= НЕОРГАНИЧЕСКИЙ СИНТЕЗ И ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ ПРОИЗВОДСТВ =

УДК 536.46:54.057:661.847.22

ВЛИЯНИЕ ПРИРОДЫ И КОНЦЕНТРАЦИИ ГОРЮЧЕГО АГЕНТА НА СТРУКТУРУ И МОРФОЛОГИЮ МИКРОСФЕР ZnO, ПОЛУЧЕННЫХ МЕТОДОМ ГОРЕНИЯ РЕАКЦИОННЫХ АЭРОЗОЛЕЙ

© Ж. С. Ермекова¹, С. И. Росляков¹, С. С. Юрлов¹, Д. В. Биндюг¹, Е. В. Чернышова¹, С.В. Савилов^{2,3}

 ¹ Национальный исследовательский технологический университет МИСИС, 119049, г. Москва, Ленинский пр., д. 4, стр. 1
² Московский государственный университет им. М. В. Ломоносова, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1
³ Институт нефтехимического синтеза им. А. В. Топчиева РАН (ИНХС РАН), 119991, ГСП-1, г. Москва, Ленинский пр., д. 29 E-mail: yermek@misis.ru

> Поступила в Редакцию 15 мая 2023 г. После доработки 3 ноября 2023 г. Принята к публикации 3 ноября 2023 г.

Ультрадисперсные сферические порошки ZnO с термоэлектрическими свойствами получены методом горения реакционных аэрозолей с добавлением 4 видов топлив: уротропина, глицина, мочевины, лимонной кислоты. С применением рентгенофазового анализа, сканирующей электронной микроскопии и низкотемпературной адсорбции азота продемонстрировано влияние основных параметров процесса (состав и концентрация топлива, температура и скорость несущего газа) на структуру и морфологию частиц ZnO. Установлено, что температуры синтеза 700°С достаточно для получения кристаллического ZnO с гомогенным фазовым составом независимо от вида и количества топлива. Показано, что исходный pH раствора прекурсора не влияет на образование фазы ZnO. При скорости потока газа-носителя выше 4 л^{-м}ин⁻¹ детектируются побочные продукты. Определено, что избыток и вид топлива существенно влияет на морфологию синтезированных микросфер ZnO, что может быть использовано для регулирования технологических характеристик порошка и кинетики его спекания.

Ключевые слова: *синтез горением реакционных аэрозолей; полые сферы; ZnO; морфология* DOI: 10.31857/S0044461823040011; EDN: OEVYWW

ZnO — нетоксичный и недорогой полупроводник n-типа с шириной запрещенной зоны 3.37 эВ при 25°C [1]. Совокупность физико-химических свойств ZnO делает его привлекательным для использования в термоэлектрических преобразователях, особенно в качестве высокотемпературного материала, предполагаемого к использованию в кислородной среде при температурах выше 700°C [2]. Однако для широкого применения термоэлектрических материалов на основе ZnO необходимо значительно повысить значения их термоэлектродвижущей силы, электропроводности, а также уменьшить теплопроводность. Повышение термоэлектродвижущей силы и электропроводности ZnO обычно достигают введением легирующих добавок, способствующих увеличению концентрации носителей заряда [3]. Теплопроводность ZnO понижают за счет наноструктурирования и создания дефектов [4]. В обоих случаях особое внимание уделяется гомогенному распределению добавок и дефектов в объеме термоэлектрика, а также достижению максимальной однородности зеренной структуры.

Большинство методов синтеза ZnO основаны на смешении различных прекурсоров в жидкой фазе, сушке полученного продукта и его термической обработке [5]. Для получения кристаллического и однородного ZnO часто требуется многочасовая высокотемпературная обработка [6–8]. В результате усложняется технологический процесс, повышается его энергозатратность, увеличивается размер зерна и происходит нежелательная сегрегация легирующих элементов. Стадия термообработки может быть исключена при синтезе ZnO горением реакционных аэрозолей [9]. К преимуществам упомянутого метода также относятся высокие скорости синтеза, получение кристаллического продукта в одну стадию, возможность организации непрерывного процесса синтеза.

