= КАТАЛИЗ =

УДК 544.472.3:546-328:546.262.3-31

НИЗКОТЕМПЕРАТУРНЫЙ ПРОЦЕСС ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА КИСЛОРОДОМ В ПРИСУТСТВИИ ГЕТЕРОПОЛИКИСЛОТ

© Ю. А. Родикова, Е. Г. Жижина

Институт катализа им. Г. К. Борескова СО РАН, 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 5 E-mail: rodikova@catalysis.ru

> Поступила в Редакцию 20 августа 2023 г. После доработки 23 ноября 2023 г. Принята к публикации 6 декабря 2023 г.

Изучена кинетика низкотемпературного (10–50°С) окисления СО в присутствии гомогенной каталитической системы, состоящей из галоидных комплексов Pt и фосфорномолибденовой гетерополикислоты, допированной атомами ванадия(V). На примере раствора гетерополикислоты с низким содержанием каталитически активных атомов ванадия ($H_7PMo_8V_4O_{40}$) выявлены оптимальные условия процесса (концентрация CO, содержание Pt и галогенид-ионов, pH), получено кинетическое уравнение, предложен механизм. Показано, что введение каталитических количеств соли палладия позволяет устранить индукционный период реакции окисления CO, а также повысить стабильность каталитической системы. Продемонстрирована значительная активность и стабильность комбинированной системы Pt + Pd + $H_{10}P_3Mo_{18}V_7O_{84}$.

Ключевые слова: гомогенный металлокомплексный катализ; монооксид углерода; окисление; Pt-содержащие каталитические системы; гетерополикислоты DOI: 10.31857/S0044461823060087; EDN: SZHGOE

СО является отходящим газом с высокой цитотоксичностью [1], выбросы которого в атмосферу от стационарных источников тепла, а также предприятий по производству кокса, переработке нефти и обработке древесины значительны.* Поэтому очистка воздуха от примесей СО является актуальной экологической проблемой.

Для обезвреживания поступающих в окружающую среду загрязнений, выделяемых стационарными источниками, как правило, используется термическая очистка — прямое сжигание отходящего газа в печах или факельных горелках. Однако такой подход требует высоких расходов на топливо и предварительную осушку газа, что делает все более актуальным переход на каталитические методы очистки с использованием соединений, активных при низких (10–50°С) температурах в средах, характеризующихся высокой влажностью [2].

Среди соединений, активных в реакции окисления СО в CO₂ при низких температурах, выделяют несколько классов катализаторов и каталитических систем [3–5]: оксидные и оксидно-металлические катализаторы (Co₃O₄, Co₃O₄/ γ -Al₂O₃, CuMnO_x, Cu₂Ag₂O₃, CuO-ZnO/TiO₂, Pt/CeO₂, Pd/SnO₂, Pd/TiO₂, Au/ZnO), нанесенные металлические катализаторы [(Pt или Pd)/детонационные наноалмазы, Pd-Cu-Fe/гидроксиапатит], жидкофазные и нанесенные металлокомплексные катализаторы [соль Pd(II) + обратимо дей-

^{*} https://www.fedstat.ru/indicator/33600

ствующий окислитель, Pd-Cu-Cl_x/носитель]. Однако только ограниченное число разработанных систем стабильно функционирует при окислении газов с высокой влажностью, а также сохраняет эффективность при высоких концентрациях СО в присутствии сопутствующих газов. Кроме того, многие из предложенных соединений проявляют каталитическую активность при температурах 10–50°С, однако их максимальная активность достигается при температурах выше 80–100°С. Это приводит к необходимости их модифицирования, оставляя вопрос поиска активного низкотемпературного катализатора конверсии СО с высокими показателями влажности открытым.

Успешное применение растворов молибдованадофосфорных гетерополикислот [ГПК-x, x — число атомов ванадия(V)] в качестве обратимо действующих окислителей в каталитической системе комплекс Pd(II) + ГПК-x в процессах окисления низших олефинов C₂–C₄ в карбонильные соединения [6] стимулировало исследование возможности использования ГПК-x в каталитическом окислении СО в CO₂ при низких температурах.

Цель работы — изучение кинетики низкотемпературного окисления СО в СО₂ в присутствии гомогенной каталитической системы Pt + молибдованадофосфорная гетерополикислота.

