуранов, тогда как NaH₄NaY катализирует процесс образования аммиака и гексаннитрила, выходы которых прямо пропорциональны количествам используемого цеолита.

— Применение металлсодержащих катализаторов, таких как оксиды и соли щелочных и переходных металлов, в процессе пиролиза полиуретана позволяет значительно снизить долю газообразного HCN посредством его гидролиза до аммиака с дальнейшей термической конверсией до N₂.

Финансирование работы

Работа выполнена в рамках государственного задания Института нефтехимического синтеза им. А. В. Топчиева РАН.

Конфликт интересов

А. Л. Максимов является главным редактором Журнала прикладной химии. У Е. М. Захарян конфликт интересов, требующий раскрытия в данной статье, отсутствует.

Информация об авторах

Захарян Елена Михайловна, к.х.н., ORCID: https://orcid.org/0000-0001-8850-2141

Максимов Антон Львович, д.х.н., проф., чл.-корр. РАН,

ORCID: https://orcid.org/0000-0001-9297-4950

Список литературы

- Samaila S., Mohd Y.N.Z., Kamarudin A., Nazri A. Improving the strength of weak soil using polyurethane grouts: A review // Construct. Build. Mater. 2019. V. 202. P. 738–752.
- https://doi.org/10.1016/j.conbuildmat.2019.01.048
- [2] Nikje M. M. A., Garmarudi A. B., Idris A. B. Polyurethane waste reduction and recycling: From bench to pilot scales // Des. Monomers Polym. 2011. V. 14. P. 395– 421. https://doi.org/10.1163/138577211X587618
- [3] Kausar A. Polyurethane composite foams in highperfomance applications: A review // Polym. Plast. Technol. Eng. 2017. V. 57. N 4. P. 346–369. https://doi.org/10.1080/03602559.2017.1329433
- [4] Szycher M. Basic concepts in polyurethane chemistry and technology. Szycher's Handbook of polyurethanes. 2012. 2nd Ed. P. 1144. https://doi.org/10.1201/b12343
- [5] Roohpour N., Wasikiewicz, J., Moshaverinia A., Deepen P., Ihtesham R., Pankaj V. Isopropyl myristatemodified polyether-urethane coatings as protective barriers for implantable medical devices // Materials. 2009. V. 2. N 3. P. 719–733. https://doi.org/10.3390/ma2030719
- [6] Komurlu E., Kesimal A. Experimental study of polyurethane foam reinforced soil used as a rock-like material // J. Rock. Mech. Geotech. Eng. 2015. P. 1–7. https://doi.org/10.1016/j.jrmge.2015.05.004
- [7] Gadhave R. V., Srivastava S., Mahanwar P. A., Gadekar P. T. Recycling and disposal methods for polyurethane wastes: A review // Open J. Polym. Chem. 2019. V. 9. P. 39–51. https://doi.org/10.4236/ojpchem.2019.92004

- [8] Захарян Е. М., Петрухина Н. Н., Максимов А. Л. Направления вторичной переработки поливинилхлорида (обзор). Часть 1 // ЖПХ. 2020. Т. 93. № 9. С. 1219–1263. https://doi.org/10.31857/S0044461820090017
 [Zakharyan E. M., Petrukhina N. N., Maksimov A. L. Pathways of chemical recycling of polyvinyl chloride. Part 1// Russ. J. Appl. Chem. 2020. V. 93. N 9. P. 1271–1313.
- https://doi.org/10.1134/S1070427220090013].
 [9] Захарян Е. М., Петрухина Н. Н., Джабаров Э. Г., Максимов А. Л. Направления вторичной переработки поливинилхлорида (обзор). Часть 2 // ЖПХ. 2020. Т. 93. № 10. С. 1370–1417.
 https://doi.org/10.31857/S0044461820100011
 [Zakharyan E. M., Petrukhina N. N., Dzhabarov E. G., Maksimov A. L. Pathways of chemical recycling of polyvinyl chloride. Part 2 // Russ. J. Appl. Chem. 2020. V. 93. N 10. P. 1445–1490.
 https://doi.org/10.1134/S1070427220100018].
- [10] Захарян Е. М., Максимов А. Л. Пиролиз шин. Особенности процесса и состав продуктов реакции (обзор) // ЖПХ. 2021. Т. 94. № 10. С. 1226–1264 [Zakharyan E. M., Maksimov A. L. Tire pyrolysis. Process features and composition of reaction products // Russ. J. Appl. Chem. 2021. V. 94. N 10. P. 1351– 1388. https://doi.org/10.1134/S1070427221100013].
- [11] Zia Kh. M., Bhatti H. Bh., Bhatti I. A. Methods for polyurethane and polyurethane composites, recycling and recovery: A review // React. Funct. Polym. 2007. V. 67. N 8. P. 675–692.