Частицы порошкообразных продуктов, полученные в процессе синтеза горением реакционных аэрозолей, обычно имеют форму объемных или полых сфер с толщиной стенок от десятков до сотен нанометров [10-12]. Параметры синтеза горением аэрозолей оказывают многофакторное влияние на фазообразование и морфологию порошка. Температура проведения процесса определяет как время инициации экзотермической реакции, так и возможность гомогенизации конечного продукта. Концентрация и природа (состав) органического компонента (топлива) влияет на экзотермичность горения смеси, объем генерируемых газов, которые задают конечную морфологию частиц порошков (пористость, целостность сфер и толщину стенок полых частиц) и фазовый состав конечного продукта [13].

Все перечисленные параметры синтеза являются созависимыми, и прогнозирование любых свойств получаемого материала затруднено, что в свою очередь приводит к необходимости экспериментальных исследований в области получения материалов методом горения реакционных аэрозолей.

Цель работы — исследование влияния условий синтеза на структуру и морфологию ZnO, полученного горением аэрозолей.

Экспериментальная часть

Для синтеза ZnO в работе использовали Zn(NO₃)₂·6H₂O и глицин, уротропин, лимонную кислоту, мочевину в качестве топлива (все — х.ч., ООО

ТД «ХИММЕД»). Количество введенных в реакцию соединений рассчитывали на основании молярных соотношений исходных реагентов по уравнениям (I)-(IV). Рабочие растворы были получены путем растворения Zn(NO₃)₂·6H₂O и соответствующего топлива в дистиллированной воде (дистиллятор Liston A А1110). Полученные растворы смешали при помощи магнитной мешалки. Полученную смесь поместили в распылительную камеру ультразвукового небулайзера. При частоте ультразвука 2.64 МГц и его интенсивности 4 Вт·м⁻² раствор был переведен в аэрозоль, который потоком воздуха далее был перемещен в трубчатую печь. Синтез проводили при фиксированной температуре, повышая ее значение от 600 до 900°С с шагом 100°С. Скорость потока газа-носителя (воздух) изменяли в интервале 2-8 л мин⁻¹ с шагом 2 л·мин^{−1}. Коэффициент избытка топлива (φ) принимали равным 1 (стехиометрическое количество) и 3. Продукты синтеза были собраны на фильтре Шотта, соединенном с вакуумным насосом и расположенном на выходе из трубчатой печи. Длина трубчатой печи составляла 0.5 м. Более подробная информация по устройству рабочей установки приведена в работе [14].

$$Zn(NO_3)_2 \cdot 6H_2O + 1.11\varphi C_2H_5NO_2 + 2.5(\varphi - 1)O_2 =$$

= ZnO + (0.55\varphi + 1)N_2 + 2.22\varphi CO_2 + (I)
+ (2.78\varphi + 6)H_2O,

$$Zn(NO_3)_2 \cdot 6H_2O + 0.28\varphi C_6H_{12}N_4 + 2.5(\varphi - 1)O_2 =$$

= ZnO + (0.55\varphi + 1)N_2 + 1.67\varphi CO_2 + (II)
+ (1.68\varphi + 6)H_2O,

$$Zn(NO_3)_2 \cdot 6H_2O + 0.56\varphi C_6H_8O_7 + 2.5(\varphi - 1)O_2 =$$

= ZnO + N₂ + 3.33\varphi CO₂ + (2.22\varphi + 6)H₂O₅ (III)

$$Zn(NO_3)_2 \cdot 6H_2O + 1.67\varphi CO(NH_2)_2 + 2.5(\varphi - 1)O_2 =$$

= ZnO + (1.67\varphi + 1)N_2 + 1.67\varphi CO_2 + (IV)
+ (3.33\varphi + 6)H_2O.

Рентгенофазовый анализ полученных порошков проведен при стандартных условиях на дифрактометре Дифрей-401 (АО «Инновационный Центр «Буревестник») с использованием монохроматического Cu_{K_a} ($\lambda = 1.5405$ Å) излучения с фокусировкой по Брэггу–Брентано. Параметры решеток были рассчитаны методом Ритвельда с помощью программного обеспечения Match! и Fullprof. Исследование морфологии синтезированных продуктов проводили на сканирующем электронном микроскопе JSM 7600F (JEOL) с пространственным разрешением ~1 нм. Значения удельной поверхности продуктов измеряли методом Брунауэра–Эммета–Теллера на установке NOVA 1200 (Quantachrome Instruments). Перед проведением измерений образцы дегазировали 15 ч в токе азота (1 сорт, ООО « Новые Технологии») при 200°С.

