УДК 517.956.3

ЗАДАЧА О ПРОДОЛЬНЫХ КОЛЕБАНИЯХ ВЯЗКОУПРУГОГО ПО МОДЕЛИ МАКСВЕЛЛА СТЕРЖНЯ

© 2023 г. В. И. Корзюк^{1,2,*}, Я. В. Рудько^{1,**}, В. В. Колячко^{2,***}

¹Институт математики Национальной академии наук Беларуси, Минск, Беларусь ²Белорусский государственный университет, Минск, Беларусь

*e-mail: korzyuk@bsu.by **e-mail: janycz@yahoo.com by ***e-mail: vlad.kolyachko@vandex.ru

Поступила в редакцию 14.11.2022 г. После доработки 20.04.2023 г. Принята к публикации 25.04.2023 г.

В настоящей работе исследуется корректность по Адамару задачи Коши для одномерной гиперболической системы уравнений с частными производными, описывающей продольные колебания вязкоупругого по модели Максвелла стержня постоянного поперечного сечения. Также обсуждаются некоторые свойства системы и ее решений: закон сохранения модифицированной "энергии", конечная скорость распространения волн, дисперсия и диссипация решений.

Ключевые слова: продольные колебания, модель Максвелла, задача Коши, корректно поставленная задача

DOI: 10.31857/S0032823523030086, EDN: ZTPLMI

1. Введение. В строительстве различных сооружений очень часто приходится иметь дело с колебаниями сплошных сред. Поэтому изучение математических моделей таких явлений представляется целесообразным. В данной работе мы исследуем одну из таких моделей, представляющую систему двух дифференциальных уравнений с частными производными, исследуем задачу Коши для нее и обсуждаем качественные свойства решений.

В разд. 2, исходя из соображений механики сплошных сред, выписываются уравнения для описания состояния стержня. В разд. 3 формулируется задача Коши для определения свободных и/или вынужденных колебаний стержня. В разд. 4 система записывается в матричной форме, исследуется гиперболичность системы и непрерывная зависимость решения задачи Коши от начальных данных. В разд. 5 отыскиваются решения в виде плоских волн и экспоненциальных волн, устанавливаются дисперсионные и диссипативные свойства. В разд. 6 устанавливается закон сохранения модифицированной "энергии" и единственность решения задачи Коши. В разд. 7 доказывается, что решения обладают конечной скоростью распространения. В разд. 8 и 9 в явном аналитическом виде отыскивается решение задачи Коши о свободных и вынужденных колебаниях стержня соответственно. В разд. 10 подводится заключение данной работы.

2. Физическая модель. Рассмотрим в одномерном случае вязкоупругий по модели Максвелла стержень постоянного поперечного сечения, свойства материала которого не зависят от времени и координаты. Для него верно уравнение движения [1]

$$\rho \partial_t^2 u = \partial_x \sigma + f, \tag{2.1}$$

где f – внешняя объемная сила, $\rho > 0$ – плотность материала стержня, u – дилатации (смещения) стержня, σ – напряжения стержня. А связь между деформацией ε и напряжением σ подчиняется закону [2, 3]

$$\sigma + \beta \partial_t \sigma = \gamma \partial_t \varepsilon, \tag{2.2}$$

где $\beta > 0$ – время релаксации, $\gamma \beta^{-1} > 0$ – мгновенный модуль упругости. Подставив определения деформации $\varepsilon = \partial_x u$ в уравнение (2.2), получим

$$\sigma + \beta \partial_t \sigma = \gamma \partial_t \partial_x u \tag{2.3}$$

Из связи между деформацией ϵ и напряжением σ стержня следует интегральное уравнение Вольтерры второго рода

$$\varepsilon(t) = \frac{\beta\sigma(t)}{\gamma} + \frac{1}{\gamma} \int_{-\infty}^{t} \sigma(\tau) d\tau$$
(2.4)

В формуле (2.4) мы пренебрегаем начальной деформацией в силу отдаления начального момента времени в минус бесконечность [3].

3. Постановка задачи Коши. Таким образом, для определения свободных колебаний стержня, требуется найти решение системы уравнений

$$\rho \frac{\partial^2 u}{\partial t^2}(t,x) = \frac{\partial w}{\partial x}(t,x), \quad \gamma \frac{\partial^2 u}{\partial x \partial t}(t,x) = \beta \frac{\partial w}{\partial t}(t,x) + w(t,x); \quad (t,x) \in (0,\infty) \times \mathbb{R},$$
(3.1)

при начальных условиях

$$w(0, x) = \mu(x), \quad u(0, x) = \varphi(x), \quad \partial_t u(0, x) = \psi(x); \quad x \in \mathbb{R}$$
 (3.2)

в предположении достаточной гладкости функций μ, φ, ψ. В уравнении (3.1) для удобства буквой *w* обозначено напряжения стержня.