https://doi.org/10.1016/j.reactfunctpolym.2007.05.004

- [12] Ignatyev I. A., Thielemans D. W., Beke B. V. Recycling of polymers: A review // ChemSusChem. 2014. V. 7. P. 1579–1593. https://doi.org/10.1002/cssc.201300898
- [13] Joma G., Goblet P., Coquelet Ch., Morlot V. Kinetic modeling of polyurethane pyrolysis using nonisothermal thermogravimetric analysis // Thermochim. Acta. 2015. V. 612. P. 10–18. https://doi.org/10.1016/j.tca.2015.05.009
- [14] Saunders J. H., Backus J. K. Thermal degradation and flammability of urethane polymers // Rubber Chem. Technol. 1966. V. 39. N 2. P. 461–480. https://doi.org/10.5254/1.3544856
- [15] Zhang Y., Xia Zh., Huang H., Chen H. A degradation study of waterborne polyurethane based on TDI // Polym. Test. 2009. V. 28. N 3. P. 264–269. https://doi.org/10.1016/j.polymertesting.2008.12.011
- [16] Zhang Y., Xia Zh., Huang H., Chen H. Thermal degradation of polyurethane based on IPDI // J. Anal. Appl. Pyrol. 2009. V. 84. N 1. P. 89–94. https://doi.org/10.1016/j.jaap.2008.11.008
- [17] Ketata N., Sanglar C., Waton H., Alamercery S., Delolme F., Raffin G., Grenier-Loustalot M. F. Thermal degradation of polyurethane bicomponent systems in controlled atmospheres // Polym. Polym. Comp. 2005. V. 13. N 1. P. 1–26. https://doi.org/10.1177/006730110501200101

https://doi.org/10.1177/096739110501300101

- [18] Sui H., Ju X., Liu X., Cheng K., Luo Y., Zhong F. Primary thermal degradation effects on the polyurethane film // Polym. Degrad. Stab. 2014. V. 101. P. 109–113. https://doi.org/10.1016/j. polymdegradstab.2013.11.021
- [19] Allan D., Daly J., Liggat J. J. Thermal volatilisation analysis of TDI-based flexible polyurethane foam // Polym. Degrad. Stab. 2013.
 V. 98. N 2. P. 535–541. https://doi.org/10.1016/j. polymdegradstab.2012.12.002
- [20] Czech Z., Pelech R. Thermal decomposition of polyurethane pressure-sensitive adhesives dispersions // Progr. Org. Coat. 2010. V. 67. N 1. P. 72–75. https://doi.org/10.1016/j.porgcoat.2009.09.019
- [21] *Rigo J.-M., Riveros-Ravelo O., Dieu H.* Degradative transition of pyrolysis to combustion of a polyurethane at the analytical level // J. Anal. Appl. Pyrol. 1985. V. 8. P. 123–134. https://doi.org/10.1016/0165-2370(85)80020-6

 [22] Ohtani H., Kimura T., Okamoto K., Tsuge Sh., Nagataki Y., Miyata K. Characterization of polyurethanes by high-resolution pyrolysis-capillary gas chromatography // J. Anal. Appl. Pyrol. 1987. V. 12. N 2. P. 115–133.

https://doi.org/10.1016/0165-2370(87)85061-1
[23] *Marshall G. L.* Pyrolysis-mass spectrometry of polymers—II. Polyurethanes // Eur. Polym. J. 1983. V. 19. N 5. P. 439–444.

https://doi.org/10.1016/0014-3057(83)90120-9

[24] Esperanza M. M., García A. N., Font R., Conesa J. A. Pyrolysis of varnish wastes based on a polyurethane // J. Anal. Appl. Pyrol. 1999. V. 52. N 2. P. 151–166.