Обсуждение результатов

При всех температурах синтеза (600, 700, 800 и 900°С) образуется соединение ZnO (PDF # 36-1451), рефлексов от примесных фаз обнаружено не было (рис. 1, *a*). Полученный при 600°С ZnO находится в двух фазовых состояниях (аморфном и кристаллическом), что идентифицируется наличием гало. На рентгенограммах образцов, полученных при температуре более 700°С, гало отсутствует. Можно заключить, что температуры процесса 700°С достаточно для формирования кристаллического и однородного ZnO.

Другим существенным фактором, влияющим на фазовый состав порошка ZnO, является скорость газа-носителя (воздух). Экспериментальным путем определено (рис. 1, δ), что при температуре 700°С и скорости газа выше 6 л.мин-1 формируется неоднородный ZnO, содержащий большое количество промежуточной фазы Zn₅(OH)₈(NO₃)₂·H₂O (PDF # 24-1460). Вероятно, наличие такой примесной фазы является следствием неполного разложения Zn(NO₃)₂ 6H₂O. Уменьшение скорости несущего газа до 4 л мин⁻¹ способствует формированию гомогенного продукта (рис. 1, б). Таким образом, все последующие эксперименты были выполнены при скорости газа-носителя 4 л·мин⁻¹. Эксперименты, проведенные с добавлением топлива, показали, что независимо от введенного в реакционную смесь топлива профили дифрактограмм полностью отвечают соединению ZnO, примесных и аморфных фаз не обнаружено (рис. 2).

Независимо от природы топлива синтезированные образцы ZnO характеризуются достаточно близкими значениями размера областей когерентного рассеяния (см. таблицу). Известно, что в классическом режиме синтеза горением растворов pH смеси прекурсоров является эффективным параметром управления структурой синтезированного ZnO [15], однако распыление реакционного раствора, а именно синтез в режиме горения реакционных аэрозолей, нивелирует влияние pH на фазовый состав и кристаллографические характеристики ZnO (см. таблицу).

Синтез при 700°С в отсутствие топлива [термическое разложение $Zn(NO_3)_2 \cdot 6H_2O$] приводит к образованию в основном сферических частиц, состоящих из мелких зерен ZnO (рис. 3, *a*). Добавление топлива в

Рис. 1. Дифрактограммы порошков ZnO, синтезированных пиролизом аэрозолей Zn(NO₃)₂·6H₂O при различных температурах печи и скорости потока газа-носителя (воздуха) 4 л·мин⁻¹ (*a*), при температуре печи 700°С и различных скоростях потока газа-носителя (воздуха) (*б*).

Рис. 2. Дифрактограммы порошков ZnO, синтезированных горением реакционных аэрозолей при температуре печи 700°С, скорости потока газа-носителя (воздуха) 4 л·мин⁻¹, в присутствии различных видов топлива (коэффициент избытка топлива φ = 1): уротропина (*a*), глицина (*б*), лимонной кислоты (*в*), мочевины (*г*).

Топливо	рН раствора	Параметры решетки,** Å		Объем решетки <i>V</i> Å3	Область когерентного	Удельная поверхность м ² ·г ⁻¹
		a	С	,,	paceexiiiix, iim	поверлиств, м т
Без топлива	6	3.2480	5.2073	47.57	18	4.68
Уротропин	6	3.2492	5.2106	47.63	11	12.39
Мочевина	6	3.2474	5.2044	47.52	28	9.64
Глицин	4	3.2502	5.2122	47.68	12	16.46
Лимонная кислота	1	3.2483	5.2115	47.62	15	17.55

Характеристики ZnO, синтезированного методом горения реакционных аэрозолей*

* Условия получения порошков ZnO в присутствии различных видов топлива: температура печи 700°C, скорость потока газа-носителя 4 л·мин⁻¹, коэффициент избытка топлива $\varphi = 1$.

** Параметры решетки ZnO (PDF # 36-1451): *a* = 3.24982 Å, *c* = 5.20661 Å, *V* = 47.61 Å³.

Рис. 3. Морфология частиц ZnO, синтезированного горением реакционных аэрозолей при температуре печи 700°С и скорости потока газа-носителя (воздуха) 4 л·мин⁻¹ с различным видом топлива (коэффициент избытка топлива φ = 1): без топлива (*a*), с уротропином (*б*), мочевиной (*в*), лимонной кислотой (*г*), глицином (*д*).