Экспериментальная часть

Синтез водного раствора молибдованадофосфорной гетерополикислоты брутто-состава $H_{10}P_3Mo_{18}V_7O_{84}$ (ГПК-7) концентрацией 0.25 моль·л⁻¹ проводили из V_2O_5 (х.ч., ООО «АО РЕАХИМ»), H_3PO_4 (ос.ч., \geq 85%, АО «ВЕКТОН»), MoO₃ (х.ч., ООО «АО РЕАХИМ»), H_2O_2 (ос.ч., 8–4, ООО «СПЕКТР-ХИМ») и H_2O (аквадистиллятор ДЭ-4М, АО «ЛОиП») по методике [7]. Водный 0.20 моль·л⁻¹ раствор молибдованадофосфорной гетерополикислоты брутто-состава $H_7PMo_8V_4O_{40}$ (ГПК-4) получали по методике [8] из тех же реактивов. Растворы ГПК-4 других концентраций (0.02– 0.4 моль·л⁻¹) готовили разбавлением или упариванием 0.20 моль·л⁻¹ раствора.

Состав растворов контролировали методом ядерного магнитного резонанса на ядрах ³¹P и ⁵¹V на спектрометре AVANCE 400 (Bruker) при рабочих частотах 162.0 и 105.24 МГц с использованием 85% H_3PO_4 и VOCl₃ (99.995%, ABCR) в качестве внешних стандартов.

Гомогенный катализатор Pt + молибдованадофосфорная гетерополикислота объемом 20 мл (*V*_{кат}) с концентрацией Pt 0.5·10⁻³–7.5·10⁻³ моль·л⁻¹ готовили добавлением раствора H₂PtCl₆ (8 мас% в H₂O, кат. номер 262587, Sigma-Aldrich) к раствору гетерополикислоты заданного состава. Для стабилизации в систему дополнительно вводили ионы Cl- или Br- (X^{-}) в виде солей MeX (Me = Li, Na, K, $\frac{1}{2}$ Mg, $\frac{1}{2}$ Ca; все — х.ч., АО «ВЕКТОН»), после чего смесь упаривали до 20 мл, охлаждали до комнатной температуры и измеряли значения рН и окислительно-восстановительного потенциала Е [относительно нормального водородного электрода (НВЭ)]. Величины pH и E растворов катализаторов определяли при комнатной температуре на pH-метре InoLab pH 730 (WTW) с использованием электродов SenTix 41 (WTW) и SenTix ORP (WTW) соответственно. Для получения катализатора Pt + Pd + ГПК-*х* использовали PdCl₂ (\geq 99.9%, кат. номер 520659, Sigma-Aldrich).

Реакцию окисления СО (ч., массовая доля не менее 98.5%, ООО «ПТК «КРИОГЕН») исследовали волюмометрическим методом при атмосферном давлении и температурах (T) 10-50°C в термостатированном стеклянном реакторе объемом 150 мл с циркуляцией газовой фазы через 10%-ный раствор NaOH (ч.д.а., ООО «АО РЕАХИМ») для поглощения образующегося СО2. Вначале через емкость (каталитическую «утку») с 20 мл катализатора Pt + ГПК-х продували СО без барботажа, затем систему соединяли с бюреткой, заполненной СО. Эксперимент начинали встряхиванием реактора с частотой, при которой скорость реакции (W_{CO}) не зависела от интенсивности встряхиваний (800 мин⁻¹). W_{CO} (моль_{CO}·л⁻¹·мин⁻¹) определяли на стационарном участке кинетической кривой $V_{\rm CO} = f(t)$, где она была постоянной. Для определения зависимости W_{CO} от T при каждой температуре эксперимент проводили 3 раза, полученные данные усредняли. Для экспериментов с вариацией содержания СО готовили газовые смеси СО + N₂ (сорт первый, ООО «ПТК «КРИОГЕН») заданной концентрации. Во всех экспериментах полнота превращения СО в CO₂ составляла 100%.

Содержание ванадия(IV) в растворе катализатора находили методом окислительно-восстановительного титрования с использованием KMnO₄ (х.ч., OOO «PM Инжиниринг») в присутствии H₃PO₄ при комнатной температуре [9]. Степень восстановления катализатора (m) рассчитывали по формуле

$$m = [ванадий(IV)]/[ГПК-x].$$
 (1)

Регенерацию растворов катализаторов Pt + (Pd) + + молибдованадофосфорная гетерополикислота проводили по методике [10] в термостатированном автоклаве при температуре (*T*_{per}) 160 (для ГПК-7) и 140°С (для ГПК-4) и $P_{O_2} = 0.4$ МПа (кислород технический 1-й сорт, объемная доля не менее 99.7%, ООО «ПромГаз») в течение 20–30 мин (t_{per}).