https://doi.org/10.1016/S0165-2370(99)00048-0

[25] La Nasa J., Biale G., Ferriani B., Colombini M. P., Modugno F. A pyrolysis approach for characterizing and assessing degradation of polyurethane foam in cultural heritage objects // J. Anal. Appl. Pyrol. 2018. V. 134. P. 562–572.

https://doi.org/10.1016/j.jaap.2018.08.004

- [26] Lattuati-Derieux A., Thao-Heu S., Lavédrine B. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry // J. Chromatogr. A. 2011. V. 1218. N 28. P. 4498–4508. https://doi.org/10.1016/j.chroma.2011.05.013
- [27] Allan D., Daly J. H., Liggat J. J. Thermal volatilisation analysis of a TDI-based flexible polyurethane foam containing ammonium polyphosphate // Polym. Degrad. Stab. 2014. V. 102. P. 170–179. https://doi. org/10.1016/j.polymdegradstab.2014.01.016
- [28] Pau D. S. W., Fleischmann C. M., Delichatsios M. A. Thermal decomposition of flexible polyurethane foams in air // Fire Saf. J. 2020. V. 111. ID 102925. https://doi.org/10.1016/j.firesaf.2019.102925

- [29] Garrido M. A., Font R. Pyrolysis and combustion study of flexible polyurethane foam // J. Anal. Appl. Pyrol. 2015. V. 113. P. 202–215. https://doi.org/10.1016/j.jaap.2014.12.017
- [30] Garrido M. A., Font R., Conesa J. A. Pollutant emissions during the pyrolysis and combustion of flexible polyurethane foam // Waste Manage. 2016.
 V. 52. P. 138–146. https://doi.org/10.1016/j.wasman.2016.04.007
- [31] Yao Z., Yu S., Su W., Wu D., Liu J., Wu W., Tang J. Probing the combustion and pyrolysis behaviors of polyurethane foam from waste refrigerators // J. Therm. Anal. Calorim. 2020. V. 141. P. 1137–1148. https://doi.org/10.1007/s10973-019-09086-8
- [32] Wang X., Jin Q., Zhang J., Li Y., Li Sh., Mikulčić H., Vujanović M., Tan H., Duić N. Soot formation during polyurethane (PU) plastic pyrolysis: The effects of temperature and volatile residence time // Energy Conv. Manage. 2018. V. 164. P. 353–362. https://doi.org/10.1016/j.enconman.2018.02.082
- [33] Xu D., Yu K., Qian K. Thermal degradation study of rigid polyurethane foams containing tris(1-chloro-2propyl)phosphate and modified aramid fiber // Polym. Test. 2018. V. 67. P. 159–168. https://doi.org/10.1016/j.polymertesting.2018.01.034

https://doi.org/10.1016/j.polymentesting.2018.01.034

[34] Jiang L., Zhang D., Li M., He J.-J., Gao Z.-H., Zhou Y., Sun J.-H. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS // Fuel. 2018. V. 222. P. 11–20.

https://doi.org/10.1016/j.fuel.2018.02.143

[35] Tang X., Chen Z., Liu J., Chen Z., Xie W., Evrendilek F., Buyukada M. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires // J. Hazard. Mater. 2021. V. 402. ID 123516.

https://doi.org/10.1016/j.jhazmat.2020.123516

- [36] Gaboriaud F., Vantelon J. P. Mechanism of thermal degradation of polyurethane based on MDI and propoxylated trimethylol propane // J. Polym. Sci. Part A. 1982. V. 20. N 8. P. 2063–2071. https://doi.org/10.1002/pol.1982.170200809
- [37] Jiao L., Xiao H., Wang Q., Sun J. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS // Polym. Degrad. Stab. 2013. V. 98. N 12. P. 2687–2696. https:// doi.org/10.1016/j.polymdegradstab.2013.09.032
- [38] Grittner N., Kaminsky W., Obst G. Fluid bed pyrolysis of anhydride-hardened epoxy resins and polyetherpolyurethane by the Hamburg process // J. Anal. Appl. Pyrol. 1993. V. 25. P. 293–299. https://doi.org/10.1016/0165-2370(93)80048-5
- [39] Herrera M., Matuschek G., Kettrup A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI // J. Anal. Appl. Pyrol. 2002. V. 78. N 2. P. 323–331. https://doi.org/10.1016/S0141-3910(02)00181-7