Рис. 4. Морфология частиц ZnO, синтезированного горением реакционных аэрозолей при температуре печи 700°C и скорости потока газа-носителя (воздуха) 4 л·мин⁻¹ с различным видом топлива (коэффициент избытка топлива φ = 3): с мочевиной (*a*, *б*), лимонной кислотой (*b*, *c*), глицином (*d*, *e*).

количестве $\varphi = 1$ значимо морфологию частиц ZnO не изменяет. Независимо от вида топлива формируются сферические частицы (рис. 3, $\delta - \partial$), с той лишь разницей, что при использовании уротропина (рис. 3, δ) и мочевины (рис. 3, ϵ) поверхность образующихся сфер более шероховатая, чем при использовании лимонной кислоты (рис. 3, ϵ) или глицина (рис. 3, ∂).

При использовании мочевины в количестве $\phi = 3$ целостность сфер не нарушается (рис. 4, *a*) и наблюдается уплотнение частиц ZnO (рис. 4, *б*). Обратный эффект проиходит при применении лимонной кислоты, так как с увеличением количества топлива до $\varphi = 3$ некоторая доля частиц разрушается (рис. 4, *e*), но частицы, оставшиеся целыми (рис. 4, *e*), ничем не отличаются от таковых, полученных при $\varphi = 1$ (рис. 3, *e*). Для глицина в качестве топлива картина немного иная. С ростом φ до 3 плотные и гладкие сферические частицы ZnO (рис. 3, *e*) становятся рыхлыми и пористыми (рис. 4, *e*), при этом целостность сфер сохраняется (рис. 4, *d*). Наиболее вероятно, что такие изменения в морфологии частиц (их разрушение, формирование пористости) обусловлены активным образованием больших объемов газов (N₂, CO₂ и паров H₂O).

Выводы

Метод синтеза горением реакционных аэрозолей является перспективным для синтеза однородного ZnO с различной морфологией поверхности. Независимо от использованного топлива (уротропин, глицин, мочевина, лимонная кислота) в результате синтеза формируется ZnO с однородным фазовым составом, при этом температуры 700°С и скорости несущего газа 4 л·мин⁻¹ достаточно, чтобы оксид был полностью в кристаллическом состоянии.

Установлено, что только большой избыток ($\phi = 3$) топлива оказывает значимое влияние на морфологию синтезированного ZnO. При использовании глицина увеличивается пористость частиц, при использовании лимонной кислоты происходит нарушение целостности сфер, а при применении мочевины наблюдается уплотнение частиц.

Благодарности

Коллектив авторов выражает особую благодарность руководителю проекта С. Н. Юдину за информативное обсуждение результатов работы и полезные замечания. Также коллектив благодарит научного редактора журнала М. Л. Хрущеву за проделанную кропотливую работу, которая помогла значительно улучшить качество статьи.

Финансирование

Данная работа выполнена при поддержке Российского научного фонда на основе гранта № 22-79-10278.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация о вкладе авторов

Ж. С. Ермекова, С. И. Росляков и С. В. Савилов разработали методику эксперимента и концепцию статьи; Ж. С. Ермекова, Е. В. Чернышова провели сбор данных литературы для обоснования актуальности исследования; Ж. С. Ермекова, С. С. Юрлов синтезировали образцы; Д. В. Биндюг, Е. В. Чернышова, С. И. Росляков провели исследования методом рентгеноструктурного анализа с описанием и анализом полученных результатов; Е. В. Чернышова, С. С. Юрлов провели исследования методом сканирующей электронной микроскопии.

Информация об авторах

Ермекова Жанна Сериковна, PhD

- ORCID: https://orcid.org/0000-0001-5231-9556 Росляков Сергей Игоревич, к.т.н.
- ORCID: https://orcid.org/0000-0002-2898-1117 Юрлов Станислав Сергеевич
- ORCID: https://orcid.org/0009-0007-5155-079X Биндюг Денис Витальевич
- ORCID: https://orcid.org/0000-0002-7101-2936 Чернышова Евгения Валерьевна
- ORCID: https://orcid.org/0009-0000-6584-1001 Савилов Сергей Вячеславович, к.х.н.
- ORCID: https://orcid.org/0000-0002-5827-3912