Обсуждение результатов

Полный каталитический цикл двустадийного процесса окисления СО в СО₂ (I) (стадия 1 — целевая реакция, стадия 2 — регенерация катализатора) в присутствии гомогенной системы Pt + ГПК-х можно схематично представить уравнениями (II), (III):

$$\text{CO} + 1/2\text{O}_2 \xrightarrow{\text{Pt} + \Gamma\Pi\text{K-}x} \text{CO}_2,$$
 (I)

$$CO + \Gamma\Pi K - x + H_2O \xrightarrow{P_1} CO_2 + H_2\Gamma\Pi K - x,$$
 (II)

$$H_2\Gamma\Pi K - x + 1/2O_2 \rightarrow \Gamma\Pi K - x + H_2O.$$
(III)

Катализатор представляет собой многокомпонентный водный раствор, содержащий галоидный комплекс Pt(IV), ГПК-х заданного состава, а также хлорид или бромид металла (табл. 1). В ходе исследований с вариацией состава галогенида металла, выполненных в условиях $V_{\text{кат}} = 20$ мл, [ГПК-4] = 0.05 моль·л⁻¹, [H₂PtCl₆] = 2·10⁻³ моль·л⁻¹, [MeX]/[H₂PtCl₆] = 5, 25°С, рН 1.4, было найдено, что природа вводимого галогенида не влияет на активность и стабильность каталитической системы, что позволяет выбрать соль среди наиболее доступных.

Исследования с использованием системы состава Pt + $\Gamma\Pi$ K-4, выполненные в условиях $V_{\text{кат}} = 20$ мл, $[\Gamma\Pi K-4] = 0.05$ моль $\cdot \pi^{-1}$, $[H_2 PtCl_6] = 2 \cdot 10^{-3}$ моль $\cdot \pi^{-1}$, [NaCl]/[H₂PtCl₆] = 5, 25°С, pH 1.4, позволили установить, что глубокое восстановление контактного раствора СО при $T < 50^{\circ}$ С без доступа О₂ по уравнению (II) приводит к образованию стабильного в атмосфере СО и нерастворимого в воде полимерного соединения Pt(0) темно-вишневого цвета — дикарбонила Pt(0) состава $[Pt(CO)_2]_n$ (n > 5). Указанный комплекс ранее был получен и описан в работах [11, 12]. Последующее окисление раствора катализатора кислородом или воздухом по уравнению (III) (регенерация ГПК-х) обеспечивает восстановление окислительной способности гетерополианионов. При этом комплекс Pt(CO)2 превращается в водорастворимый монокарбонил $H_2Pt(CO)X_2$, и раствор снова становится гомогенным, восстанавливая свою активность. Инфракрасные спектры выделенного $H_2Pt(CO)X_2$ показали, что связь Pt—Н имеет гидридный характер, а само соединение представляет собой комплекс восстановленной платины. Подобные соединения, образующиеся в процессе взаимодействия Pt(CO)2

Таблица 1

Состав Pt-содержащего катализатора для
низкотемпературного двустадийного окисления СО
в СО ₂ кислородом

Компонент катализатора	Концентрация, моль · л-1
H ₂ PtCl ₆	0.5.10-3-7.5.10-3
ГПК-4 или ГПК-7	0.02-0.4
MeCl или MeBr (Me = Li, Na,	$0.5 \cdot 10^{-2} - 2.0 \cdot 10^{-1}$
K, ½Mg, ½Ca)	

с различными окислителями, например Fe³⁺, были описаны в работе [13].

