УДК 531.36:521.1

О ПЕРИОДИЧЕСКИХ ДВИЖЕНИЯХ БЛИЗКОЙ К АВТОНОМНОЙ СИСТЕМЫ В СЛУЧАЯХ ДВОЙНОГО ПАРАМЕТРИЧЕСКОГО РЕЗОНАНСА

© 2019 г. О.В.Холостова*

Московский авиационный институт (НИУ), Москва, Россия * e-mail: kholostova o@mail.ru

> Поступила в редакцию 12.03.2018 г. После доработки 10.02.2019 г. Принята к публикации 19.03.2019 г.

Рассматриваются движения близкой к автономной, 2π -периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности положения равновесия. Предполагается, что гамильтониан системы зависит от трех параметров \mathcal{E} , α и β , и при $\mathcal{E} = 0$ система автономна. Пусть для некоторых значений α и β в невозмущенной ($\mathcal{E} = 0$) системе реализуется двойной параметрический резонанс, когда одна из частот малых линейных колебаний системы в окрестности положения равновесия является целым, а другая полуцелым числом. Для достаточно малых, но отличных от нуля значений \mathcal{E} в малой окрестности резонасной точки, рассматриваемой при фиксированном резонансном значении одного из параметров (β), решен вопрос о существовании, бифуркациях и устойчивости в линейном приближении периодических движений системы. В случаях кратных резонансов исследуемого типа построены периодические движения динамически симметричного спутника в окрестности его стационарного вращения (цилиндрической прецессии) на слабоэллиптической орбите и проведен линейный и нелинейный анализ их устойчивости.

Ключевые слова: гамильтонова система, кратный параметрический резонанс, периодическое движение, устойчивость, симметричный спутник, цилиндрическая прецесссия

DOI: 10.1134/S0032823519020103

Была иссследована устойчивость положений равновесия гамильтоновых систем при наличии однократного параметрического резонанса [1]. Изучены периодические и условно-периодические движения близкой к автономной гамильтоновой системы с одной степенью свободы в случае параметрического резонанса [2–4]. Рассмотрены резонансные периодические движения в системе с двумя степеням свободы при одно-кратном параметрическом резонансе основного типа [5]. Изучались случаи кратных параметрических резонансов в близких к автономным линейных гамильтоновых системах [6–8] (см. также монографию [9]), установлено существование нескольких областей параметрического резонанса, выходящих из порождающей точки. Эти области были построены при исследовании ряда задач динамики спутника (моделируемого твердым телом) относительно центра масс в центральном ньютоновском гравитационном поле. Были рассмотрены периодические движения близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы, их бифуркации и устойчивость в случаях, когда одна из частот малых колебаний невозмущенной системы равна целому или полуцелому числу, а другая равна нулю [10].

В работе для аналогичных систем исследуется другой случай кратного параметрического резонанса, когда одна из частот малых линейных колебаний невозмущенной системы целое, а другая полуцелое число. Описаны периодичские движения системы, исследована их бифуркация и устойчивость в линейном приближении. Исследованы резонансные периодические движения динамически симметричного спутника в окрестности стационарного вращения на слабоэллиптической орбите.

1. Постановка задачи. Рассмотрим движения близкой к автономной, 2π -периодической по времени гамильтоновой системы с двумя степенями свободы. Пусть гамильтониан системы зависит от малого параметра ε ($0 < \varepsilon \ll 1$) и параметров α и β , меняющихся в некотором диапазоне, и аналитичен по ним. При достаточно малых значениях ε представим гамильтониан в виде ряда

$$H = H^{(0)}(q_j, p_j, \alpha, \beta) + \varepsilon H^{(1)}(q_j, p_j, t, \alpha, \beta) + \varepsilon^2 H^{(2)}(q_j, p_j, t, \alpha, \beta) + O(\varepsilon^3),$$
(1.1)

где q_j и p_j (j = 1, 2) – канонически сопряженные координаты и импульсы.

Будем считать, что начало координат $q_j = p_j = 0$ (j = 1, 2) фазового пространства — положение равновесия системы, в его окрестности гамильтониан (1.1) аналитичен по q_j , p_j , а функции $H^{(k)}$ записываются в виде рядов, содержащих слагаемые четных степеней по координатам и импульсам:

$$H^{(k)} = H_{2k} + H_{4k} + \dots (1.2)$$

Здесь H_{lk} (l = 2, 4, ...; k = 0, 1, 2, ...) – совокупности слагаемых степени l по q_j и p_j с постоянными (при k = 0) или 2π -периодическими по времени (при k = 1, 2, ...) ко-эффициентами, а многоточие означает совокупность слагаемых не менее шестой степени по q_j и p_j .

Пусть при $\varepsilon = 0$ имеется область изменения параметров α и β , в которой рассматриваемое положение равновесия устойчиво в линейном приближении, корни $\pm i\omega_j(\alpha,\beta)$ (j = 1,2) характеристического многочлена линеаризованных уравнений возмущенного движения чисто мнимые. Пусть, кроме того, для некоторых значений – $\alpha = \alpha_*$ и $\beta = \beta_*$ из этой области одна из частот ω_j – целое (отличное от нуля), а другая – полуцелое число и, таким образом, в системе реализуется двойной параметрический резонанс. При достаточно малых, но отличных от нуля значениях ε в окрестности резонансной точки (0, α_* , β_*) трехмерного пространства параметров появляются области неустойчивости (области параметрического резонанса).

Цель данной работы — решение задачи о существовании, бифуркациях и устойчивости (в линейном приближении) периодических движений системы с гамильтонианом (1.1), (1.2) в малой окрестности точки (0, α_* , β_*) кратного параметрического резонанса рассматриваемого типа. Исследование будет проводиться в сечениях $\beta = \beta_*$ трехмерного пространства параметров при достаточно малых, но отличных от нуля значениях ε и близких к резонансным значениям α .

В качестве приложения будут построены (в соответствующих сечениях трехмерного пространства параметров) резонансные периодические движения динамически симметричного спутника в окрестности его цилиндрической прецессии на слабоэллиптической орбите. Для одной из резонансных точек предложенный в теории алгоритм будет обобщен и применен при рассмотреннии трехмерной окрестности этой точки. Будет проведен полный, линейный и нелинейный, анализ устойчивости найденных периодических движений спутника. **2.** Преобразование гамильтониана. Модельные гамильтонианы. Пусть при $\varepsilon = 0$, $\alpha = -\alpha_*$ и $\beta = \beta_*$ в системе с гамильтонианом (1.1), (1.2) выполнены соотношения $\omega_1 = n$, $2\omega_2 = m$, где n – целое число и m – целое нечетное число.

Будем рассматривать движения системы в малой окрестности резонансной точки $(0, \alpha_*, \beta_*)$ при $\beta = \beta_*$, полагая

$$\alpha = \alpha_* + \varepsilon \mu_1 + \varepsilon^2 \mu_2 + \varepsilon^3 \mu_3 + \dots \quad (\mu_k = \text{const})$$

Тогда гамильтониан (1.1), (1.2) может быть переписан в виде

$$H = H_2 + H_4 + \dots, \quad H_4 = H_{40}(q_j, p_j, \alpha_*, \beta_*) + O(\varepsilon)$$
(2.1)

$$H_{2} = H_{20} + \varepsilon [\mu_{1}H_{20}' + H_{21}] + \varepsilon^{2} [\mu_{2}H_{20}''/2 + \mu_{1}H_{21}' + H_{22}] + O(\varepsilon^{3}), \qquad (2.2)$$

где коэффициенты H_{20} и H_{40} – функции аргументов $(q_j, p_j, \alpha_*, \beta_*)$, а коэффициенты H_{21} и H_{22} – аргументов $(q_j, p_j, t, \alpha_*, \beta_*)$. Штрих означает дифференцирование по параметру α . Будем полагать, что $\overline{H_{21}(t, \alpha_*, \beta_*)} = 0$; здесь и далее черта означает среднее за период (по времени) значение стоящей под ней функции. Отметим, что указанное условие довольно часто выполняется в близких к автономным гамильтоновых системах, исследуемых в классической и небесной механике.

2.1. Преобразование гамильтониана. Осуществим ряд канонических преобразований, упрощающих структуру гамильтониана (2.1), (2.2) в слагаемых до четвертого порядка включительно по q_i , p_i (j = 1, 2) с учетом имеющихся резонансов.

Сначала нормализуем автономную (при $\varepsilon = 0$) часть гамильтониана (2.1), (2.2). Оставляя за переменными прежние обозначения, запишем результат в виде (c_{ii} = const)

$$H^{(0)} = H_{20} + H_{40} + \dots, \quad H_{20} = \frac{n}{2}(q_1^2 + p_1^2) + \frac{m}{4}(q_2^2 + p_2^2)$$
 (2.3)

$$H_{40} = \frac{c_{20}}{4} (q_1^2 + p_1^2)^2 + \frac{c_{11}}{4} (q_1^2 + p_1^2) (q_2^2 + p_2^2) + \frac{c_{02}}{4} (q_2^2 + p_2^2)^2$$
(2.4)

Далее упростим структуру квадратичной части гамильтониана при $\varepsilon \neq 0$. Результат будем представлять в виде

$$K_2 = K_{20} + \varepsilon K_{21} + \varepsilon^2 K_{22} + \varepsilon^3 K_{23} + \dots \quad (K_{20} = H_{20})$$

Рассмотрим слагаемые порядка є. Пусть после нормализации автономной части гамильтониана функции H'_{20} и H_{21} из (2.2) преобразуются к виду

$$H'_{20} = a_1q_1^2 + a_2q_2^2 + a_3p_1^2 + a_4p_2^2 + a_5q_1q_2 + a_6q_1p_1 + a_7q_1p_2 + a_8q_2p_1 + a_9q_2p_2 + a_{10}p_1p_2$$
$$H_{21} = b_1q_1^2 + b_2q_2^2 + b_3p_1^2 + b_4p_2^2 + b_5q_1q_2 + b_6q_1p_1 + b_7q_1p_2 + b_8q_2p_1 + b_9q_2p_2 + b_{10}p_1p_2,$$

где a_k – некоторые постоянные коэффициенты, а $b_k(t) - 2\pi$ -периодические функции времени ($\overline{b_k(t)} = 0$).

Осуществим унивалентное, 4π-периодическое по времени преобразование поворота по обеим парам переменных, определяемое формулами

$$q_{1} = x_{1} \cos nt + X_{1} \sin nt, \quad p_{1} = -x_{1} \sin nt + X_{1} \cos nt$$
$$q_{2} = x_{2} \cos \frac{mt}{2} + X_{2} \sin \frac{mt}{2}, \quad p_{2} = -x_{2} \sin \frac{mt}{2} + X_{2} \cos \frac{mt}{2}$$

При этом в гамильтониане (2.3) исчезнет квадратичная часть H_{20} , а форма H_{40} (2.4) с точностью до обозначений переменных не изменится.

Сделаем затем линейное, близкое к тождественному (и отличающееся от него слагаемыми порядка ε), 4π -периодическое по времени каноническое преобразование x_j , $X_j \to \tilde{x}_j$, \tilde{X}_j , уничтожающее время t в слагаемых порядка ε в квадратичной части гамильтониана. В результате в квадратичной части, вместо исходных десяти, останется шесть слагаемых, разбитых на две группы, зависящие от своей пары сопряженных переменных:

$$K_{21} = (\mu_1 \gamma_1 - \beta_1) \tilde{x}_1^2 + (\mu_1 \gamma_1 + \beta_1) \tilde{X}_1^2 + \beta_2 \tilde{x}_1 \tilde{X}_1 + (\mu_1 \gamma_2 - \beta_3) \tilde{x}_2^2 + (\mu_1 \gamma_2 + \beta_3) \tilde{X}_2^2 + \beta_4 \tilde{x}_2 \tilde{X}_2,$$
(2.5)

где, как показывают расчеты,

$$\gamma_{1} = \frac{1}{2}(a_{1} + a_{3}), \quad \gamma_{2} = \frac{1}{2}(a_{2} + a_{4})$$

$$\beta_{1} = -\frac{1}{2}\overline{[b_{1}(t) - b_{3}(t)]\cos 2nt} + \frac{1}{2}\overline{b_{6}(t)\sin 2nt}, \quad \beta_{2} = \overline{[b_{1}(t) - b_{3}(t)]\sin 2nt} + \overline{b_{6}(t)\cos 2nt}$$

$$\beta_{3} = -\frac{1}{2}\overline{[b_{2}(t) - b_{4}(t)]\cos mt} + \frac{1}{2}\overline{b_{5}(t)\sin mt}, \quad \beta_{4} = \overline{[b_{2}(t) - b_{4}(t)]\sin mt} + \overline{b_{5}(t)\cos mt}$$
(2.6)

Проведем дальнейшее упрощение квадратичной формы (2.5), осуществив еще одно преобразоование поворота по каждой паре переменных, описываемое соотношениями

$$\tilde{x}_j = y_j \cos \varphi_{0j} + Y_j \sin \varphi_{0j}, \quad \tilde{X}_j = -y_j \sin \varphi_{0j} + Y_j \cos \varphi_{0j} \quad (j = 1, 2)$$

Углы ϕ_{0i} задаются равенствами

$$\cos 2\varphi_{01} = \frac{\beta_1}{\beta'}, \quad \sin 2\varphi_{01} = \frac{\beta_2}{2\beta'}, \quad \beta' = \frac{1}{2}\sqrt{4\beta_1^2 + \beta_2^2}$$
$$\cos 2\varphi_{02} = \frac{\beta_3}{\beta''}, \quad \sin 2\varphi_{02} = \frac{\beta_4}{2\beta''}, \quad \beta'' = \frac{1}{2}\sqrt{4\beta_3^2 + \beta_4^2}$$

Предполагается, что $\beta' \neq 0$ и $\beta'' \neq 0$.