[40] Nishiyama Y., Kumagai Sh., Motokucho S., Kameda T., Saito Y., Watanabe A., Nakatani H., Yoshioka T. Temperature-dependent pyrolysis behavior of polyurethane elastomers with different hard- and softsegment compositions // J. Anal. Appl. Pyrol. 2020. V. 145. ID 104754.

https://doi.org/10.1016/j.jaap.2019.104754

[41] Kumagai Sh., Motokucho S., Yabuki R., Anzai A., Kameda T., Watanabe A., Nakatani H., Yoshioka T. Effects of hard- and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMGbased polyurethane elastomers // J. Anal. Appl. Pyrol. 2017. V. 126. P. 337–345.

https://doi.org/10.1016/j.jaap.2017.05.012

- [42] *Lattimer R. P., Williams R. C.* Low-temperature pyrolysis products from a polyether-based urethane // J. Anal. Appl. Pyrol. 2002. V. 63. N 1. P. 85–104. https://doi.org/10.1016/S0165-2370(01)00143-7
- [43] Wang H., Wang Q., He J., Mao Zh., Sun J. Study on the pyrolytic behaviors and kinetics of rigid polyurethane foams // Proced. Eng. 2013. V. 52. P. 377–385. https://doi.org/10.1016/j.proeng.2013.02.156
- [44] *He J.-J., Jiang L., Sun J.-H., Lo S.* Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres // J. Anal. Appl. Pyrol. 2016. V. 120. P. 269–283. https://doi.org/10.1016/j.jaap.2016.05.015
- [45] Lattimer R. P., Muenster H., Budzikiewicz H. Pyrolysis tandem mass spectrometry (Py-MS/MS) of a segmented polyurethane // J. Anal. Appl. Pyrol. 1990. V. 17. N 3. P. 237–249. https://doi.org/10.1016/0165-2370(90)85013-D
- [46] Lattimer R. P., Polce M. J., Wesdemiotis C. MALDI-MS analysis of pyrolysis products from a segmented polyurethane // J. Anal. Appl. Pyrol. 1998. V. 48. N 1. P. 1–15. https://doi.org/10.1016/S0165-2370(98)00092-8
- [47] Yang R., Wang B., Li M., Zhang X., Li J. Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols // Ind. Crops Prod. 2019. V. 136. P. 121–128. https://doi.org/10.1016/j.indcrop.2019.04.073
- [48] Sun L., Li K., Xue W., Zeng Z. Thermal degradation of reactive polyurethane hot melt adhesive based on MDI // J. Adhes. Sci. Technol. 2017. V. 32. N 6. P. 1–11.

https://doi.org/10.1080/01694243.2017.1408184

- [49] Font R., Fullana A., Caballero J.A., Candela J., García A. Pyrolysis study of polyurethane // J. Anal. Appl. Pyrol. 2001. V. 58–59. P. 63–77. https://doi.org/10.1016/S0165-2370(00)00138-8
- [50] Pagacz J., Hebda E., Michałowski S., Ozimek J., Sternik D., Pielichowski K. Polyurethane foams chemically reinforced with POSS—Thermal degradation studies // J. Anal. Appl. Pyrol. 2015. V. 113. P. 202–215. https://doi.org/10.1016/j.tca.2016.09.006