Наличие индукционного периода при использовании свежеприготовленного катализатора привело к предположению, что активными компонентами целевой реакции в растворах Pt + ГПК-х являются комплексы восстановленной платины, а не H₂PtCl₆. С целью подтверждения указанного предположения было выполнено сопоставление кинетических кривых, полученных в присутствии идентичных по составу катализаторов, приготовленных разными методами. По первому из них в раствор ГПК-4 вводили платину в виде H₂PtCl₆, затем к этому раствору добавляли NaCl. По второму способу в отсутствие ГПК-4 предварительно получали Pt(CO)2, восстанавливая H₂PtCl₆, а затем в атмосфере СО добавляли раствор ГПК-4 и NaCl. Оказалось, что во втором случае катализатор значительно быстрее достигает максимальной активности, которая полностью совпадает с максимальной активностью системы, приготовленной по первому способу, но работающей с индукционным периодом.

Изучение кинетики окисления СО в присутствии гомогенного катализатора Pt + ГПК-4 позволило получить зависимости скорости окисления СО от концентрации H₂PtCl₆ и концентрации CO (табл. 2). Рассчитанный по этим данным порядок реакции по Pt составил 0.8, порядок реакции по CO оказался равным 0.5. Также было установлено, что W_{CO} не зависит от концентрации ГПК-4 в области 0.02–0.4 моль π^{-1} , однако кинетические кривые имеют линейный участок, длительность которого изменяется с ростом содержания ванадия(V) в растворе катализатора.

Исследование зависимости W_{CO} от температуры в интервале 10–50°С (рис. 1) позволило рассчитать кажущуюся энергию активации E_a реакции, которая составила 31.4 (±2) кДж·моль⁻¹. Данный температурный интервал был выбран, поскольку увеличение T целевой реакции выше 50°С в условиях снижения окислительно-восстановительного потенциала ка-

Параметр	Значение параметра, моль·л ⁻¹	Скорость окисления СО, моль л ⁻¹ мин ⁻¹				
V _{кат} = 20 мл, [H ₇ PMo ₈ V ₄ O ₄₀] = 0.05 моль л ⁻¹ , [NaCl]/[H ₂ PtCl ₆] = 10, 25°С, pH 1.25						
Концентрация H ₂ PtCl ₆	0.0005	0.00087				
	0.001	0.00142				
	0.002	0.00246				
	0.005	0.00512				
	0.0075	0.0075				
$V_{\text{кат}} = 20$ мл, $[\text{H}_2\text{PtCl}_6] = 5 \cdot 10^{-3}$ моль π^{-1} , $[\text{NaCl}] = 5 \cdot 10^{-2}$ моль π^{-1} , $[\text{H}_7\text{PMo}_8\text{V}_4\text{O}_{40}] = 0.05$ моль π^{-1} , 25°C , pH 1.25						
Концентрация СО	0.0006	0.00512				
	0.00045	0.00464				
	0.00036	0.00410				
	0.0003	0.00330				
	0.00015	0.00228				
	0.000075	0.00166				
	0.000038	0.00118				

Таблица 2 Зависимость скорости окисления CO от концентрации H₂PtCl₆ и концентрации CO

тализатора приводило к уменьшению стабильности каталитической системы и постепенному распаду Pt(CO)₂:

$$Pt(CO)_2 \to Pt \downarrow + 2CO.$$
 (IV)

Анализ влияния кислотности раствора показал, что гомогенный катализатор низкотемпературного окисления СО Pt + ГПК-х с добавками галогенидионов достаточно стабилен в интервале температур 10-50°С при 0.9 < pH < 2.5. Однако скорость окисления СО максимальна при рН 1.7-2.0 (рис. 1). По всей видимости, указанный интервал рН является областью максимальной стабильности активного комплекса H₂Pt(CO)X₂ с ГПК-х. Дезактивация катализатора при более высоких значениях рН может происходить вследствие снижения стабильности H₂Pt(CO)X₂ и постепенного образования фазы металлической платины. В то же время при существенном снижении рН усиливается деструктивная диссоциация ГПК-х, что влечет за собой падение активности катализатора изза образования ванадийсодержащих осадков.

В ходе экспериментов было обнаружено, что проведение реакции в отсутствие дополнительных ионов X^- приводит к постепенному осаждению Pt_{MeT} при повторной эксплуатации катализатора. Это происходит вследствие неустойчивости $H_2Pt(CO)X_2$ при низких концентрациях галогенид-ионов, увеличение количества которых, с другой стороны, ведет к снижению скорости окисления СО. Эксперименты в присутствии NaBr разной концентрации позволили установить оптимальное мольное отношение $[X^-]/[H_2PtCl_6]]$ (2–5), обеспечивающее как достаточно высокую активность, так и стабильность катализатора (табл. 3).