Если же требуется определить колебания стержня, происходящие под действием внешней силы, то вместо уравнений (3.1) надо взять уравнения

$$\rho \frac{\partial^2 u}{\partial t^2}(t,x) = \frac{\partial w}{\partial x}(t,x) + f(t,x), \quad \gamma \frac{\partial^2 u}{\partial x \partial t}(t,x) = \beta \frac{\partial w}{\partial t}(t,x) + w(t,x); \quad (t,x) \in (0,\infty) \times \mathbb{R}$$
(3.3)

4. Матричное представление системы уравнений. Введем в систему уравнений (3.1) функцию $v := \partial_t u$. Тогда имеет место матричное представление

$$\mathbf{u}_t = A\mathbf{u}_x + B\mathbf{u},\tag{4.1}$$

где

$$\mathbf{u} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \quad \mathbf{u}_t = \begin{pmatrix} \partial_t u \\ \partial_t v \\ \partial_t w \end{pmatrix}, \quad \mathbf{u}_x = \begin{pmatrix} \partial_x u \\ \partial_x v \\ \partial_x w \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \rho^{-1} \\ 0 & \gamma \beta^{-1} & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\beta^{-1} \end{pmatrix}$$

Заметим, что собственными значениями матрицы – A являются числа $\lambda_1 = 0$, $\lambda_2 = -\sqrt{\gamma\beta^{-1}\rho^{-1}}$ и $\lambda_3 = \sqrt{\gamma\beta^{-1}\rho^{-1}}$. При условии $\gamma\beta^{-1}\rho^{-1} > 0$ это будут три различных действительных числа. Значит, что если $\gamma\beta^{-1}\rho^{-1} > 0$, то система (3.1) является гиперболической по [4], и строго гиперболической по классификации [5].

Применим к (4.1) преобразование Фурье по переменной х в виде

$$\mathcal{F}[\bullet](t,\omega) = \hat{\bullet}(t,\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \bullet(t,x) \exp(-i\omega x) dx; \quad (t,\omega) \in [0,\infty) \times \mathbb{R},$$

и запишем Фурье-образ системы (4.1)

$$\hat{\mathbf{u}}_t(t,\omega) = Q(\omega)\hat{\mathbf{u}}(t,\omega), \tag{4.2}$$

где разрешающая матрица $Q(\omega) = i\omega A + B$. Рассмотрим матрицу

$$\exp(Q(\omega)t) = \begin{pmatrix} 1 & \exp(t) & 1 \\ 1 & 1 & \exp(-it\omega\rho^{-1}) \\ 1 & \exp(it\gamma\omega\beta^{-1}) & \exp(-t\beta^{-1}) \end{pmatrix},$$

ее норма оценивается как

$$\left\|\exp(Q(\omega)t)\right\|_{\infty} \le \max\left\{3, 2 + \exp\left(t\right), 2 + \exp\left(-\frac{t}{\beta}\right)\right\} \le C_t = 2 + \exp\left(t\right)$$
(4.3)

Так как норма матрицы $\exp(Q(\omega)t)$ ограничена независимо от ω , то решение задачи Коши (3.1)–(3.2) непрерывно зависит от начальных данных [4].

Этими методами аналогично доказывается гиперболичность системы (3.3) при условии $\gamma\beta^{-1}\rho^{-1} > 0$ и непрерывная зависимость решения задачи Коши (3.2)–(3.3) от начальных данных.

5. Волновые решения. Исследуем систему (3.1) на наличие решений в виде плоских волн. Такие решения имеют вид

$$u(t,x) = U(kx - \omega t + \phi), \quad w(t,x) = W(kx - \omega t + \phi), \tag{5.1}$$

где k – волновое число, ω – циклическая частота, ϕ – фаза. Если при этом $(U, W)^T \neq (0, 0)^T$ и $U, U', U'', W, W', W'' \rightarrow 0$ при $kx - \omega t + \phi = z \rightarrow \pm \infty$, то скажем, что такое имеет вид уединенной волны.

Подставляя (5.1) в (3.1) получаем систему обыкновенных дифференциальных уравнений для определения функций *U* и *W*

$$\begin{cases} \rho \omega^2 U''(z) - kW'(z) = 0\\ \beta \omega W'(z) - W(z) - k\gamma \omega U''(z) = 0 \end{cases}$$

Ее решение может быть представлено в виде

$$U(z) = \sum_{i=1}^{3} c_i U_i(z), \quad W(z) = \sum_{i=1}^{3} c_i W_i(z), \tag{5.2}$$

где

$$U_{1}(z) = 1, \quad U_{2}(z) = z, \quad W_{1}(z) = W_{2}(z) = 0, \quad W_{3}(z) = \exp\left(\frac{z\rho\omega}{\beta\rho\omega^{2} - k^{2}\gamma}\right),$$
$$U_{3}(z) = \frac{1}{\rho^{2}\omega^{3}} \left[k^{3}\gamma - k\rho\omega(z + \beta\omega) + \exp\left(\frac{z\rho\omega}{\beta\rho\omega^{2} - k^{2}\gamma}\right)k\left(\beta\rho\omega^{2} - k^{2}\gamma\right)\right],$$

и *c*₁, *c*₂ и *c*₃ – произвольные константы.

Теорема 1. Система уравнений (3.1), допускает решения в виде плоских волн, которые представляются в виде (5.1)–(5.2).

Доказательство следует из рассуждений выше.