В результате получаем

$$K_{21} = (\mu_1 \gamma_1 - \beta') y_1^2 + (\mu_1 \gamma_1 + \beta') Y_1^2 + (\mu_1 \gamma_2 - \beta'') y_2^2 + (\mu_1 \gamma_2 + \beta'') Y_2^2$$
(2.7)

Тривиальное положение равновесия линейной системы с гамильтонианом (2.7) устойчиво при выполнении условий

$$|\mu_1| > \mu'_1, \quad |\mu_1| > \mu''_1, \quad \mu'_1 = \beta'/|\gamma_1|, \quad \mu''_1, = \beta''/|\gamma_2|$$

и неустойчиво при изменении на противоположный знак хотя бы в одном из неравенств.

Области устойчивости и неустойчивости в плоскости параметров є, α показаны в этом случае на фиг. 1а. Здесь и далее области неустойчивости тривиального равновесия закрашены серым или, при наложении двух областей неустойчивости, темно-серым цветом, области устойчивости (в линейном приближении) не закрашены. Грани-

цы внешней и внутренней областей неустойчивости на фиг. 1а задаются соответственно уравнениями

$$\alpha = \alpha^* \pm \max(\mu'_1, \mu''_1)\varepsilon + O(\varepsilon^2) \quad \mu \quad \alpha = \alpha^* \pm \min(\mu'_1, \mu''_1)\varepsilon + O(\varepsilon^2)$$

Если обе величины µ' и µ' отличны от нуля, то процесс нормализации квадратичной части гамильтониана заканчивается.

В случаях, когда квадратичная форма H_{21} имеет специальную структуру, величины β' и β'' могут обратиться в нуль. Пусть, например, в разложениях функций $b_k(t)$ в ряды Фурье содержатся только гармоники $\sin(2k + 1)t$ и $\cos(2k + 1)t$, где k – целые числа. Тогда, как следует из формул (2.6), $\beta_1 = \beta_2 = 0$, и значит, $\beta' = 0$. В этом случае нормализованная квадратичная часть K_{21} имееет вид

$$K_{21} = \mu_1 \gamma_1 (y_1^2 + Y_1^2) + (\mu_1 \gamma_2 - \beta'') y_2^2 + (\mu_1 \gamma_2 + \beta'') Y_2^2$$
(2.8)

и внутренняя область неустойчивости на фиг. 1а при рассмотрении первого приближения исчезает.

Если, кроме того, в разложении функций $b_2(t)$, $b_4(t)$ и $b_5(t)$ не содержатся гармоники $\cos mt$ и $\sin mt$, то $\beta'' = 0$, и исчезает (в данном приближении) также и вторая область неустойчивости, а функция K_{21} принимает вид

$$K_{21} = \mu_1 \gamma_1 (y_1^2 + Y_1^2) + \mu_1 \gamma_2 (y_2^2 + Y_2^2)$$
(2.9)

В этих случаях полагаем $\mu_1 = 0$; для того чтобы выявить расщепление в уравнениях границ областей неустойчивости, рассматриваем следующие приближения по ε .

На этапе второго приближения сначала, как и ранее, уничтожаем время в слагаемых $O(\epsilon^2)$ квадратичной части гамильтониана, а затем, при необходимости, делаем преобразования поворота. В случае, отвечающем соотношению (2.8), получаем в итоге (η_i – постоянные, а за переменными оставляем прежние обозначения)

$$K_{21} = \beta''(Y_2^2 - y_2^2)$$
(2.10)

$$K_{22} = (\mu_2 \gamma_1 - \eta_1) y_1^2 + (\mu_2 \gamma_1 - \eta_2) Y_1^2 + (\mu_2 \gamma_2 - \eta_3) y_2^2 + (\mu_2 \gamma_2 - \eta_4) Y_2^2$$
(2.11)

Этому случаю соответствует фиг. 16, уравнения границ областей параметрического резонанса имеют вид ($\mu'_2 = \eta_1/\gamma_1, \mu''_2 = \eta_2/\gamma_1$)

$$\alpha = \alpha_* \pm \varepsilon \mu_1'' + O(\varepsilon^2), \quad \alpha = \alpha_* + \varepsilon^2 \mu_2' + O(\varepsilon^3), \quad \alpha = \alpha_* + \varepsilon^2 \mu_2'' + O(\varepsilon^3)$$
(2.12)

Если в соотношении (2.11) $\eta_1 = \eta_2$, то $\mu'_2 = \mu''_2$, и вторая область неустойчивости на этом этапе еще не определяется. Полагая $\mu_2 = \mu'_2$, проводим нормализацию квадратичной части в слагаемых порядка ε^3 . Получаем в этом случае (ξ_j – постоянные, за переменными оставлены прежние обозначения)

$$K_{21} = \beta''(Y_2^2 - y_2^2), \quad K_{22} = (\mu'_2\gamma_2 - \eta_3)y_2^2 + (\mu'_2\gamma_2 - \eta_4)Y_2^2$$
 (2.13)

$$K_{23} = (\mu_3 \gamma_1 - \xi_1) y_1^2 + (\mu_3 \gamma_1 - \xi_2) Y_1^2 + (\mu_3 \gamma_2 - \xi_3) y_2^2 + (\mu_3 \gamma_2 - \xi_4) Y_2^2$$
(2.14)

Границы второй области неустойчивости задаются соотношениями

$$\begin{aligned} \alpha &= \alpha_* + \epsilon^2 \mu'_2 + \epsilon^3 \mu'_3 + O(\epsilon^4), \quad \alpha &= \alpha_* + \epsilon^2 \mu'_2 + \epsilon^3 \mu''_2 + O(\epsilon^4) \\ \mu'_3 &= \xi_1 / \gamma_1, \quad \mu''_{23} &= \xi_2 / \gamma_1 \end{aligned}$$

Рассмотрим теперь случай $\mu'_1 = \mu''_1 = 0$, отвечающий квадратичной форме (2.9). При $\mu_1 = 0$ имеем $K_{21} = 0$, а нормализованная квадратичная часть K_{22} определяется выражением (2.11). При $\eta_1 \neq \eta_2$ и $\eta_3 \neq \eta_4$ в этом приближении получаем две области неустойчивости, которые могут располагаться одна внутри другой (аналогично фиг. 1а), либо частично пересекаться, либо не иметь общих точек.

В случае выполнения одного из равенств $\eta_1 = \eta_2$ или $\eta_3 = \eta_4$ в данном приближении определяется только одна область параметричекого резонанса. При $\eta_3 = \eta_4$ ее границы задаются вторым и третьим соотношениями в (2.12). В этом случае для $\mu_2 = \hat{\mu}_2 = \eta_3/\gamma_2$ проводится нормализация квадратичной части в слагаемых третьей степени по ε . Получаем

$$K_{21} = 0, \quad K_{22} = (\hat{\mu}_2 \gamma_1 - \eta_1) y_1^2 + (\hat{\mu}_2 \gamma_1 - \eta_2) Y_1^2,$$
 (2.15)

а форма K_{23} выписана в (2.14). Отсюда находим уравнения границ второй области параметрического резонанса:

$$\alpha = \alpha_* + \epsilon^2 \hat{\mu}_2 + \epsilon^3 \hat{\mu}_3', \quad \alpha = \alpha_* + \epsilon^2 \hat{\mu}_2 + \epsilon'{}^3 \hat{\mu}_3', \quad \hat{\mu}_3' = \xi_3 / \gamma_3, \quad \hat{\mu}_3'' = \xi_4 / \gamma_3$$
(2.16)

Если величина $\hat{\mu}_2$ находится в интервале между μ'_2 и μ''_2 , то вторая область лежит внутри первой (фиг. 1в), а если вне этого интервала, то две области параметрического резонанса не пересекаются (фиг. 1а).

В случае, когда в соотношении (2.11) выполнены оба равенства $\eta_1 = \eta_2$ и $\eta_3 = \eta_4$, области параметрического резонанса могут проявиться в слагаемых не менее третьего порядка по ε . Границы одной из них (при $\mu_2 = \hat{\mu}_2$) определяются соотноошениями (2.16), а границы другой (при $\mu_2 = \tilde{\mu}_2 = \eta_1/\gamma_1$) – аналогичными соотношениями ($\tilde{\mu}'_3, \tilde{\mu}''_3$ – постоянные)

$$\alpha = \alpha_* + \varepsilon^2 \tilde{\mu}_2 + \varepsilon^3 \tilde{\mu}_3' + O(\varepsilon^4), \quad \alpha = \alpha_* + \varepsilon^2 \tilde{\mu}_2 + \varepsilon^3 \tilde{\mu}_3'' + O(\varepsilon^4)$$

Если $\hat{\mu}_2 = \tilde{\mu}_2$, то для этого общего значения параметра μ_2 имеем $K_{22} = 0$, а нормализованная форма K_{23} определена равенством (2.14). Процесс нормализации заканчивается, если в этом случае выделяются обе области неустойчивости; если это не так, то рассматриваются следующие приближения по ε .

Замечание. Для всех рассмотренных случаев предполагалось, что величины β' и β'' имеют порядок единицы (по сравнению с ϵ). Случаи, когда величины β' и/или β'' малы (вместе с ϵ), требуют дополнительного исследования; в данной работе такое исследование не проводится.

2.2. Модельные гамильтонианы. Нормализованный гамильтониан возмущенного движения, полученный в результате преобразований, описанных в разд. 2.1, представляется в виде

$$K = K_{2} + K_{4} + \dots, \quad K_{2} = K_{2}' + O(\varepsilon^{k+1}), \quad K_{2}' = \sum_{l=1}^{\kappa} \varepsilon^{l} K_{2l}$$

$$K_{4} = K_{40} + O(\varepsilon), \quad K_{40} = \frac{c_{20}}{4} (y_{1}^{2} + Y_{1}^{2})^{2} + \frac{c_{11}}{4} (y_{1}^{2} + Y_{1}^{2}) (y_{2}^{2} + Y_{2}^{2}) + \frac{c_{02}}{4} (y_{2}^{2} + Y_{2}^{2})^{2}$$
(2.17)

Квадратичные формы K_{2l} вычисляются по формулам из разд. 2.1, а многоточие означает совокупность слагаемых не менее шестой степени по y_j , $Y_j c 4\pi$ -периодическими по времени коэффициентами.

Наименьший порядок k нормализованных слагаемых квадратичной части (для которого в окрестности резонансной точки обнаруживаются обе области неустойчивости тривиального равновесия системы) определяется структурой периодических слагаемых исходного гамильтониана возмущенного движения и рассматриваемым резонансным соотношением. Далее считаем, что $k \leq 3$. Сценарием k + l будем называть случай, когда области неустойчивости проявляются в слагаемых порядков ε^k и ε^l $(l \leq k)$.

Случай k = 1. При *k* = 1 (сценарий 1 + 1) перейдем в малую, порядка $\varepsilon^{1/2}$, окрестность начала координат фазового пространства, полагая

$$y_j = \varepsilon^{1/2} z_j, \quad Y_j = \varepsilon^{1/2} Z_j \quad (j = 1, 2)$$

и введем новую независимую переменную $\tau_1 = \varepsilon t$. Тогда гамильтониан (2.17) может быть переписан в виде

$$\tilde{\Gamma}^{(1)} = \Gamma^{(1)} + O(\varepsilon), \quad \Gamma^{(1)} = \Gamma_{21} + \Gamma_{40}$$
(2.18)

Здесь и далее Γ_{2l} и Γ_{40} – это формы K_{2l} и K_{40} из соотношений (2.17), в которых сделана замена $y_j = z_j$, $Y_j = Z_j$ (j = 1, 2). В равенствах (2.18) выражение для Γ_{21} определяется из соотношения (2.7). Приближенный гамильтониан $\Gamma^{(1)}$ будем называть модельным для отвечающего ему резонансного случая. Слагаемое $O(\varepsilon)$ в равенствах (2.18) периодично по τ_1 (с периодом $T_1 = 4\pi\varepsilon$) и в достаточно малой окрестности начала координат фазового пространства аналитично по переменным z_j , Z_j (j = 1, 2).

Случай k = 2. Если *k* = 2, то при $\mu_1 \neq 0$ исследование также проводится $\epsilon^{1/2}$ -окрестности начала координат и гамильтониан приводится к виду (2.18), в котором Γ_{21} вычисляется при помощи формул (2.8) для сценария 2 + 1 или (2.9) для сценария 2 + 2.