С использованием установленных закономерностей и найденных порядков реакции по Pt и CO было получено кинетическое уравнение целевой реакции (2), а также предложен ее механизм, замыкающий ка-

Рис. 1. Зависимость скорости окисления CO от температуры (условия: $V_{\text{кат}} = 20 \text{ мл}, [\text{H}_2\text{PtCl}_6] = 5 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}, [\text{H}_7\text{PMo}_8\text{V}_4\text{O}_{40}] = 0.05 \text{ моль} \cdot \pi^{-1}, [\text{NaCl}] = 5 \cdot 10^{-2} \text{ моль} \cdot \pi^{-1}, \text{рH 1.25})$ и рН контактного раствора (условия: $V_{\text{кат}} = 20 \text{ мл}, [\text{H}_2\text{PtCl}_6] = 5 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}, [\text{H}_7\text{PMo}_8\text{V}_4\text{O}_{40}] = = 0.05 \text{ моль} \cdot \pi^{-1}, [\text{NaCl}] = 5 \cdot 10^{-2} \text{ моль} \cdot \pi^{-1}, T = 25^{\circ}\text{C}).$

Таблица 3Зависимость скорости окисления CO от мольного отношения [NaBr]/[H2PtCl6] в растворе катализатораPt + H7PM08V4O40 ($V_{\text{кат}} = 20$ мл, [H2PtCl6] = $5 \cdot 10^{-3}$ моль·л⁻¹, [H7PM08V4O40] = 0.05 моль·л⁻¹, 25°C, pH 1.8)

Концентрация NaBr, моль л ⁻¹	Мольное отношение [NaBr]/[H ₂ PtCl ₆]	Скорость окисления СО, моль л ⁻¹ мин ⁻¹
0.01	2	0.00540
0.025	5	0.00505
0.05	10	0.00394
0.1	20	0.00300
0.2	40	0.00168

талитический цикл по платине [(V)–(VII)]. По ГПК-*х* каталитический цикл замыкается реакцией (III) окисления ее восстановленной формы кислородом, детально изученной в работах [10, 14].

$$W_{\rm CO} = k[{\rm Pt}]^{0.8} [{\rm CO}]^{0.5} {\rm e}^{31.4/RT},$$
 (2)

$$PtX_{6}^{2-} + 4CO + 2H_{2}O \rightarrow Pt(CO)_{2} + 2CO_{2} + + 4HX + 2X^{-},$$
(V)

$$m/_2$$
Pt(CO)₂ + m HX + $m/_2$ H₂O + $\Gamma\Pi$ K- $x \rightarrow$

$$\rightarrow {}^{m}/_{2}\mathrm{H}_{2}\mathrm{Pt}(\mathrm{CO})\mathrm{X}_{2} + {}^{m}/_{2}\mathrm{CO}_{2} + \mathrm{H}_{m}\Gamma\Pi\mathrm{K}\text{-}x, \quad (\mathrm{V1})$$

 $H_2Pt(CO)X_2 + CO \rightarrow Pt(CO)_2 + 2HX,$ (VII)

где Х — Сl[–] или Вг[–], Н_{*m*}ГПК-*х* — восстановленная на *m* электронов форма ГПК-*x*.

Отметим, что в каждом цикле реакция контактного раствора с СО начинается с индукционного периода, который тем продолжительнее, чем глубже степень регенерации ГПК-х по реакции (III) на предыдущем цикле. Возникновение индукционного периода можно отнести к окислению активного H₂Pt(CO)X₂ на стадии регенерации катализатора в комплекс PtX₆²⁻ гетерополикислотой в отсутствие СО. Поэтому на следующем цикле процесс (I) начинается с медленного этапа (V). Дробный порядок реакции по СО позволяет предположить, что после восстановления платины и образования ее активного комплекса скорость реакции лимитируется этапом (VI) — окислением Pt(CO)₂ в H₂Pt(CO)X₂ гетерополикислотой. Независимость $W_{\rm CO}$ от [ГПК-x] может быть обоснована сложным механизмом стадии (VI), при котором равновесный этап образования стабильного комплекса Pt(CO)₂ с ГПК-х предшествует этапу электронного переноса, лимитирующего скорость реакции окисления СО.