- [51] Eschenbacher A., Varghese R. J., Weng J., Van Geem K. M. Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling // J. Anal. Appl. Pyrol. 2021. V. 160. ID 105374. https:// doi.org/10.1016/j.jaap.2021.105374
- [52] Garrido M. A., Gerecke A. C., Heeb N., Font R., Conesa J. A. Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam // Chemosphere. 2017. V. 168. P. 667–675. https://doi.org/10.1016/j.chemosphere.2016.11.009
- [53] Bozi J., Blazsó M. Catalytic thermal decomposition of polyamides and polyurethanes mixed with acidic zeolites // J. Anal. Appl. Pyrol. 2012. V. 97. P. 189– 197. https://doi.org/10.1016/j.jaap.2012.06.002
- [54] Bozi J., Mihályi M.R., Blazsó M. Study on temperature dependence of catalytic thermal decomposition of polyamides and polyurethanes mixed with acidic zeolites // J. Anal. Appl. Pyrol. 2013. V. 101. P. 103– 110. https://doi.org/10.1016/j.jaap.2013.02.005
- [55] Guo X., Zhang W., Wang L., Hao J. Comparative study of nitrogen migration among the products from catalytic pyrolysis and gasification of waste rigid polyurethane foam // J. Anal. Appl. Pyrol. 2016. V. 120. P. 144–153. https://doi.org/10.1016/j.jaap.2016.04.018
- [56] Guo X., Wang L., Zhang L., Li Sh., Hao J. Nitrogenous emissions from the catalytic pyrolysis of waste rigid polyurethane foam // J. Anal. Appl. Pyrol. 2014. V. 108. P. 143–150. https://doi.org/10.1016/j.jaap.2014.05.006
- [57] Kumagai Sh., Yabuki R., Kameda T., Saito Y., Yoshioka T. Simultaneous recovery of H₂-rich syngas and removal of HCN during pyrolytic recycling of polyurethane by Ni/Mg/Al catalysts // Chem. Eng. J. 2019. V. 361. P. 408–415. https://doi.org/10.1016/j.cej.2018.12.099
- [58] Terakado O., Yanase H., Hirasawa M. Pyrolysis treatment of waste polyurethane foam in the presence of metallic compounds // J. Anal. Appl. Pyrol. 2014. V. 108. P. 130–135. https://doi.org/10.1016/j.jaap.2014.05.008
- [59] Yuan Y., Yu B., Shi Y., Ma Ch., Song L., Hu W., Hu Y. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid

polyurethane foam nanocomposites: A comparative investigation // Comp. Part A: Appl. Sci. Manufact. 2018. V. 112. P. 142–154.

https://doi.org/10.1016/j.compositesa.2018.05.028

- [60] Cruz M. I. S. D., Thongsa N., de Luna M. D. G., In I., Paoprasert P. Preparation of highly photoluminescent carbon dots from polyurethane: Optimization using response surface methodology and selective detection of silver (I) ion // Coll. Surf. A: Physicochem. Eng. Aspects. 2019. V. 568. P. 184–194. https://doi.org/10.1016/j.colsurfa.2019.02.022
- [61] Datta J., Wloch M. Polyurethane polymers blends and interpenetrating polymer networks. Chapter 14: Recycling of Polyurethanes. 2017. P. 323–358. https://doi.org/10.1016/B978-0-12-804039-3.00014-2
- [62] Williamson J. E., Cocksedge M. J., Evans N. Analysis of polyurethane and epoxy based materials by pyrolysis—mass spectrometry // J. Anal. Appl. Pyrol. 1980. V. 2. N 3. P. 195–205. https://doi.org/10.1016/0165-2370(80)80031-3
- [63] Scholz Ph., Wachtendorf V., Panne U., Weidner S. M. Degradation of MDI-based polyether and polyesterpolyurethanes in various environments — Effects on molecular mass and crosslinking // Polym. Test. 2019. V. 77. ID 105881. https://doi.org/10.1016/j. polymertesting.2019.04.028
- [64] Wu G., Li J., Luo Y. Flame retardancy and thermal degradation mechanism of a novel post-chain extension flame retardant waterborne polyurethane // Polym. Degrad. Stab. 2016. V. 123. P. 36–46. https:// doi.org/10.1016/j.polymdegradstab.2015.11.004
- [65] Deng Y., Dewil R., Appels L., Ansart R., Baeyens J., Kang Q. Reviewing the thermo-chemical recycling of waste polyurethane foam // J. Environ. Manage. 2021. V. 278. Part 1. ID 111527. https://doi.org/10.1016/j.jenvman.2020.111527

[66] Daniel G., Kosmala T., Dalconi M.Ch., Nodari L., Badocco D., Pastore P., Lorenzetti A., Granozzi G., Durante Ch. Upcycling of polyurethane into ironnitrogen-carbon electrocatalysts active for oxygen reduction reaction // Electrochim. Acta. 2020. V. 362. ID 137200.

https://doi.org/10.1016/j.electacta.2020.137200