При $\mu_1 = 0$ нормализованная квадратичная часть в слагаемых первого и второго порядков по ϵ определяется формулами (2.10) и (2.11). Перейдем в ϵ -окрестность начала координат, полагая

$$y_i = \varepsilon z_i, \quad Y_i = \varepsilon Z_i \quad (j = 1, 2)$$

Если в равенстве (2.10) $K_{21} \neq 0$ (сценарий 2 + 1), то, вводя новую независимую переменную τ_1 , получим гамильтониан вида

$$\tilde{\Gamma}^{(2)} = \Gamma^{(21)} + O(\epsilon^2), \quad \Gamma^{(21)} = \Gamma_{21} + \epsilon(\Gamma_{22} + \Gamma_{40})$$
 (2.19)

Если же $K_{21} = 0$ (сценарий 2 + 2), то вводим $\tau_2 = \varepsilon^2 t$. Тогда имеем

$$\tilde{\Gamma}^{(2)} = \Gamma^{(22)} + O(\epsilon), \quad \Gamma^{(22)} = \Gamma_{22} + \Gamma_{40}$$
 (2.20)

Модельными для данного случая будут гамильтонианы $\Gamma^{(1)}$ (при $\mu_1 \neq 0$) и $\Gamma^{(21)}$ или $\Gamma^{(22)}$ (при $\mu_1 = 0$). Слагаемые $O(\epsilon^2)$ и $O(\epsilon)$ в равенствах (2.19) и (2.20) аналитичны по z_j , Z_j и периодичны по τ_1 и τ_2 с периодами T_1 и $T_2 = 4\pi\epsilon^2$ соответственно.

Случай k = 3. При $\mu_1 \neq 0$ исследуется $\epsilon^{1/2}$ -окрестность начала координат и модельный гамильтониан $\Gamma^{(1)}$, в котором функция Γ_{21} вычисляется с учетом формулы (2.8) для сценария 3 + 1 и формулы (2.9) для сценариев 3 + 2 и 3 + 3.

Если $\mu_1 = 0$, то переходим в є-окрестность начала координат. Для сценария 3 + 1 модельным на этом этапе будет гамильтониан $\Gamma^{(21)}$, в котором функции Γ_{21} и Γ_{22} вычисляются с учетом формул (2.10) и (2.11) (при $\eta_1 = \eta_2$). Для сценариев 3 + 2 и 3 + 3 имеем $K_{21} = 0$, модельным будет гамильтониан $\Gamma^{(22)}$, в котором функция Γ_{22} вычисляется с учетом формулы (2.11) при $\eta_3 = \eta_4$ и $\eta_1 = \eta_2$, $\eta_3 = \eta_4$ соответственно.

На этапе третьего приближения по ϵ следует перейти в $\epsilon^{3/2}$ -окрестность начала координат по формулам

$$y_j = \varepsilon^{3/2} z_j, \quad Y_j = \varepsilon^{3/2} Z_j \quad (j = 1, 2)$$

Проводя нормализацию для сценария 3 + 1 и вводя независимую переменную τ_1 , получим

$$\tilde{\Gamma}^{(3)} = \Gamma^{(31)} + O(\epsilon^3), \quad \Gamma^{(31)} = \Gamma_{21} + \epsilon \Gamma_{22} + \epsilon^2 (\Gamma_{23} + \Gamma_{40})$$
 (2.21)

Формы Γ_{21} , Γ_{22} , Γ_{23} вычисляются с учетом соотношений (2.13) и (2.14).

При выполнении сценария 3 + 2 после нормализации и введения в качестве независимой переменной τ_2 имеем

$$\tilde{\Gamma}^{(3)} = \Gamma^{(32)} + O(\epsilon^2), \quad \Gamma^{(32)} = \Gamma_{22} + \epsilon(\Gamma_{23} + \Gamma_{40})$$
 (2.22)

Учтено, что $K_{21} = 0$, а формы Γ_{22} и Γ_{23} определяются из соотношений (2.15) и (2.14).

Наконец, при условии $\eta_1 = \eta_2$, $\eta_3 = \eta_4$ (сценарий 3 + 3) и $\hat{\mu}_2 \neq \tilde{\mu}_2$ получаем тот же гамильтониан (2.22), в котором следует принять

$$\Gamma_{22} = (\hat{\mu}_2 \gamma_1 - \eta_1)(z_1^2 + Z_1^2) \quad \text{или} \quad \Gamma_{22} = (\tilde{\mu}_2 \gamma_2 - \eta_3)(z_2^2 + Z_2^2), \tag{2.23}$$

а форма Г₂₃ вычисляется при помощи равенства (2.14).

Если же $\hat{\mu}_2 = \tilde{\mu}_2$, то имеем $\Gamma_{22} = 0$, и тогда

$$\tilde{\Gamma}^{(3)} = \Gamma^{(33)} + O(\varepsilon), \quad \Gamma^{(33)} = \Gamma_{23} + \Gamma_{40}$$
 (2.24)

Независимой для этого гамильтониана является переменная $\tau_3 = \varepsilon^3 t$

Слагаемые $O(\varepsilon^3)$, $O(\varepsilon^2)$ и $O(\varepsilon)$ в соотношениях (2.21), (2.22) и (2.24) аналитичны по z_i , Z_i и периодичны по τ с периодами T_1 , T_2 и $T_3 = 4\pi\varepsilon^3$ соответственно.

При рассмотрении соответствующей окрестности резонансной точки модельными для случаев k = 3 будут гамильтонианы $\Gamma^{(1)}$, $\Gamma^{(2i)}$ (i = 1 или 2) и $\Gamma^{(3j)}$ (j = 1, 2 или 3).

3. Резонансные периодические движения системы. Решим вопрос о существовании, числе и устойчивости (в линейном приближении) периодических движений систем с гамильтонианами $\tilde{\Gamma}^{(k)}$ (k = 1, 2, 3), определяемыми формулами (2.18)–(2.22), (2.24). На первом этапе найдем отличные от тривиального положения равновесия соответствующих им модельных систем.

3.1. Случай k = 1. Рассмотрим сначала модельную систему с гамильтонианом $\Gamma^{(1)}$ (2.18), в котором квадратичная часть вычисляется с помощью формулы (2.7) при $\beta' \neq 0$, $\beta'' \neq 0$ (сценарий 1 + 1). Приравнивая нулю частные производные $\Gamma^{(1)}$ по z_j и Z_j (j = 1, 2), получим систему уравнений для определения положений равновесия этой модельной системы

$$\begin{aligned} & [2(\mu_1\gamma_1 - \beta') + c_{20}(z_1^2 + Z_1^2) + (c_{11}/2)(z_2^2 + Z_2^2)]z_1 = 0 \\ & [2(\mu_1\gamma_1 + \beta') + c_{20}(z_1^2 + Z_1^2) + (c_{11}/2)(z_2^2 + Z_2^2)]Z_1 = 0 \\ & [2(\mu_1\gamma_2 - \beta'') + (c_{11}/2)(z_1^2 + Z_1^2) + c_{02}(z_2^2 + Z_2^2)]z_2 = 0 \end{aligned}$$

$$(3.1)$$

$$(3.1)$$

Исключим комбинации $z_2^2 + Z_2^2$ и $z_1^2 + Z_1^2$ соответственно из первых двух и последних двух уравнений (3.1), в результате получим два уравнения-следствия вида $z_1Z_1 = 0, z_2Z_2 = 0$. Рассматривая их совместно с системой (3.1), определим две группы положений равновесия.

К первой группе относятся четыре пары равновесий, задаваемые сооотношениями

$$z_{2} = Z_{1} = Z_{2} = 0, \quad z_{1}^{2} = -2(\gamma_{1}\mu_{1} - \beta')c_{20}^{-1} \quad (c_{20}(\gamma_{1}\mu_{1} - \beta') < 0)$$

$$z_{1} = z_{2} = Z_{2} = 0, \quad Z_{1}^{2} = -2(\gamma_{1}\mu_{1} + \beta')c_{20}^{-1} \quad (c_{20}(\gamma_{1}\mu_{1} + \beta') < 0)$$

$$z_{1} = Z_{1} = Z_{2} = 0, \quad z_{2}^{2} = -2(\gamma_{2}\mu_{1} - \beta'')c_{02}^{-1} \quad (c_{02}(\gamma_{2}\mu_{1} - \beta'') < 0)$$

$$z_{1} = z_{2} = Z_{1} = 0, \quad Z_{2}^{2} = -2(\gamma_{2}\mu_{1} + \beta'')c_{02}^{-1} \quad (c_{02}(\gamma_{2}\mu_{1} + \beta'') < 0)$$
(3.2)

В скобках здесь и далее в аналогичных соотношениях указаны условия существования решений. Из этих условий следует, что данные положения равновесия появляются (или исчезают), в зависимости от знаков коэффициентов c_{20} и c_{02} , при переходе через бифуркационные точки $\mu_1 = \pm \mu'_1$ и $\mu_1 = \pm \mu'_1$.

Вторую группу положений равновесия составляют четверки решений, описываемые соотношениями

$$z_{1} = z_{2} = 0, \quad Z_{1}^{2} = 4(\kappa_{1}\mu_{1} + 2\beta'c_{02} - c_{11}\beta'')\Delta^{-1}, \quad Z_{2}^{2} = -4(\kappa_{2}\mu_{1} + c_{11}\beta' - 2c_{20}\beta'')\Delta^{-1}$$

$$z_{1} = Z_{2} = 0, \quad Z_{1}^{2} = 4(\kappa_{1}\mu_{1} + 2c_{02}\beta' + c_{11}\beta'')\Delta^{-1}, \quad Z_{2}^{2} = -4(\kappa_{2}\mu_{1} + c_{11}\beta' + 2c_{20}\beta'')\Delta^{-1}$$

$$Z_{1} = z_{2} = 0, \quad z_{1}^{2} = 4(\kappa_{1}\mu_{1} - 2c_{02}\beta' - c_{11}\beta'')\Delta^{-1}, \quad Z_{2}^{2} = -4(\kappa_{2}\mu_{1} - c_{11}\beta' - 2c_{20}\beta'')\Delta^{-1}$$

$$Z_{1} = Z_{2} = 0, \quad z_{1}^{2} = 4(\kappa_{1}\mu_{1} - 2c_{02}\beta' + c_{11}\beta'')\Delta^{-1}, \quad Z_{2}^{2} = -4(\kappa_{2}\mu_{1} - c_{11}\beta' + 2c_{20}\beta'')\Delta^{-1}$$

$$Z_{1} = Z_{2} = 0, \quad z_{1}^{2} = 4(\kappa_{1}\mu_{1} - 2c_{02}\beta' + c_{11}\beta'')\Delta^{-1}, \quad Z_{2}^{2} = -4(\kappa_{2}\mu_{1} - c_{11}\beta' + 2c_{20}\beta'')\Delta^{-1}$$

(3.3)

Здесь введены обозначения

$$\kappa_1 = 2\gamma_1 c_{02} - c_{11}\gamma_2, \quad \kappa_2 = c_{11}\gamma_1 - 2c_{20}\gamma_2, \quad \Delta = c_{11}^2 - 4c_{20}c_{02}$$

Решения (3.3) существуют, если правые части в выражениях с квадратами неотрицательны. Бифуркационными являются восемь точек

$$\mu_1 = (\pm 2c_{02}\beta' \pm c_{11}\beta'')\kappa_1^{-1}, \quad \mu_1 = (\pm c_{11}\beta' \pm 2c_{20}\beta'')\kappa_2^{-1}$$
(3.4)

Здесь верхние и нижние знаки берутся в любом сочетании.

Рассмотрим вопрос об устойчивости в линейном приближениии найденных решений. Зададим возмущения \tilde{z}_j , \tilde{Z}_j (j = 1, 2) переменных z_j , Z_j системы относительно их равновесных значений. Для обоих решений из первой пары в равенствах (3.2) квадратичная часть гамильтониана возмущенного движения имеет вид

$$2\beta'\tilde{Z}_1^2 - 2(\gamma_1\mu_1 - \beta')\tilde{z}_1^2 - [(\kappa_2\mu_1 - c_{11}\beta' + 2c_{20}\beta'')\tilde{z}_2^2 + (\kappa_2\mu_1 - c_{11}\beta' - 2c_{20}\beta'')\tilde{Z}_2^2](2c_{20})^{-1}$$

Отсюда следует, что в области существования данного решения условия устойчивости сводятся к неравенствам

$$c_{20} > 0$$
, $(\kappa_2 \mu_1 - c_{11}\beta')^2 > 4(c_{20}\beta'')^2$

Для решений из второй, третьей и четвертой пар аналогичные условия имеют соответственно вид $c_{20} < 0$, $(\kappa_2\mu_1 + c_{11}\beta')^2 > 4(c_{20}\beta'')^2$; $c_{02} > 0$, $(\kappa_1\mu_1 + c_{11}\beta'')^2 > 4(c_{02}\beta')^2$ и $c_{02} < 0$, $(\kappa_1\mu_1 - c_{11}\beta'')^2 > 4(c_{02}\beta')^2$. Таким образом, характер устойчивости исследуемых равновесных точек определяется расположением величины μ_1 относительно бифуркационных значений (3.4).