Индукционный период, наблюдаемый на следующем цикле реакции (I) после регенерации катализатора Pt + $\Gamma\Pi K$ -*x* в окислительной атмосфере, может быть сокращен путем введения каталитических количеств соли палладия, в присутствии которого Pt(IV) очень быстро восстанавливается в Pt(0). При мольном отношении Pt/Pd ~ 100 индукционный период полностью исчезает, а активность комбинированного катализатора повышается (рис. 2). Катализатор Pt + Pd + ГПК-*х* показал высокую стабильность к осадкообразованию, а также сохранение активности в реакции (I) на прежнем уровне после длительного хранения (цикл 9).

Дополнительным направлением исследований стала проверка сохранения установленных закономерностей при переходе от растворов гетерополикислот состава Кеггина ($H_{3+x}PMo_{12-x}V_xO_{40}$, x = 1-6) к растворам гетерополикислот брутто-состава $H_aP_zMo_yV_xO_b$

Рис. 2. Зависимость объема поглощенного СО от времени в присутствии каталитической системы Pt + (Pd) + H₇PMo₈V₄O₄₀ в 9 циклах [условия: $V_{\text{кат}} =$ = 20 мл, [H₂PtCl₆] = 1·10⁻³ моль·л⁻¹, [H₇PMo₈V₄O₄₀] = = 0.05 моль·л⁻¹, [NaBr] = 5·10⁻³ моль·л⁻¹, pH 1.8, $T = 25^{\circ}$ С, $T_{\text{per}} = 140^{\circ}$ С, $t_{\text{per}} = 30$ мин. Перед 2-м циклом в раствор добавлен PdCl₂ до концентрации 1·10⁻⁵ моль·л⁻¹. После 8 циклов регенерированный катализатор хранился в закрытом сосуде в помещении лаборатории без создания специфических условий хранения в течение 2 мес, затем его активность была повторно исследована в реакции (I)].

участка кинетической кривой при полном совпадении других параметров. Наблюдаемое различие можно объяснить концентрацией ванадия(V) в гомогенном катализаторе, которая в случае 0.25 моль·л⁻¹ раствора ГПК-7 в 8.75 раза превосходит его концентрацию в 0.05 моль·л⁻¹ растворе ГПК-4. Именно значительное

Рис. 3. Зависимость объема поглощенного CO от времени раствором катализатора Pt + Pd + $H_{10}P_3Mo_{18}V_7O_{84}$ в 22 циклах (условия: $V_{\text{кат}} = 20 \text{ мл}$, $[H_2PtCl_6] = 1 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$, $[PdCl_2] = 1 \cdot 10^{-5} \text{ моль} \cdot \pi^{-1}$, $[H_{10}P_3Mo_{18}V_7O_{84}] = 0.25 \text{ моль} \cdot \pi^{-1}$, $[NaBr] = 2.5 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$, pH 0.2, $T = 25^{\circ}\text{C}$, $T_{\text{per}} = 160^{\circ}\text{C}$, $t_{\text{per}} = 20 \text{ мин}$).

Таблица 4

Результаты многоциклового испытания гомогенного катализатора Pt + Pd + $H_{10}P_3Mo_{18}V_7O_{84}$ на стабильность в 22 циклах процесса окисления CO в CO₂ (условия: $V_{\text{кат}} = 20 \text{ мл}$, $[H_2PtCl_6] = 1 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$, $[PdCl_2] = 1 \cdot 10^{-5} \text{ моль} \cdot \pi^{-1}$, $[H_{10}P_3Mo_{18}V_7O_{84}] = 0.25 \text{ моль} \cdot \pi^{-1}$, $[NaBr] = 2.5 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$, pH 0.2, $T = 25^{\circ}$ C, $T_{\text{per}} = 160^{\circ}$ C, $t_{\text{per}} = 20 \text{ ми}$)

№ цикла	Исходный потенциал катализатора, В	Время реакции, мин	Объем поглощенного СО, мл	Скорость окисления СО, моль л ⁻¹ мин ⁻¹	Потенциал катализатора после реакции, В	Потенциал катализатора после регенерации, В
1	1.086	85	216	0.00552	0.841	1.005
2	1.005	83	214	0.00563	0.845	0.999
3	0.999	81	215	0.00553	0.840	1.011
4	1.011	80	211	0.00567	0.847	1.007
5	1.007	83	216	0.00558	0.839	1.005
6	1.005	82	212	0.00563	0.845	1.008
9	1.000	80	217	0.00570	0.844	1.003
15	1.010	81	218	0.00569	0.850	0.999
20	1.005	120	308	0.00552	0.757	1.002
21	1.002	82	213	0.00566	0.841	1.008
22	1.008	80	209	0.00561	0.844	1.004

П р и м е ч а н и е. Все значения окислительно-восстановительного потенциала приведены относительно нормального водородного электрода. Для предотвращения возможного осадкообразования и снижения активности каталитической системы при низких значениях потенциала (ниже 0.7 В) максимальное восстановление раствора катализатора в проведенных исследованиях не превышало ~75%.