Список литературы

- Klingshirn C. ZnO: Material, physics and applications // ChemPhysChem. 2007. V. 8. N 6. P. 782–803. https://doi.org/10.1002/cphc.200700002
- [2] Ren G., Lan J., Zeng C., Liu Y., Zha B., Butt S., Nan C. W. High performance oxides-based thermoelectric materials // JOM. 2015. V. 67. P. 211– 221. https://doi.org/10.1007/s11837-014-1218-2
- [3] Bugalia A., Gupta V., Thakur N. Strategies to enhance the performance of thermoelectric materials: A review // J. Renew. Sustain. Energy. 2023. V. 15. ID 032704. https://doi.org/10.1063/5.0147000
- [4] Prasad R., Bhame S. D. Review on texturization effects in thermoelectric oxides // Mater. Renew. Sustain. Energy. 2020. V. 9. P. 1–22. https://doi.org/10.1007/s40243-019-0163-y
- [5] Kolodziejczak-Radzimska A., Jesionowski T. Zinc oxidefrom synthesis to application: A review // Materials. 2014. V. 7. P. 2833–2881. https://doi.org/10.3390/ma7042833
- [6] Prabhuraj T., Prabhu S., Dhandapani E., Duraisamy N., Ramesh R., Kumar K. R., Maadeswaran P. Bifunctional ZnO sphere/r-GO composites for supercapacitor and photocatalytic activity of organic dye degradation // Diamond Relat. Mater. 2021. V. 120. ID 108592. https://doi.org/10.1016/j.diamond.2021.108592
- [7] Xing Y., Zhang L. X., Chong M. X., Yin Y. Y., Li C. T., Bie L. J. In-situ construction of carbon-doped ZnO hollow spheres for highly efficient dimethylamine detection // Sens. Actuators. B. 2022. V. 369. ID 132356. https://doi.org/10.2139/ssrn.4009448
- [8] Lee Y., Fujimoto T., Yamanaka S. Characterization of submicro-sized Ag/ZnO particles generated using the spray pyrolysis method // Adv. Powder Technol. 2022.
 V. 33. ID 103525.

https://doi.org/10.1016/j.apt.2022.103525.

[9] Trusov G. V., Tarasov A. B., Goodilin E. A., Rogachev A. S., Roslyakov S. I., Rouvimov S., Mukasyan A. S. Spray solution combustion synthesis of metallic hollow microspheres // J. Phys. Chem. C. 2016. V. 120. N 13. P. 7165–7171.

https://doi.org/10.1021/acs.jpcc.6b00788

- [10] Yermekova Z., Trusov G., Roslyakov S. I. Spray solution combustion synthesis of NiCu hollow spheres // Int. Conf. on Mechanical, System and Control Engineer. Singapore: Springer Singapore, 2021. P. 11– 17. https://doi.org/10.1007/978-981-16-9632-9_2
- [11] Konstantinova E. A., Minnekhanov A. A., Trusov G. V., Kytin V. G. Titania-based nanoheterostructured microspheres for prolonged visible-light-driven photocatalysis // Nanotech. 2020. V. 31. ID 32392554. https://doi.org/10.1088/1361-6528/ab91f1
- [12] Varma A., Mukasyan A. S., Rogachev A. S., Manukyan K. V. Solution combustion synthesis of nanoscale materials // Chem. Rev. 2016. V. 116. N 23. P. 14493–14586.

https://doi.org/10.1021/acs.chemrev.6b00279

- [13] Roslyakov S., Yermekova Z., Trusov G., Khort A., Evdokimenko N., Bindiug D., Mukasyan A. One-step solution combustion synthesis of nanostructured transition metal antiperovskite nitride and alloy // Nano-Struct. Nano-Objects. 2021. V. 28. ID 100796. https://doi.org/10.1016/j.nanoso.2021.10079
- [14] Trusov G. V., Tarasov A. B., Moskovskikh D. O., Rogachev A. S., Mukasyan A. S. High porous cellular materials by spray solution combustion synthesis and spark plasma sintering // J. Alloys Compd. 2019. V. 779. P. 557–565.

https://doi.org/10.1016/j.jallcom.2018.11.250

[15] Nesakumar N., Rayappan J. B. B., Jeyaprakas B. G., Krishnan U. M. Influence of pH on structural morphology of ZnO nanoparticle // Asian J. Appl. Sci. 2012. V. 12. N 16. P. 1758–1761. https://doi.org/10.3923/jas.2012.1758.1761