Для решений (3.3) составляем характеристические уравнения соответствующих линеаризованных уравнений возмущенного движения

$$\lambda^4 + a\lambda^2 + b = 0 \tag{3.5}$$

Если выполнены соотношения

$$a > 0, \quad b > 0, \quad d = a^2 - 4b > 0,$$
 (3.6)

то корни уравнения (3.5) чисто мнимые, и исследуемое решение устойчиво в линейном приближении. При изменении знака хотя бы одного неравенства на противоположный уравнение (3.5) имеет корни с положительными вещественными частями, и имеет место неустойчивость.

Рассмотрим первую четверку решений (3.3), существующих при выполнении неравенств

$$\kappa_{1}\Delta(\mu_{1} - \mu_{11}) > 0, \quad \kappa_{2}\Delta(\mu_{1} - \mu_{12}) < 0$$

$$\mu_{11} = \kappa_{1}^{-1}(c_{11}\beta'' - 2c_{02}\beta'), \quad \mu_{12} = \kappa_{2}^{-1}(2c_{20}\beta'' - c_{11}\beta')$$
(3.7)

Коэффициенты уравнения (3.5) для каждого из этих решений таковы:

$$a = -32\delta\Delta^{-1}(\mu_1 - \mu_{10}), \quad b = 256\beta'\beta''\kappa_1\kappa_2\Delta^{-1}(\mu_1 - \mu_{11})(\mu_1 - \mu_{12})$$
$$\mu_{10} = \delta^{-1}[c_{11}(c_{02} + c_{20})\beta'\beta'' - 2c_{02}c_{20}(\beta'^2 + \beta''^2)], \quad \delta = c_{20}\beta'\kappa_1 - c_{02}\beta''\kappa_2$$

Отсюда находим, что в области существования первые два неравенства (3.6) сводятся к системе

$$\delta(\mu_1 - \mu_{10}) > 0, \quad \Delta < 0$$
 (3.8)

Таким образом, при $\Delta > 0$ данные равновесия всегда неустойчивы.

Пусть $\Delta < 0$. Величина *d* из третьего условия (3.6) представляет собой квадратный относительно μ_1 трехчлен с положительным старшим коэффициентом

$$d_2 = 1024\Delta^{-2}[c_{20}^2\beta'^2\kappa_1^2 + (2c_{20}c_{02} - c_{11}^2)\beta'\beta''\kappa_1\kappa_2 + c_{02}^2\beta''^2\kappa_2^2]$$
(3.9)

и отрицательным дискриминантом, равным $s\Delta^{-1}\beta'^{2}\beta''^{2}c_{11}^{2}f^{2}$, где s > 0 и $f = \gamma_{1}\beta'' - \gamma_{2}\beta'$. Следовательно, для рассматриваемых решений неравенство d > 0 всегда удовлетворяется.

Рассматривая систему неравенств (3.7), (3.8), находим, что если $\kappa_1 \kappa_2 > 0$ и $c_{20} f < 0$, то ее решение задается интервалом $\min(\mu_{11}, \mu_{12}) < \mu_1 < \max(\mu_{11}, \mu_{12})$. Если $\kappa_1 \kappa_2 < 0$ и $c_{20} < 0$, то при $\delta < 0$ имеем $\mu_1 < \min(\mu_{11}, \mu_{12})$, а при $\delta > 0$ получаем $\mu_1 > \max(\mu_{11}, \mu_{12})$. Для невыписанных значений параметров из области существования имеем неустойчивость.

Вторая четверка равновесий (3.3) существует при выполнении условий (3.7), в которых величину β " следует взять с противоположным знаком. Аналогично предыдущему заключаем, что в области существования неравенство b > 0 удовлетворяется при условии $\Delta > 0$; при $\Delta < 0$ имеем неустойчивость.

В случае $\Delta > 0$ дискриминант квадратного относительно μ_1 трехчлена *d* из третьего условия (3.6), равный $s\Delta^{-1}\beta'^2\beta''^2c_{11}^2f_1(f_1 = \gamma_1\beta'' + \gamma_2\beta')$, положителен, и *d* имеет два вещественных корня, обозначим их через μ_{1*} и μ_{1**} ($\mu_{1*} < \mu_{1**}$). При этом старший коэффициент трехчлена *d*, вычисляемый по формуле (3.9) при замене β'' на $-\beta''$, может быть как положительным, так и отрицательным.

Если $\kappa_1 \kappa_2 > 0$, то всегда $d_2 > 0$, и в случае $c_{20}c_{02} < 0$ условия устойчивости удовлетворяются для значений μ_1 из двух интервалов

$$\min(\mu_{11}, \mu_{12}) < \mu_1 < \mu_{1*}, \quad \mu_{1**} < \mu_1 < \max(\mu_{11}, \mu_{12})$$
(3.10)

В случае же $c_{20}c_{02} > 0$ условия устойчивости при $\delta_1 > 0$ и $\delta_1 < 0$ задаются первым и вторым неравенством (3.10) соответственно.

Исследование устойчивости при $\kappa_1 \kappa_2 < 0$ несколько сложнее. Приведем его результаты для случая $\kappa_1 > 0$, $\kappa_2 < 0$ (случай $\kappa_1 < 0$, $\kappa_2 > 0$ рассматривается аналогично). Выражение в квадратных скобках в равенстве (3.9) при замене β " на $-\beta$ " можно переписать, выделив в нем квадратный трехчлен относительно величины $x = \beta'\kappa_1/(\beta''\kappa_2)$, где x < 0. Его дискриминант, равный $c_{11}^2 \Delta$, положителен, поэтому квадратный трехчлен имеет два вещественных (отрицательных) корня, обозначим из через x_1 и x_2 ($x_1 < x_2$). При $x < x_1$ и $x > x_2$ справедливо неравенство $d_2 > 0$, а при $x_1 < x < x_2$ имеем $d_2 < 0$.

Пусть сначала $d_2 > 0$. Если $c_{20} > 0$, $c_{02} > 0$, то в случаях $\delta_1 > 0$ и $\delta_1 < 0$ условия устойчивости приводятся к неравенствам

$$\max(\mu_{11}, \mu_{12}) < \mu_1 < \mu_{1*} \quad \text{if } \mu_1 > \max(\mu_{11}, \mu_{12}) \tag{3.11}$$

соответственно. Если $c_{20} < 0, c_{02} < 0$, то получаем

$$\mu_1 > \mu_{1**}$$
 (3.12)

Если же $c_{20} < 0$, $c_{02} > 0$, то в случае $f_1 > 0$ на левой ($x < x_1$) ветви положительных значений d_2 условие устойчивости определяется объединением первого неравенства из (3.11) и неравенства (3.12), а на правой ($x > x_2$) ветви — вторым неравенством (3.11). При $f_1 < 0$ условия устойчивости на левой и правой ветвях меняются местами.

В случа
е $d_2 < 0$ исследуемые решения устойчивы, есл
и $c_{02} > 0$ и выполнено неравенство

$$\max(\mu_{11}, \mu_{12}) < \mu_1 < \mu_{1**}$$

Для третьей четверки решений (3.3) из условия b > 0 имеем в области существования $\Delta > 0$, а для четвертой $\Delta < 0$; проверка других условий устойчивости проводится так же, как для второй и первой четверок решений соответственно.

3.2. Случай k = 2. Рассмотрим два сценария, возможных в случае k = 2.

3.2.1. Сценарий 2 + 1. В случае $\beta' = 0$, $\beta'' \neq 0$ реализуется сценарий 2 + 1; картина устойчивости имеет вид, представленный на фиг. 16.

Первое приближение. В модельной системе с гамильтонианом $\Gamma^{(1)}$, в котором квадратичная часть определяется формулой (2.8) при $\mu_1 \neq 0$, в $\epsilon^{1/2}$ -окрестности резонансХОЛОСТОВА

ной точки происходит перестройка фазового пространства (по сравнению со случаем, рассмотренным в разд. 3.1). В системе появляется первый интеграл $z_1^2 + Z_1^2 = 2c =$ = const. Приведенной системе с одной степенью свободы отвечает гамильтониан вида

$$h = \left(\mu_1 \gamma_2 - \beta'' + \frac{1}{2}c_{11}c\right)z_2^2 + \left(\mu_1 \gamma_2 + \beta'' + \frac{1}{2}c_{11}c\right)Z_2^2 + \frac{1}{4}c_{02}(z_2^2 + Z_2^2)^2$$
(3.13)

Тривиальное положение равновесия этой системы устойчиво при выполнении условия

$$(2\mu_1\gamma_2 + c_{11}c)^2 > 4\beta''^2$$

и неустойчиво в противном случае. Точки бифуркации задаются соотношениями

$$\mu_1 = \mu_1^{\pm} = (\pm 2\beta'' - c_{11}c)(2\gamma_2)^{-1}$$

Другие положения равновесия системы с гамильтонианом (3.13) определяются формулами

$$z_2 = 0, \quad Z_2^2 = -2\gamma_2(\mu_1 - \mu_1)c_{02}^{-1} \quad (c_{02}\gamma_2(\mu_1 - \mu_1) < 0)$$
 (3.14)

$$Z_2 = 0, \quad z_2^2 = -2\gamma_2(\mu_1 - \mu_1^+)c_{02}^{-1} \quad (c_{02}\gamma_2(\mu_1 - \mu_1^+) < 0)$$
(3.15)

В области существования равновесия (3.14) устойчивы в линейном приближении, если $\beta''c_{02} < 0$, и неустойчивы, если $\beta''c_{02} > 0$. Для равновесий (3.15) эти условия устойчивости и неустойчивости меняются местами.

Фазовые портреты системы с гамильтонианом (3.13) показаны на фиг. 2а-2в для случаев

$$\mu_1 < \mu_1^-, \quad \mu_1^- < \mu_1 < \mu_1^+, \quad \mu_1 > \mu_1^+$$

соответственно и в предположении, что $\gamma_2 > 0$, $c_{02} > 0$. Для других вариантов знаков величин γ_1 и c_{02} картина качественно та же (в некоторых случаях направления движения по траекториям меняются на противоположные или оси координат меняются ме-

стами). Приведенные фазовые портреты характерны для модельных систем с одной степенью свободы в случае параметрического резонанса [3].

Вернемся к модельной системе с двумя степенямии свободы с гамильтонианом $\Gamma^{(1)}$. Ее положениями равновесия будут точки

$$z_1 = z_2 = Z_1 = 0, \quad Z_2^2 = -2(\mu_1\gamma_2 + \beta'')c_{02}^{-1} \quad (c_{02}(\mu_1\gamma_2 + \beta'') < 0)$$
 (3.16)

$$z_1 = Z_1 = Z_2 = 0, \quad z_2^2 = -2(\mu_1\gamma_2 - \beta'')c_{02}^{-1} \quad (c_{02}(\mu_1\gamma_2 - \beta'') < 0),$$
 (3.17)

соответствующие решениям (3.14) и (3.15) при c = 0.

Квадратичная часть гамильтониана возмущенного движения для решений (3.16) имеет вид

$$(\kappa_{1}\mu_{1}-c_{11}\beta'')(2c_{02})^{-1}(\tilde{z}_{1}^{2}+\tilde{Z}_{1}^{2})-2\beta''\tilde{z}_{2}^{2}-2(\mu_{1}\gamma_{2}+\beta'')\tilde{Z}_{2}^{2},$$

откуда следует, что при $\mu_1 \neq c_{11}\beta''\kappa_1^{-1}$ условия устойчивости (в линейном приближении) и неустойчивости совпадают с теми же условиями для решения (3.14). Аналогично, при $\mu_1 \neq -c_{11}\beta''\kappa_1^{-1}$ совпадают условия устойчивости (в линейном приближении) и неустойчивости решений (3.17) и (3.15).

Для значений $\mu_1 = c_{11}\beta''\kappa_1^{-1}$ и $\mu_1 = -c_{11}\beta''\kappa_1^{-1}$ (если они находятся в области существования) равновесия (3.16) и (3.17) соответственно являются сложными особыми точками.

Кроме изолированных положений равновесия, в модельной системе с гамильтонианом $\Gamma^{(1)}$ могут существовать семейства положений равновесия. Так, при выполнении условия $\mu_1 \gamma_1 c_{20} < 0$ в системе имеется семейство неустойчивых положений равновесия (сложных особых точек), образующих в плоскости переменных z_1 , Z_1 окружность вида

$$z_1^2 + Z_1^2 = -2\mu_1\gamma_1c_{20}^{-1}, \quad z_2 = Z_2 = 0$$

Еще две пары симметричных семейств (окружностей) из неустойчивых сложных особых точек, задаваемых соотношениями

$$z_1^2 + Z_1^2 = 4(\kappa_1 \mu_1 - c_{11} \beta'') \Delta^{-1}, \quad z_2 = 0$$

$$Z_2^2 = -4(\kappa_2 \mu_1 - 2c_{20} \beta'') \Delta^{-1} \quad (\beta'' \leftrightarrow -\beta'', z_2 \leftrightarrow Z_2)$$

существуют, если дроби, стоящие в правых частях этих соотношений, неотрицательны. При $\mu_1 = c_{11}\beta''\kappa_1^{-1}$ семейства первой пары, а при $\mu_1 = -c_{11}\beta''\kappa_1^{-1}$ семейства второй пары (при условии их существования) стягиваются в точки (3.16) и (3.17) соответственно.