содержание ванадия(V) в растворах ГПК-х брутто-состава $H_a P_z Mo_y V_x O_b$ обеспечивает их большую окислительную емкость и высокую производительность каталитических систем на их основе.

Для подтверждения высокой эффективности комбинированного катализатора Pt + Pd + ГПК-7 в двустадийном процессе (I) окисления СО в СО₂, складывающемся из формальных реакций (II) и (III), были проведены многоцикловые испытания этой каталитической системы на стабильность в 22 циклах (рис. 3). Полученные результаты продемонстрировали стабильную работу каталитической системы при сохранении гомогенности раствора во всех циклах. Образования осадков платины и палладия, а также смешанных оксидов ванадия(V) и ванадия(IV) не наблюдалось. Во время регенерации катализатора кислородом за 20 мин при 160°С достигалось близкое к исходному значение окислительно-восстановительного потенциала, что обеспечивало сохранение высокой окислительной емкости раствора в реакции (I) на следующем цикле и активности системы (табл. 4). Нагрузка на катализатор (количество поглощенного СО), как и начальная скорость реакции, были во всех циклах практически одинаковыми.

Следует отметить, что максимально возможная нагрузка на 20 мл катализатора Pt + Pd + ГПК-7 при заданных условиях (рис. 3, табл. 4) составляет ~420 мл CO, тогда как в присутствии катализатора Pt + Pd + ГПК-4 (рис. 2) можно окислить только 48 мл CO. Эти данные характеризуют высокую производительность гомогенных катализаторов на основе модифицированных высокованадиевых ГПК-х. Способность модифицированной системы быстро регенерироваться кислородом (воздухом) может обеспечить технологичность исследованного каталитического процесса, пригодного для очистки газов от примесей CO с любой степенью влажности.

Выводы

На основе галоидных комплексов Pt и молибдованадофосфорных гетерополикислот разработан гомогенный катализатор окисления CO в CO₂, проявляющий высокую активность при нормальных условиях. Введение в состав каталитической системы дополнительных галогенид-ионов приводит к повышению стабильности катализатора. Использование добавки в виде соли палладия обеспечивает снятие индукционного периода. Увеличение содержания ванадия приводит к росту активности каталитической системы Pt + (Pd) + ГПК-*х* благодаря увеличению окислительной емкости катализатора. Комбинированный катализатор Pt + Pd + ГПК-*x* на основе раствора ГПК-*x* брутто-состава $H_{11}P_4Mo_{18}V_7O_{87}$ демонстрирует высокую эффективность в реакции окисления CO в CO₂, сохраняет стабильность при многоцикловом использовании без снижения активности. Он способен обеспечить технологичность низкотемпературного каталитического процесса окисления CO, пригодного для очистки газов от примесей CO при любой степени влажности.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания Института катализа СО РАН.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Родикова Юлия Анатольевна, к.х.н. ORCID: https://orcid.org/0000-0002-8912-8507 Жижина Елена Георгиевна, д.х.н. ORCID: https://orcid.org/ 0000-0001-6419-7568