Второе приближение. При $\mu_1 = 0$ переходим в є-окрестность тривиального равновесия и рассматриваем модельную систему с гамильтонианом $\Gamma^{(21)}$, квадратичная часть которой вычисляется при помощи выражений (2.10) и (2.11). Положения равновесия модельной системы таковы:

$$z_{1} = z_{2} = Z_{2} = 0, \quad Z_{1}^{2} = -2(\mu_{2}\gamma_{1} - \eta_{2})c_{20}^{-1}$$

$$(c_{20}(\mu_{2}\gamma_{1} - \eta_{2}) < 0) \quad (z_{1} \leftrightarrow Z_{1}, \eta_{1} \leftrightarrow \eta_{2})$$
(3.18)

Квадратичная часть гамильтониана возмущенного движения имеет вид

$$-\varepsilon(\eta_1 - \eta_2)\tilde{z}_1^2 - 2\varepsilon(\mu_2\gamma_1 - \eta_2)\tilde{Z}_1^2 - (\beta'' + O(\varepsilon))\tilde{z}_2^2 + (\beta'' + O(\varepsilon))\tilde{Z}_2^2$$

$$(\tilde{z}_1 \leftrightarrow \tilde{Z}_1, \eta_1 \leftrightarrow \eta_2)$$
(3.19)

Таким образом, при достаточно малых значениях ε данные равновесия неустойчивы в области существования.

Объединяя результаты исследования модельных систем первого и второго приближений и исключая отмеченные случаи сложных особых точек, приходим к следующему выводу. Внутри большей области неустойчивости (см. фиг. 16) существует, в зависимости от знаков величин γ_2 и c_{02} , одна из пар устойчивых в линейном приближении положений равновесия (3.16) или (3.17). Вне этой зоны неустойчивости по одну сторону существует та же пара равновесий, оставаясь устойчивой, и другая, неустойчивая, пара равновесий; по другую сторону в модельной системе отсутствуют положения равновесия, отличные от тривиального. Исключение составляет внутренняя зона не-

устойчивости и ее малая, ширины $O(\epsilon^2)$, окрестность. В этой окрестности, аналогично, существуют, по одну сторону от зоны неустойчивости, две пары равновесий (3.18), по другую сторону — ни одной, а внутри самой зоны — одна из этих пар, и все эти равновесия неустойчивы.

3.2.2. Сценарий 2+2. В этом случае $\beta' = \beta'' = 0$. При $\mu_1 \neq 0$ модельная система с гамильтонианом $\Gamma^{(1)}$, вычисляемым с учетом выражения (2.9) для квадратичной части, не имеет положений равновесия, отличных от тривиального. Переходя при $\mu_1 = 0$ в єокрестность тривиального равновесия, получим систему с модельным гамильтонианом $\Gamma^{(22)}$ (второе равенство (2.20)), квадратичная часть которого определена равенством (2.11). По своей структуре гамильтониан $\Gamma^{(22)}$ аналогичен модельному гамильтониану $\Gamma^{(1)}$ (с квадратичной частью (2.7)), исследование которого проведено в разд. 3.1.

3.3. Случай k = 3. 3.3.1. Сценарий 3+1. При реализации сценария 3 + 1 взаимное расположение областей неустойчивости аналогично показанному на фиг. 16, только внутренняя область неустойчивости имеет ширину $O(\varepsilon^3)$.

При $\mu_1 \neq 0$ для квадратичной части модельного гамильтониана $\Gamma^{(1)}$ *первого приближения* используется выражение (2.8), и имеем случай, рассмотренный в разд. 3.2.1.

На этапе второго приближения (случай $\mu_1 = 0$) исследуется модельный гамильтониан $\Gamma^{(21)}$ из (2.19), в котором формы Γ_{21} и Γ_{22} вычисляются с помощью соотношений (2.10) и (2.11) при $\eta_1 = \eta_2$. В модельной системе имеется первый интеграл $z_1^2 + Z_1^2 = 2c =$ = const. Кроме тривиального равновесия, в области $c_{20}(\mu_2\gamma_1 - \eta_1) < 0$ существуют два семейства неустойчивых сложных особых точек, для которых

$$z_1^2 + Z_1^2 = -2(\mu_2\gamma_1 - \eta_1)c_{20}^{-1}, \quad z_2 = Z_2 = 0$$

Других положений равновесия нет.

Модельный гамильтониан $\Gamma^{(31)}$ *третьего приближения* определен вторым равенством (2.21), а положения равновесия отвечающей ему модельной системы таковы:

$$z_2 = Z_2 = Z_1 = 0, \quad z_1^2 = -2(\mu_3\gamma_1 - \xi_1)c_{20}^{-1} \quad (c_{20}(\mu_3\gamma_1 - \xi_1) < 0) \quad (z_1 \leftrightarrow Z_1, \xi_1 \leftrightarrow \xi_2)$$

Как и в описанных выше аналогичных случаях, во внутренней зоне неустойчивости тривиального равновесия существует одна пара положений равновесия, вне ее по одну сторону имеются две пары равновесий, а по другую сторону ни одной. Найденные положения равновесия, находясь в зоне неустойчивости тривиального равновесия системы, неустойчивы в области своего существования. Квадратичная часть гамильтониана возмущенного движения имеет вид

$$\epsilon^{2}[(\xi_{1}-\xi_{2})\tilde{Z}_{1}^{2}-2(\mu_{3}\gamma_{1}-\xi_{1})\tilde{z}_{1}^{2}]-(\beta''+O(\epsilon))\tilde{z}_{2}^{2}+(\beta''+O(\epsilon))\tilde{Z}_{2}^{2} \quad (\tilde{z}_{1}\leftrightarrow\tilde{Z}_{1},\xi_{1}\leftrightarrow\xi_{2})$$

3.3.2. Сценарий 3 + 2. При $\mu_1 \neq 0$ квадратичная часть *первого приближения* имеет вид (2.9); в модельной системе с гамильтонаном $\Gamma^{(1)}$ нет положений равновесия, отличных от тривиального.

В модельном гамильтониане второго приближения (случай $\mu_1 = 0$) имеем $\Gamma_{21} = 0$. Форма Γ_{22} определяется соотношением (2.11), в котором $\eta_1 = \eta_2$ или $\eta_3 = \eta_4$, и с точностью до обозначений совпадает с формой (2.8); соответствующее ей исследование проведено в разд. 3.2.1. Изолированными положениями равновесия в случае, например, $\eta_3 = \eta_4$ будут точки

$$z_1 = 0, \quad Z_1^2 = -(2\mu_2\gamma_1 - 2\eta_2)c_{20}^{-1} \quad (c_{20}(\mu_2\gamma_1 - \eta_2) < 0),$$
 (3.20)

устойчивые в линейном приближении в области существования при условии $c_{20}(\eta_2 - \eta_1) > 0$ (за исключением случая сложной особой точки при $\mu_2 = (\eta_2 c_{11} - 2\eta_4 c_{20})\kappa_2^{-1}$, если это значение μ_2 попадает в область существования равновесий) и неустойчивые при $c_{20}(\eta_2 - \eta_1) < 0$.

Кроме того, существуют еще два положения равновесия, соответствующие точкам (3.20) при замене $\tilde{z}_1 \leftrightarrow Z_1$, $\eta_1 \leftrightarrow \eta_2$, устойчивые в линейном приближении в области существования, если $c_{20}(\eta_2 - \eta_1) < 0$ (кроме, может быть, точки $\mu_2 = (\eta_1 c_{11} - 2\eta_4 c_{20})\kappa_2^{-1})$, и не-устойчивые, при $c_{20}(\eta_2 - \eta_1) > 0$.

При $\mu_2 = \hat{\mu}_2$ рассматриваем модельный гамильтониан $\Gamma^{(32)}$ *третьего приближения* (второе равенство (2.22)) с квадратичными формами согласно равенствам (2.15) и (2.14). В модельной системе имеются положения равновесия вида

$$z_1 = Z_1 = Z_2 = 0, \quad z_2^2 = -2\gamma_2(\mu_3 - \mu'_3)c_{02}^{-1}$$
$$(c_{02}(\mu_3 - \mu'_3) < 0) \quad (z_2 \leftrightarrow Z_2, \mu'_3 \leftrightarrow \mu'_3)$$

Квадратичная часть гамильтонианов возмущенного движения задается выражением

$$(\hat{\mu}_2\gamma_1 - \eta_1 + O(\varepsilon))\tilde{z}_1^2 + (\hat{\mu}_2\gamma_1 - \eta_2 + O(\varepsilon))\tilde{Z}_1^2 + \varepsilon(\xi_3 - \xi_4)\tilde{z}_2^2 - 2\varepsilon\tilde{Z}_2^2(\mu_3\gamma_2 - \xi_3) (\tilde{z}_2 \leftrightarrow \tilde{Z}_2, \xi_3 \leftrightarrow \xi_4)$$

Отсюда следует, что если значение $\mu_2 = \hat{\mu}_2$ находится в зоне неустойчивости тривиального равновесия (см. фиг. 1в), то в области существования эти положения равновесия неустойчивы. В случае двух непересекающихся областей параметрического резонанса (как на фиг. 1г) первая пара равновесных точек устойчива в области существования при $c_{02}(\xi_3 - \xi_4) > 0$, а вторая – при $c_{02}(\xi_3 - \xi_4) < 0$.

Таким образом, в рассматриваемом случае отличные от тривиального равновесия системы могут существовать в ε^2 -окрестности резонансной точки при $\mu_1 = 0$. В случае, относящемся к фиг. 1в, описание положений равновесия и характера их устойчивостии аналогично сделанному в разд. 3.2.1 описанию, относящемуся к фиг. 1б. Для случая (фиг. 1г) двух непересекающихся областей параметрического резонанса (ширины порядка $O(\varepsilon^2)$ и $O(\varepsilon^3)$) вблизи каждой из них существуют либо две пары равновесных точек (одна устойчивая в линейном приближении и одна неустойчивая), либо ни одной, а в самой области – одна (устойчивая) пара.

3.3.3. Сценарий 3 + 3. На этапах первого и второго приближений в соответствующих модельных системах нет положений равновесия, отличных от тривиального. При рассмотрении третьего приближения в случае $\hat{\mu}_2 \neq \hat{\mu}_2$ имеем модельный гамильтониан $\Gamma^{(32)}$ (второе равенство (2.22)), вычисляемый с учетом соотношений (2.23) и (2.14), и

k	Сценарий	Приближения		
		1	2	3
1	1 + 1	24	_	_
2	2 + 1	4	4	—
	2 + 2	0	24	-
3	3 + 1	4	0	4
	3 + 2	0	4	4
	3 + 3	0	0	4 + 4
		0	0	24

Таблица 1

два значения $\mu_2 = \hat{\mu}_2$ и $\mu_2 = \tilde{\mu}_2$, для которых в третьем приближении строятся две непересекающиеся области параметрического резонанса. Описание результатов аналогично предыдущему описанию, относящемуся к фиг. 1г.

Если $\hat{\mu}_2 = \tilde{\mu}_2$, то для обеих областей параметрического резонанса имеем $\mu_1 = \mu_2 = 0$, значения μ_3 на граничных кривых определяются при помощи соотношения (2.14) для формы K_{23} . Модельным будет гамильтониан $\Gamma^{(33)}$ (второе равенство (2.24)), аналогичный по структуре гамильтониану $\Gamma^{(1)}$, равновесные точки которого описаны в разд. 3.1.

В таблице 1 представлена сводка результатов исследования отличных от тривиального изолированных положений равновесия рассмотренных модельных систем. Указано максимальное число равновесных точек для каждого сценария и соответствующих ему приближений.

Для сценариев k + k в случаях, когда различия в уравнениях всех четырех границ областей неустойчивости выявляются в слагаемых порядка k, в модельной системе имеется до 24 положений равновесия, при этом существует большое число вариантов их взаимного расположения и характера их устойчивости (см. разд. 3.1). Для сценариев k + l (l < k), а также первого варианта сценария 3 + 3 внутри каждой области неустойчивости и вблизи нее существуют от нуля до двух пар положений равновесия. Если при этом одна из областей лежит внутри другой, то все положения равновесия, относящиеся к внутренней области, неустойчивы. Для внешней области имеем внутри одну устойчивую равновесную пару, а вне ее по одну из сторон от нее устойчивую и неустойчивую пары; этот же вывод относится к каждой из двух непересекающихся областей для первого варианта сценария 3 + 3.

3.4. Периодические движения системы и их устойчивость. Вернемся к исследованию полных систем с гамильтонианами (2.18)–(2.22). В окрестности каждого положения равновесия $z_j = z_{j^*}$, $Z_j = Z_{j^*}$ (j = 1, 2) (исключим из рассмотрения равновесия, являющиеся сложными особыми точками) соответствующих модельных систем полные системы являются квазилинейными с возмущениями $O(\varepsilon)$ (для случаев (2.18), (2.20) и (2.24)), $O(\varepsilon^2)$ (для случаев (2.19) и (2.22)) или $O(\varepsilon^2)$ (для случая (2.21)). Корни характеристических уравнений линеаризованных, в окрестности рассматриваемых положений равновесия, уравнений возмущенного движения либо O(1) (для $\Gamma^{(1)}$, $\Gamma^{(22)}$ и $\Gamma^{(33)}$), либо O(1) и $O(\varepsilon)$ (для $\Gamma^{(21)}$ и $\Gamma^{(32)}$), либо O(1) и $O(\varepsilon^2)$ (для случаев (2.18), (2.19) и (2.21)), T_2 (для случаев (2.20) и (2.22)) или T_3 (для случая (2.24)), где $T_k = 4\pi\varepsilon^k$, k = 1, 2, 3.

Во всех случаях имеет место нерезонансный случай теории периодических движений Пуанкаре [13], и из каждого положения равновесия модельной системы рождается единственное, T_k -периодическое по τ_k , периодическое решение полной системы, представляемое сходящимся рядом по целым степеням ε и имеющее вид

$$z_j(t) = z_{j^*} + O(\epsilon^{\ell}), \quad Z_j(t) = Z_{j^*} + O(\epsilon^{\ell}) \quad (j = 1, 2),$$

где ℓ – порядок возмущений в полном гамильтониане.

Производя в обратной последовательности замены переменных, описанные в разд. 2, получим единственное резонансное периодическое (с периодом 4 π) движение исходной системы. При этом, если порождающими для данного движения являются положения равновесия системы с гамильтонианом $\Gamma^{(1)}$ или с гамильтонианами $\Gamma^{(21)}$, $\Gamma^{(22)}$, то получаемое движение аналитично по $\epsilon^{1/2}$ или ϵ соответственно. Если порождающим является положение равновесия системы, определяемой одним из гамильтонианов $\Gamma^{(31)}$, $\Gamma^{(32)}$, $\Gamma^{(33)}$, то в исходных переменных резонансное периодическое движение представляется в виде

$$q_j(t) = \varepsilon^{3/2} \tilde{q}_j(t,\varepsilon), \quad p_j(t) = \varepsilon^{3/2} \tilde{p}_j(t,\varepsilon) \quad (j = 1,2),$$

в котором функции $\tilde{q}_i(t,\varepsilon)$ и $\tilde{p}_i(t,\varepsilon)$ аналитичны по ε .

Периодические движения, рождающиеся из устойчивых в линейном приближении или неустойчивых положений равновесия модельных систем, также устойчивы в линейном приближении или неустойчивы. Это следует из непрерывности по малому параметру соответствующих характеристических показателей линеаризованных уравнений возмущенного движения.

4. Резонансные периодические движения спутника на слабоэллиптической орбите в окрестности цилиндрической прецессии. Рассмотрим движение динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле. Орбиту центра масс спутника предполагаем слабоэллиптической с эксцентриситетом e ($0 < e \ll 1$). Пусть ω_0 – среднее движение центра масс спутника по орбите, r – проекция вектора угловой скорости тела в орбитальной системе координат на ось динамической симметрии ($r = r_0 = \text{const}$), A и C – его экваториальный и осевой моменты инерции. Ориентацию системы главных центральных осей инерции спутника в орбитальной системе координат определим при помощи углов Эйлера ψ , θ , ϕ .

Движение динамически симметричного спутника относительно центра масс на эллиптической орбите произвольного эксцентриситета описывается каноническими дифференциальными уравнениями с функцией Гамильтона [11]

$$H = \frac{p_{\psi}^{2}}{2(1 + e\cos\nu)^{2}\sin^{2}\theta} + \frac{p_{\theta}^{2}}{2(1 + e\cos\nu)^{2}} - \frac{\cos\psi\cos\theta}{\sin\theta}p_{\psi} - \frac{\alpha\beta(1 - e^{2})^{3/2}p_{\psi}\cos\theta}{(1 + e\cos\nu)^{2}\sin^{2}\theta} - p_{\theta}\sin\psi + \frac{\alpha\beta(1 - e^{2})^{3/2}\cos\psi}{\sin\theta} + \frac{\alpha^{2}\beta^{2}(1 - e^{2})^{3}\cos^{2}\theta}{2(1 + e\cos\nu)^{2}\sin^{2}\theta} + \frac{3}{2}(\alpha - 1)(1 + e\cos\nu)\cos^{2}\theta$$
(4.1)

Здесь V — истинная аномалия, принимаемая за независимую переменную, а безразмерные параметры α и β вычисляются по формулам $\alpha = C/A$ ($0 \le \alpha \le 2$) и $\beta = r_0/\omega_0$. Система уравнений движения спутника допускает частное решение

$$\psi = \pi, \quad \theta = \frac{\pi}{2}, \quad p_{\psi} = 0, \quad p_{\theta} = 0.$$

соответствующее стационарному вращению — цилиндрической прецессии, для которой спутник равномерно вращается вокруг оси динамической симметрии, расположенной перпендикулярно плоскости орбиты. Вводя в функцию (4.1) возмущения по формулам

$$\psi = \pi + q_2, \quad \theta = \frac{\pi}{2} + q_1, \quad p_{\psi} = p_2, \quad p_{\theta} = p_1$$

и рассматривая эксцентриситет e как малый параметр, можно получить гамильтониан возмущенного движения, представляемый в виде (2.1), где ε надо заменить на e, а

$$\begin{split} H_{20} &= \frac{1}{2} p_1^2 + \frac{1}{2} p_2^2 + \left(\frac{1}{2} \alpha^2 \beta^2 - \frac{1}{2} \alpha \beta + \frac{3}{2} \alpha - \frac{3}{2}\right) q_1^2 + (\alpha \beta - 1) q_1 p_2 + q_2 p_1 + \frac{1}{2} \alpha \beta q_2^2 \\ H_{21} &= \left[\left(\frac{3}{2} (\alpha - 1) - \alpha^2 \beta^2\right) q_1^2 - (p_1^2 + p_2^2) - 2\alpha \beta q_1 p_2 \right] \cos \nu \\ H_{22} &= \frac{3}{2} (p_1^2 + p_2^2) \cos^2 \nu - \frac{3}{4} \alpha \beta q_2^2 + \frac{3}{2} \alpha \beta p_2 q_1 \cos 2\nu + \frac{3}{4} \alpha \beta (1 - 2\alpha \beta \sin^2 \nu) q_1^2 \\ H_{23} &= \alpha^2 \beta^2 \cos \nu (3 - 2\cos^2 \nu) q_1^2 - 2\cos^3 \nu (p_1^2 + p_2^2) + \alpha \beta \cos \nu (3 - 4\cos^2 \nu) q_1 p_2 \\ H_{40} &= \left(-\frac{5}{24} \alpha \beta + \frac{1}{3} \alpha^2 \beta^2 - \frac{1}{2} \alpha + \frac{1}{2} \right) q_1^4 + \left(\frac{5}{6} \alpha \beta - \frac{1}{3} \right) p_2 q_1^3 + \\ &+ \frac{1}{2} p_2^2 q_1^2 + \frac{1}{4} \alpha \beta q_1^2 q_2^2 + \frac{1}{2} p_2 q_1 q_2^2 - \frac{1}{24} \alpha \beta q_2^2 - \frac{1}{6} p_1 q_2^3 \end{split}$$

В невозмущенной (*e* = 0) задаче, отвечающей круговой орбите центра масс спутника, в плоскости параметров α, β имеются три точки

точка
$$P_1: \quad \alpha = \frac{3}{4}, \quad \beta = \frac{8}{3} \quad \left(\omega_1 = 1, \, \omega_2 = \frac{1}{2}\right)$$

точка $P_2: \quad \alpha = \frac{17}{12}, \quad \beta = \frac{24}{17} \quad \left(\omega_1 = \frac{3}{2}, \, \omega_2 = 1\right)$
точка $P_3: \quad \alpha = 1, \quad \beta = \frac{3}{2} \quad \left(\omega_1 = 1, \, \omega_2 = \frac{1}{2}\right),$
(4.2)

в которых реализуются рассматриваемые здесь резонансные случаи.

Ранее [8] в окрестности этих точек при малых значениях *е* построены области параметрического резонанса. Опираясь на теоретические результаты, полученные в предыдущих разделах данной работы, опишем резонансные периодические движения оси симметрии спутника для значений параметров, лежащих в малых окрестностях точек (4.2).

4.1. Точка P₁. Рассмотрим окрестность точки P₁, полагая

$$\alpha = \frac{3}{4}, \quad \beta = \frac{8}{3} + e\mu_1 + e^2\mu_2 + \dots$$

Первое приближение. Проведем нормализацию гамильтониана возмущенного движения в слагаемых второй и четвертой степеней относительно возмущений. Нормализованные при e = 0 слагаемые четвертой степени представляются в виде

$$H_{40} = \frac{1}{32}(y_1^2 + Y_1^2)^2 + \frac{1}{4}(y_1^2 + Y_1^2)(y_2^2 + Y_2^2) + \frac{5}{16}(y_2^2 + Y_2^2)^2,$$
(4.3)

а квадратичная часть гамильтониана в слагаемых первого порядка по *е* определяется выражением

$$K_{21} = \frac{3}{16}\mu_1(y_1^2 + Y_1^2) + \left(\frac{3}{8}\mu_1 - \frac{9}{16}\right)y_2^2 + \left(\frac{3}{8}\mu_1 + \frac{9}{16}\right)Y_2^2$$
(4.4)

Отсюда находим точки бифуркации $\mu_1 = \pm 3/2$, задающие границы внешней области параметрического резонанса, и точку $\mu_1 = 0$, вблизи которой далее определится внутренняя область неустойчивости (фиг. 16).

При помощи формул (4.3) и (4.4) приведем гамильтониан к виду (2.18). В соответствующей модельной системе с гамильтонианом $\Gamma^{(1)}$ (см. разд. 3.2.1) при $\mu_1 < 0$ имеется семейство неустойчивых сложных особых точек вида $z_2 = Z_2 = 0$, $z_1^2 + Z_1^2 = -3\mu_1$, а на интервале $-6 < \mu_1 < -3/2$ еще два семейства вида

$$z_2^2 = -(2\mu_1 + 3)/2, \quad Z_2 = 0, \quad z_1^2 + Z_1^2 = \mu_1 + 6$$

Изолированными положениями равновесия системы являются точки

$$Z_1 = Z_2 = z_1 = 0, \quad z_2^2 = -\frac{3}{5}\mu_1 + \frac{9}{10} \quad \left(\mu_1 < \frac{3}{2}\right),$$
 (4.5)

устойчивые в линейном приближении в области существования (при $\mu_1 \neq 0, \mu_1 \neq -6$), и неустойчивые точки

$$Z_1 = z_1 = z_2 = 0, \quad Z_2^2 = -\frac{3}{5}\mu_1 - \frac{9}{10} \quad \left(\mu_1 < -\frac{3}{2}\right)$$
 (4.6)

Исключим из дальнейшего рассмотрения значения $\mu_1 = 0$, $\mu_1 = -6$, относящиеся к решению (4.5). Используя результаты разд. 3.4 заключаем, что из каждого положения равновесия (4.5) и (4.6) модельной системы в $e^{1/2}$ -окрестности начала координат фазового пространства рождается единственное 4π -периодическое решение исходной полной системы, отвечающее периодическому движению оси симметрии спутника. В переменных q_1 , q_2 эти движения определяются соотношениями

$$q_{1} = \sqrt{2e}z_{20}\cos\frac{\nu}{2} + O(e^{3/2})$$

$$q_{2} = -\frac{\sqrt{2}}{50}e^{3/2} \left[15(\mu_{1}+1)\sin\frac{\nu}{2} + (71+6\mu_{1})\sin\frac{3}{2}\nu \right] z_{20} + O(e^{5/2})$$

$$q_{1} = \sqrt{2e}Z_{20}\sin\frac{\nu}{2} + O(e^{3/2})$$

$$q_{2} = \frac{\sqrt{2}}{50}e^{3/2} \left[15(\mu_{1}-1)\cos\frac{\nu}{2} + (71-6\mu_{1})\cos\frac{3}{2}\nu \right] Z_{20} + O(e^{5/2})$$

$$(4.8)$$

Равновесные значения z_{20} и Z_{20} заданы последними равенствами (4.5) и (4.6) соответственно.

Замена v на v + 2π меняет знаки решений (4.7) и (4.8) на противоположные. Поэтому каждой паре положений равновесия (4.5) и (4.6) отвечает одно и то же периодическое движение спутника.