Список литературы

- Prockop L. D., Chichkova R. I. Carbon monoxide intoxication: An updated review // J. Neurol. Sci. 2007. V. 262. N 1–2. P. 122–130. https://doi.org/10.1016/j.jns.2007.06.037
- [2] Etim U. J., Bai P., Gazit O. M., Zhong Z. Lowtemperature heterogeneous oxidation catalysis and molecular oxygen activation // Catal. Rev. 2023. V. 65. N 2. P. 239–425. https://doi.org/10.1080/01614940.2021.1919044
- [3] Dey S., Dhal G. C. Highly active palladium nanocatalysts for low-temperature carbon monoxide oxidation // Polytechnica. 2020. V. 3. P. 1–25. https://doi.org/10.1007/s41050-019-00018-x
- [4] Dey S., Dhal G. C., Mohan D., Prasad R. Advances in transition metal oxide catalysts for carbon monoxide oxidation: A review // Adv. Compos. Hybrid Mater. 2019. V. 2. P. 626–656. https://doi.org/10.1007/s42114-019-00126-3
- [5] Dey S., Dhal G. C. Applications of silver nanocatalysts for low-temperature oxidation of carbon monoxide // Inorg. Chem. Commun. 2019. V. 110. ID 107614. https://doi.org/10.1016/j.inoche.2019.107614
- [6] Матвеев К. И., Жижина Е. Г., Одяков В. Ф., Пармон В. Н. Гомогенные катализаторы окислительно-восстановительных процессов на основе

растворов гетерополикислот. І. Результаты пилотных испытаний катализатора и процесса синтеза метилэтилкетона // Катализ в пром-сти. 2014. № 3. С. 32–42. https://www.elibrary.ru/sffppv [*Matveev K. I., Zhizhina E. G., Odyakov V. F., Parmon V. N.* Homogeneous redox catalysts based on heteropoly acid solutions: I. Pilot testing of a catalyst and methyl ethyl ketone synthesis // Catal. Ind. 2014. V. 6. N 3. P. 202– 211. https://doi.org/10.1134/S207005041403009X].

- [7] Odyakov V. F., Zhizhina E. G., Maksimovskaya R. I. Synthesis of molybdovanadophosphoric heteropoly acid solutions having modified composition // Appl. Catal. A: General. 2008. V. 342. N 1–2. P. 126–130. https://doi.org/10.1016/j.apcata.2008.03.008
- [8] Одяков В. Ф., Жижина Е. Г. Новый способ синтеза водных растворов Mo-V-фосфорных гетерополикислот // ЖНХ. 2009. Т. 54. № 3. С. 409–414. https://www.elibrary.ru/jwitub [Odyakov V. F., Zhizhina E. G. New process for preparing aqueous solutions of Mo-V-phosphoric heteropoly acids // Russ. J. Inorg. Chem. 2009. V. 54. N 3. P. 361–367. https://doi.org/10.1124/S002602260002005X1

https://doi.org/10.1134/S003602360903005X].

[9] Dikshitulu L. S. A., Gopala Rao G. Titrimetric determination of vanadium(IV) with potassium permanganate at the room temperature, using phosphoric acid as catalyst and ferroin as internal indicator // Anal. Bioanal. Chem. 1962. V. 189. N 5. P. 421–426. https://doi.org/10.1007/BF00497696

- [10] Zhizhina E. G., Odyakov V. F. Regeneration of the oxidation catalysts based on the aqueous solutions of non-Keggin Mo-V-P heteropoly acids by molecular oxygen // Int. J. Chem. Kinet. 2014. V. 46. N 9. P. 567– 576. https://doi.org/10.1002/kin.20858
- Booth G., Chatt J., Chini P. Platinum carbonyls substituted by tertiary phosphines // Chem. Commun. 1965. V. 24. P. 639–640. https://doi.org/10.1039/C19650000639
- [12] Матвеев К. И., Рачковская Л. Н., Еременко Н. К. Карбонил нольвалентной платины // Изв. СО АН СССР. Сер. хим. наук. 1968. № 2. С. 81–87. https://www.elibrary.ru/tmskuf
- [13] Рачковская Л. Н., Еременко Н. К., Матвеев К. И. Монокарбонил платины // ДАН СССР. 1970. Т. 190. № 2. С. 1396–1398. https://www.elibrary.ru/tmsman
- [14] Жижина Е. Г., Одяков В. Ф., Симонова М. В., Матвеев К. И. Кинетика окисления восстановленных форм Мо-V-фосфорных гетерополикислот кислородом в водных растворах // Кинетика и катализ. 2005. Т. 46. № 3. С. 380–389. https://www.elibrary.ru/hshcwn [Zhizhina E. G., Odyakov V. F., Simonova M. V., Matveev K. I. Kinetics of oxidation of reduced phosphorus-molybdenum-vanadium heteropoly acid species with dioxygen in aqueous solutions // Kinet. Catal. 2005. V. 46. N 3. P. 354–363. https://doi.org/10.1007/s10975-005-0084-x