Если в соотношениях (4.7) и (4.8) отбросить слагаемые $O(e^{3/2})$ и выше, то получаем гармонические колебания вдоль оси Oq_1 с амплитудами $O(e^{1/2})$. В случае существования обоих движений ($\mu_1 < -3/2$) они имеют друг относительно друга сдвиг по фазе, равный π ; при этом движение с меньшей ($\sim Z_{20}$) и большей ($\sim z_{20}$) по модулю амплитуде соответственно неустойчиво и устойчиво в линейном приближении.

Для строгого решения вопроса об устойчивости периодического движения (4.7) следует провести нормализацию гамильтониана в окрестности этого движения в слагаемых до четвертой степени включительно относительно возмущений. Частоты малых колебаний линеаризованных уравнений возмущенного движения вычисляются по формулам

$$\Omega_1 = \frac{3}{40}(6 + \mu_1) + O(e), \quad \Omega_2 = \frac{3}{4}\sqrt{9 - 6\mu_1} + O(e)$$

Если величины Ω_1 и Ω_2 не связаны резонансным соотношением четвертого порядка, то в симплектических полярных координатах φ_j , r_j (j = 1, 2), задаваемых формулами $z_j = \sqrt{2r_j} \sin \varphi_j$, $Z_j = \sqrt{2r_j} \cos \varphi_j$, нормализованный гамильтониан имеет вид

$$H = \Omega_1 r_1 + \Omega_2 r_2 + C_{20} r_1^2 + C_{11} r_1 r_2 + C_{02} r_2^2 + O(e)$$

$$C_{20} = -\frac{3}{40} + O(e), \quad C_{11} = -\frac{3}{\sqrt{9 - 6\mu_1}} + O(e), \quad C_{02} = -\frac{5(\mu_1 - 6)}{4(2\mu_1 - 3)} + O(e)$$
(4.9)

"Поправки" O(e) в выражениях для C_{ij} постоянны, а слагаемое O(e) в гамильтониане (4.9) имеет по r_j порядок, не меньший трех, и периодично по независимой переменной $\tau_1 = ev$ с периодом $T_1 = 4\pi e$.

Для выписанных значений коэффициентов C_{ii} имеем

$$\tilde{\Delta} = C_{11}^2 - 4C_{20}C_{02} = -\frac{3(2+\mu_1)}{8(2\mu_1-3)} + O(e),$$

откуда следует, что при достаточно малых значениях *e* и при $\mu_1 \neq -2$ величина $\tilde{\Delta}$ отлична от нуля. Поэтому исследуемое периодическое движение устойчиво для большинства (в смысле меры Лебега) начальных условий [12]. Кроме того, квадратичная форма $C_{20}r_1^2 + C_{11}r_1r_2 + C_{02}r_2^2$ отрицательно определена в области существования движения (4.7), и имеет место его формальная устойчивость [12, 14].

В области существования данных движений для значений

$$\mu_1 = (10\sqrt{145} - 118)/3 \approx 0.8053, \quad \mu_1 = 30\sqrt{105} - 306 \approx 1.4085$$
$$\mu_1 = 90\sqrt{905} - 2706 \approx 1.4896$$

реализуются резонансы четвертого порядка

$$3\Omega_1 = \Omega_2, \quad 2\Omega_1 = 2\Omega_2, \quad \Omega_1 = 3\Omega_2$$

соответственно.

Расчеты показывают, что соответствующие им резонансные слагаемые имеют порядок не меньший, чем *e*. В этих резонансных случаях можно продолжить нормализацию в членах шестой, восьмой и т.д. степеней относительно возмущений, учитывая наличие резонансов восьмого, двенадцатого и т.д. порядков при $3\Omega_1 = \Omega_2$ и $\Omega_1 = 3\Omega_2$, или резонансов четных порядков, начиная с шестого, при $\Omega_1 = \Omega_2$.

Так как частоты Ω_j несоизмеримы с частотой внешнего возмущения (~ e^{-1}), то независимая переменная τ_1 на каждом этапе будет уничтожаться. В результате получаем автономный гамильтониан, являющийся формальным первым интегралом, главная (линейная по r_j) часть которого положительно определена. В достаточно малой окрестности начала координат этот формальный интеграл также положительно определен, поэтому для рассматриваемых резонансных случаев периодическое движение (4.7) формально устойчиво. *Второе приближение*. При $\mu_1 = 0$ имеем

$$K_{21} = \frac{9}{16}(Y_2^2 - y_2^2), \tag{4.10}$$

а нормализованная квадратичная часть *К*₂₂ такова:

$$K_{22} = \left(\frac{3}{16}\mu_2 - \frac{33}{20}\right)y_1^2 + \left(\frac{3}{16}\mu_2 - \frac{3}{20}\right)Y_1^2 + \left(\frac{3}{8}\mu_2 - \frac{357}{1280}\right)(y_2^2 + Y_2^2)$$
(4.11)

Точками бифуркации, задающими внутреннюю область неустойчивости (фиг. 16), будут $\mu_2 = 4/5, \mu_2 = 44/5.$

Используя соотношения (4.10) и (4.11), составим гамильтониан (2.19) с модельной частью $\Gamma^{(21)}$. В соответствующей модельной системе имеются положения равновесия

$$Z_1 = Z_2 = z_2 = 0, \quad z_1^2 = 132/5 - 3\mu_2 \quad (\mu_2 < 44/5)$$
$$z_1 = z_2 = Z_2 = 0, \quad Z_1^2 = 12/5 - 3\mu_2 \quad (\mu_2 < 4/5)$$

неустойчивые в областях существования.

В исходной полной системе этим решениям отвечают два неустойчивых, аналитических по *е* периодических движения оси симметрии спутника, определяемые формулами

$$q_1 = 0.8e^2 z_{10}(-5 + \cos 2\nu) + O(e^3), \quad q_2 = -ez_{10}\sin\nu + e^2 z_{10}\sin 2\nu + O(e^3)$$
$$q_1 = 0.8e^2 Z_{10}\sin 2\nu + O(e^3), \quad q_2 = eZ_{10}\cos\nu + e^2 Z_{10}(1 - \cos 2\nu) + O(e^3)$$

Если пренебречь слагаемыми $O(e^2)$ и выше, то эти соотношения описывают гармонические колебания вдоль оси Oq_2 , происходящие с амплитудами порядка *е* и имеющие друг относительно друга (в случае существования обоих движений) сдвиг по фазе, равный π .

4.2. Точка Р₂. Рассмотрим теперь окрестность точки Р₂, полагая

$$\alpha = \frac{17}{12}, \quad \beta = \frac{24}{17} + e\mu_1 + e^2\mu_2 + e^3\mu_3 + \dots$$

Нормализованная форма четвертой степени H_{40} имеет вид

$$H_{40} = -\frac{1}{48}(y_1^2 + Y_1^2)^2 + \frac{1}{12}(y_2^2 + Y_2^2)(y_1^2 + Y_1^2) + \frac{1}{32}(y_2^2 + Y_2^2)^2, \qquad (4.12)$$

а нормализованная квадратичная часть K_{21} на этапе *первого приближения* такова:

$$K_{21} = \frac{17}{72}\mu_1(y_1^2 + Y_1^2) + \frac{17}{48}\mu_1(y_2^2 + Y_2^2)$$

При $\mu_1 \neq 0$ тривиальное положение равновесия устойчиво в линейном приближении. Других положений равновесия модельная система первого приближения не имеет (см. разд. 3.3.2).

Второе приближение. При $\mu_1 = 0$ имеем $K_{21} = 0$, а

$$K_{22} = \left(\frac{17}{72}\mu_2 - \frac{1965}{3584}\right)(y_1^2 + Y_1^2) + \left(\frac{17}{48}\mu_2 + \frac{15}{28}\right)Y_2^2 + \left(\frac{17}{48}\mu_2 + \frac{205}{252}\right)y_2^2$$
(4.13)

Точки бифуркации $\mu_2 = -820/357$ и $\mu_2 = -180/119$ задают границы первой области неустойчивости, а для значения $\mu_2 = 17685/7616$ на этапе следующего приближения будет определена вторая область неустойчивости. Две области неустойчивости не имеют общих точек, их взаимное расположение соответствует фиг. 1г.

При помощи соотношений (4.12) и (4.13) получаем гамильтониан (2.20) с модельной частью $\Gamma^{(22)}$. Положениями равновесия соответствующей модельной системы являются семейства неустойчивых сложных особых точек

$$z_{2} = Z_{2} = 0, \quad z_{1}^{2} + Z_{1}^{2} = \frac{7616\mu_{2} - 17\,685}{1344} \quad \left(\mu_{2} > \frac{17\,685}{7616}\right)$$

$$z_{2} = 0, \quad Z_{2}^{2} = -\frac{119}{33}\mu_{2} + \frac{3015}{1232}, \quad z_{1}^{2} + Z_{1}^{2} = -\frac{17}{11}\mu_{2} - \frac{40\,725}{4928} \quad \left(\mu_{2} < -\frac{40\,725}{7616}\right)$$

$$Z_{2} = 0, \quad z_{2}^{2} = -\frac{119}{33}\mu_{2} + \frac{415}{336}, \quad z_{1}^{2} + Z_{1}^{2} = -\frac{17}{11}\mu_{2} - \frac{14\,365}{1344} \quad \left(\mu_{2} < -\frac{9295}{1344}\right),$$

а также изолированные равновесия

$$Z_1 = Z_2 = z_1 = 0, \quad z_2^2 = -\frac{17}{3}\mu_2 - \frac{820}{63} \quad \left(\mu_2 < -\frac{820}{357}\right)$$
 (4.14)

неустойчивые в области существования (при $\mu_2 = -9295/1344 - сложные особые точ-ки)$, и

$$Z_1 = z_1 = z_2 = 0, \quad Z_2^2 = -\frac{17}{3}\mu_2 - \frac{60}{7} \quad \left(\mu_2 < -\frac{180}{119}\right)$$
 (4.15)

устойчивые в линейном приближении в области существования (при $\mu_2 = -40725/7616 -$ сложные особые точки).

Для каждого из случаев (4.14) и (4.15), исключив сложные особые точки, найдем аналитические по e резонансные периодические движения исходной полной системы. Получаем неустойчивое движение вида

$$q_1 = z_{20}e^2 \left(\frac{4}{9} - \frac{12}{7}\cos 2\nu\right) + O(e^3), \quad q_2 = ez_{20}\sin\nu + O(e^2)$$
(4.16)

и устойчивое в линейном приближении движение вида

$$q_1 = -\frac{12}{7}e^2 Z_{20}\sin 2\nu + O(e^3), \quad q_2 = -eZ_{20}\cos\nu + O(e^2)$$
 (4.17)

При учете в этих выражениях слагаемых не выше первого порядка по e, имеем гармонические колебания вдоль оси Oq_2 с амплитудой порядка O(e).

Проведем нелинейный анализ устойчивости движения (4.17). Частоты малых линейных колебаний линеаризованных уравнений возмущенного движения определяются выражениями

$$\Omega_1 = -\frac{17}{36}\mu_2 - \frac{4525}{896} + O(e), \quad \Omega_2 = \frac{\sqrt{-105(119\mu_2 + 180)}}{126} + O(e)$$

Нормализованный гамильтониан возмущенного движения при отсутствии резонансов четвертого порядка приводится к виду (4.9), причем

$$C_{20} = -\frac{11}{36} + O(e), \quad C_{11} = -\frac{2\sqrt{105}}{9\sqrt{-119\mu_2 - 180}} + O(e)$$
$$C_{02} = -\frac{119\mu_2 + 40}{16(119\mu_2 + 180)} + O(e), \quad \tilde{\Delta} = -\frac{3927\mu_2 + 3560}{432(119\mu_2 + 180)} + O(e)$$

Точка $\mu_2 = -3560/3927$, для которой главная часть величины $\tilde{\Delta}$ обращается в нуль, не входит в область существования движения (4.17). Кроме того, в области существования коэффициенты C_{ij} отрицательны при достаточно малых значениях *e*. Поэтому в нерезонансном случае рассматриваемое движение устойчиво для большинства начальных условий и формально устойчиво (кроме исключенной точки $\mu_2 = -40725/7616$).

Резонанс $2\Omega_1 = 2\Omega_2$ четвертого порядка реализуется для $\mu_2 \approx -11.1922$, причем резонансные слагаемые в членах четвертой степени нормализованного гамильтониана имеют порядок не меньший, чем *е*. Повторяя рассуждения, проведенные для резонансных случаев решения (4.7), заключаем, что в данном резонансном случае движение (4.17) формально устойчиво.

Третье приближение. Для значений $\mu_1 = 0$, $\mu_2 = 17685/7616$ проводим нормализацию в слагаемых $O(e^3)$ в квадратичной части гамильтониана. Имеем в результате

$$K_{22} + eK_{23} = \left(\frac{17}{48}e\mu_3 + \frac{105535}{64512}\right)y_2^2 + \left(\frac{17}{48}e\mu_3 + \frac{9735}{7168}\right)Y_2^2 + \frac{17}{72}e[(\mu_3 + \mu_3^+)y_1^2 + (\mu_3 + \mu_3^-)Y_1^2] \\ \mu_3^{\pm} = \pm \frac{40\,285}{8704}$$

$$(4.18)$$

Отсюда находим, что точками бифуркации, определяющими границы второй области неустойчивости, будут $\mu_3 = \mu_3^{\pm}$.

При помощи соотношений (4.12) и (4.18) получим гамильтониан (2.22). Положения равновесия модельной системы с гамильтонианом $\Gamma^{(32)}$ описываются соотношениями

$$z_{2} = Z_{2} = Z_{1} = 0, \quad z_{1}^{2} = \frac{17}{3}(\mu_{3} - \mu_{3}^{-}) \quad (\mu_{3} > \mu_{3}^{-})$$
$$z_{2} = Z_{2} = z_{1} = 0, \quad Z_{1}^{2} = \frac{17}{3}(\mu_{3} - \mu_{3}^{+}) \quad (\mu_{3} > \mu_{3}^{+})$$

В области существования равновесия из первой пары устойчивы в линейном приближении, а из второй неустойчивы.

В исходных переменных первой паре соответствует устойчивое (в линейном приближении) 4π-периодическое движение оси спутника вида

$$q_{1} = -\frac{\sqrt{6}}{3}e^{3/2}z_{10}\cos\frac{3}{2}v + \frac{\sqrt{6}}{32}e^{5/2}z_{10}\left(-6\cos\frac{v}{2} + 11\cos\frac{5}{2}v\right) + O(e^{7/2})$$

$$q_{2} = \frac{8\sqrt{6}}{63}e^{5/2}z_{10}\left(-7\sin\frac{v}{2} + 2\sin\frac{5}{2}v\right) + O(e^{7/2}),$$
(4.19)

а второй паре – неустойчивое периодическое движение вида

$$q_{1} = -\frac{\sqrt{6}}{3}e^{3/2}Z_{10}\sin\frac{3}{2}v + \frac{\sqrt{6}}{32}e^{5/2}Z_{10}\left(-6\sin\frac{v}{2} + 11\sin\frac{5}{2}v\right) + O(e^{7/2})$$
$$q_{2} = -\frac{8\sqrt{6}}{63}e^{5/2}Z_{10}\left(-7\cos\frac{v}{2} + 2\cos\frac{5}{2}v\right) + O(e^{7/2})$$

Если пренебречь слагаемыми $O(e^{5/2})$ и выше, то данные движения – гармонические колебания вдоль оси Oq_1 с амплитудой $O(e^{3/2})$.

Продолжая нормализацию, приведем гамильтониан возмущенного движения для решения (4.19) к виду (4.9), где с точностью до слагаемых *O*(*e*) включительно

$$\Omega_{1} = -\frac{\sqrt{40\,285 \times 8704(\mu_{3} + \mu_{3}^{+})}}{9216}e$$

$$\Omega_{2} = \frac{\sqrt{1947 \times 21107}}{10\,752} \bigg[5 + \frac{946\,435(2176\mu_{3} + 5755)}{739\,715\,922}e e$$

$$C_{20} = \frac{(2176\mu_{3} + 40\,285)}{6 \times 8704(\mu_{3} + \mu_{3}^{+})}e, \quad C_{02} = \frac{4\,108\,578\,371}{8\,876\,591\,064}e$$

$$C_{11} = -\frac{19\,315}{369\,857\,961} \frac{\sqrt{3 \times 649 \times 21107\mu_{3}^{+}}}{\sqrt{\mu_{3} + \mu_{3}^{+}}}e$$

Отсюда находим

$$\tilde{\Delta} = -\frac{8\,940\,266\,535\,296\mu_3 + 105\,397\,704\,759\,235}{13\,314\,886\,596 \times 8704(\mu_3 + \mu_3^+)}e^2 + O(e^3)$$

При достаточно малых значениях *е* частоты Ω_1 и Ω_2 несоизмеримы и, кроме того, в области существования рассматриваемого решения справедливы соотношения $C_{20} > 0$ и $\tilde{\Delta} < 0$. Таким образом, для всех значений μ_3 из области существования периодическое движение (4.19) устойчиво для большинства начальных условий и формально устойчиво.

Замечание. Исследование резонансных точек P_1 и P_2 и их окрестностей, проведенное при фиксированном значении одного из параметров (α), опирается на теоретические результаты, полученные в разд. 1–3. Разработанные подходы могут быть применены и при рассмотрении полной (трехмерной) окрестности резонансной точки. При этом общая теория была бы слишком громоздкой из-за большого числа вариантов взаимного расположения областей параметрического резонанса и бифуркационных поверхностей в пространстве параметров. Поэтому такие рассмотрения лучше проводить для конкретной задачи, что в качестве примера будет выполнено для третьей резонансной точки P_3 .

4.3. Точка Р₃. Рассмотрим окрестность точки Р₃, полагая

$$\alpha = 1 + ev_1, \quad \beta = \frac{3}{2} + e\mu_1 + e^2\mu_2 \quad (v_1 \neq 0)$$
(4.20)

Нормализация гамильтониана возмущенного движения в слагаемых четвертой степени при e = 0 и квадратичной части в слагаемых порядка O(e) дает

$$K_{40} = \frac{1}{8}(y_2^2 + Y_2^2)^2, \quad K_{21} = \frac{V_1}{2}(y_1^2 + Y_1^2) + \frac{1}{4}(2\mu_1 + 5\nu_1)(y_2^2 + Y_2^2)$$
(4.21)

При $v_1 \neq -(2/5)\mu_1$ тривиальное положение равновесия системы устойчиво в линейном приближении. В модельной системе первого приближения других положений равновесия нет. В случае $v_1 = -(2/5)\mu_1$ проведем нормализацию квадратичной части гамильтониана в слагаемых порядка до $O(e^2)$ включительно, получая в итоге

$$K_{21} + eK_{22} = \left(-\frac{\mu_1}{5} + e\frac{3\mu_1^2}{25}\right)(y_1^2 + Y_1^2) + e\frac{\mu_2 - \mu_2^+}{2}y_2^2 + e\frac{\mu_2 - \mu_2^-}{2}Y_2^2$$

$$\mu_2^{\pm} = \pm \frac{7}{5}\mu_1 + \frac{22}{25}\mu_1^2$$
(4.22)

Отсюда следует, что на границах области параметрического резонанса

$$\mu_2 = \mu_2^{\pm} \tag{4.23}$$

При помощи соотношений (4.21) и (4.22) составим гамильтониан (2.19) с модельной частью $\Gamma^{(21)}$. При выполнении условий $\mu_2 < \mu_2^+$ и $\mu_2 < \mu_2^-$ в отвечающей ему модельной системе имеются положения равновесия, для которых $z_1 = Z_1 = 0$, а

$$Z_2 = 0, \quad z_2^2 = 2(\mu_2^+ - \mu_2) \quad \text{if} \quad z_2 = 0, \ Z_2^2 = 2(\mu_2^- - \mu_2)$$
(4.24)

соответственно. В области существования первая пара равновесных точек устойчива в линейном приближении при $\mu_1 > 0$ и неустойчива при $\mu_1 < 0$, а вторая пара, наоборот, устойчива в линейном приближении при $\mu_1 < 0$ и неустойчива при $\mu_1 > 0$.

В исходных переменных каждой паре точек (4.24) отвечает аналитическое по e, 4π -периодическое по v движение, описываемое с точностью до слагаемых $O(e^2)$ включительно соотношениями

$$q_{1} = -\frac{\sqrt{6}ez_{20}}{3}\cos\frac{\nu}{2} - \frac{\sqrt{6}e^{2}z_{20}}{18} \left[(8\mu_{1} + 9)\cos\frac{\nu}{2} - 9\cos\frac{3}{2}\nu \right]$$

$$q_{2} = -\frac{\sqrt{6}ez_{20}}{3}\sin\frac{\nu}{2} + \frac{\sqrt{6}e^{2}z_{20}}{90} \left[(32\mu_{1} + 45)\sin\frac{\nu}{2} + 45\sin\frac{3}{2}\nu \right]$$
(4.25)

И

$$q_{1} = -\frac{\sqrt{6eZ_{20}}}{3}\sin\frac{\nu}{2} - \frac{\sqrt{6e^{2}Z_{20}}}{18} \left[(8\mu_{1} - 9)\sin\frac{\nu}{2} - 9\sin\frac{3}{2}\nu \right]$$

$$q_{2} = \frac{\sqrt{6eZ_{20}}}{3}\cos\frac{\nu}{2} - \frac{\sqrt{6e^{2}Z_{20}}}{90} \left[(32\mu_{1} - 45)\cos\frac{\nu}{2} + 45\cos\frac{3}{2}\nu \right]$$
(4.26)

Если в этих соотношениях пренебречь слагаемыми $O(e^2)$ и выше, то в плоскости величин q_1 , q_2 имеем движения по окружностям с радиусами O(e), происходящие в направлении против часовой стрелки. В областях существования обоих движений их фазы различаются на π .

Выводы об устойчивости (в линейном приближении) и неустойчивости найденных периодических движений совпадают, в соответствующих областях, с аналогичными выводами для порождающих их положений равновесия модельной системы.

Для геометрической интерпретации полученных результатов перепишем уравнения границ области параметрического резонанса (в данном приближении) в эквивалентном виде, с учетом соотношений (4.20) и (4.23):

$$\beta = \frac{3}{2} - \frac{5}{2}(\alpha - 1) \mp \frac{7}{2}(\alpha - 1)e + \frac{11}{2}(\alpha - 1)^2$$

Верхний и нижний знаки отвечают аналогичным знакам в условии (4.23).

На фиг. 3 область параметрического резонанса в окрестности точки P_3 построена в плоскости параметров α , β для значения e = 0.15. В части плоскости, расположенной выше и правее этой области, в окрестности невозмущенного движения (цилиндрической прецессии) нет периодических движений спутника. Внутри части области параметрического резонанса, задаваемой условием $\alpha < 1$, существует и устойчиво в линей-

ном приближении периодическое движение (4.25). В малой ($O(e^2)$) окрестности, расположенной ниже и левее этой части области неустойчивости, существуют оба периодических движения (4.25) и (4.26), первое из которых остается устойчивым в линейном приближении, а второе неустойчиво. В случае $\alpha > 1$ при описании области существования и результатов устойчивости движения (4.25) и (4.26) следует поменять местами.

Работа выполнена в рамках государственного задания (3.3858.2017/4.6).

СПИСОК ЛИТЕРАТУРЫ

- 1. Якубович В.А., Старжинский В.М. Параметрический резонанс в линейных системах. М.: Наука, 1987. 328 с.
- Маркеев А.П. О поведении нелинейной гамильтоновой системы с одной степенью свободы на границе области параметрического резонанса // ПММ. 1995. Т. 59. Вып. 4. С. 569–580.
- 3. *Маркеев А.П.* Параметрический резонанс и нелинейные колебания тяжелого твердого тела в окрестности его плоских вращений // Изв. РАН. МТТ. 1995. № 5. С. 34–44.
- 4. *Холостова О.В.* Параметрический резонанс в задаче о нелинейных колебаниях спутника на эллиптической орбите // Космич. исслед. 1996. Т. 3. Вып. 3. С. 312–316.
- Холостова О.В. О периодических движениях неавтономной гамильтоновой системы с двумя степенями свободы при параметрическом резонансе основного типа // ПММ. 2002. Т. 66. Вып. 4. С. 540–551.
- 6. *Маркеев А.П*. О кратном резонансе в линейных системах Гамильтона // ДАН. 2005. Т. 402. № 3. С. 539–343.
- 7. *Маркеев А.П.* Об одном особом случае параметрического резонанса в задачах небесной механики // Письма в Астрон. ж. 2005. Т. 31. Вып. 5. С. 388–394.

- 8. *Маркеев А.П.* О кратном параметрическом резонансе в системах Гамильтона // ПММ. 2006. Т. 70. Вып. 2. С. 200–220.
- 9. *Маркеев А.П.* Линейные гамильтоновы системы и некоторые задачи об устойчивости движения спутника относительно центра масс. М.; Ижевск: НИЦ "Регул. и хаотич. динамика", Ин-т компьют. исследований, 2009. 396 с.
- 10. *Холостова О.В.* О периодических движениях неавтономной гамильтоновой системы в одном случае кратного параметрического резонанса // Нелин. дин. 2017. Т. 13. № 4. С. 477–504.
- 11. *Маркеев А.П.* О вращательном движении динамически симметричного спутника на эллиптической орбите // Космич. исслед. 1967. Т. 5. Вып. 4. С. 530–539.
- 12. Маркеев А.П. Точки либрации в небесной механике и космодинамике. М.: Наука, 1978. 312 с.
- 13. Малкин И.Г. Некоторые задачи теории нелинейных колебаний. М.: Гостехиздат, 1956. 492 с.
- 14. *Glimm J.* Formal stability of Hamiltonian systems // Comm. Pure Appl. Math. 1964. № 4. P. 509–526.