Из формул (5.1) и (5.2) также следует

Утверждение 1. Система уравнений (3.1) не имеет решений в виде уединенных волн (солитонов).

Доказательство. Достаточно показать, что условие $U, U', W \to 0$ при $kx - \omega t + \phi = z \to \pm \infty$ влечет U = W = 0. Обозначим $\alpha = \frac{\rho \omega}{\beta \rho \omega^2 - k^2 \gamma}$. Тогда, в силу формулы $W(z) = c_3 W_3(z) = c_3 \exp(\alpha z)$, имеют место представления

$$\lim_{z \to +\infty} W(z) = \begin{cases} +\infty, & \alpha > 0 \land c_3 > 0 \\ -\infty, & \alpha > 0 \land c_3 < 0 \\ c_3, & \alpha = 0 \\ 0, & \alpha < 0 \end{cases} \lim_{z \to -\infty} W(z) = \begin{cases} +\infty, & \alpha < 0 \land c_3 > 0 \\ -\infty, & \alpha < 0 \land c_3 < 0 \\ c_3, & \alpha = 0 \\ 0, & \alpha > 0 \end{cases}$$

из которых следует, что $\lim_{z \to +\infty} W(z) = \lim_{z \to -\infty} W(z) = 0$ если и только если $c_3 = 0$. В таком случае $U(z) = c_1 + c_2 z$ и $U'(z) = c_2$. А в силу $c_2 = \lim_{z \to +\infty} U'(z) = \lim_{z \to -\infty} U'(z) = 0$ имеем $U(z) = c_1$ и аналогично получаем $c_1 = \lim_{z \to +\infty} U(z) = \lim_{z \to -\infty} U(z) = 0$. Значит, U(z) = W(z) = 0.

Теперь исследуем систему (3.1) на наличие решений в виде экспоненциальных волн. Это комплексно-значные функции вида

$$u(t, x) = U_0 \exp(i(kx - \omega t)), \quad w(t, x) = W_0 \exp(i(kx - \omega t)),$$
(5.3)

где $U_0 \in \mathbb{C}$, $W_0 \in \mathbb{C}$ – комплексные амплитуды, $k \in \mathbb{R}$ – волновое число, $\omega \in \mathbb{C}$ – временная частота. Поскольку такие решения представляют собой бесконечно-дифференцируемые функции, то дифференцируя первое уравнение системы (3.1) по *x*, а вто-

рое по *t* и выражая $\partial_t^2 \partial_x u$ из обеих уравнений, получаем

$$\frac{\partial^2 w}{\partial t^2} - \frac{\gamma}{\rho\beta} \frac{\partial^2 w}{\partial x^2} + \frac{1}{\beta} \frac{\partial w}{\partial t} = 0$$

Подставляя в последнее уравнение представление (5.3), мы находим

$$(k^{2}\gamma - \rho\omega(\beta\omega + i))w(t, x) = 0$$

Отсюда

$$\omega = \frac{-i \pm \sqrt{4k^2 \beta \gamma \rho^{-1} - 1}}{2\beta}$$
(5.4)

Можно видеть, что скорость распространения волн $\omega/|k|$ нелинейно зависит от частоты. То, что волны, описываемые системой уравнений (3.1), обладают дисперсией. Интегрируя первое уравнение из (3.1) относительно *u*, получаем

$$u(t,x) = -\frac{ikW_0}{\rho\omega^2} \exp(i(kx - \omega t)), \qquad (5.5)$$

T.e. $U_0 = -\frac{ikW_0}{\rho\omega^2}$.

Пользуясь данными представлениями, можно найти фазовый сдвиг между волнами смещений и напряжений:

$$\arg(U_0) - \arg(W_0) = \frac{3\pi}{2} + \arg\left(\frac{k}{\omega^2}\right) = \frac{3\pi}{2} + \arg(k) - 2\arg\left(-i \pm \sqrt{4k^2\beta\gamma\rho^{-1} - 1}\right)$$

Рассмотрим теперь случай, что ω это чисто мнимое число (такое произойдет, если будет верно неравенство $4k^2\beta\gamma\rho^{-1} - 1 < 0$). В таком случае

$$w(t,x) = W_0 \exp\left(ikx + \left(\frac{-1 \pm \sqrt{1 - 4k^2\beta\gamma\rho^{-1}}}{2\beta}\right)t\right)$$
$$u(t,x) = \frac{ikW_0}{\rho} \left(\frac{-1 \pm \sqrt{1 - 4k^2\beta\gamma\rho^{-1}}}{2\beta}\right)^{-2} \exp\left(ikx + \left(\frac{-1 \pm \sqrt{1 - 4k^2\beta\gamma\rho^{-1}}}{2\beta}\right)t\right)$$

Полагая $W_0 = |W_0| \exp(i\phi) (|W_0| \in [0,\infty)$ и $\phi \in [0,2\pi)$) и беря вещественную и мнимую части от решений *и* и *w*, находим что

$$w(t,x) = |W_0| \exp\left(\left(\frac{-1 \pm \sqrt{1 - 4k^2 \beta \gamma \rho^{-1}}}{2\beta}\right)t\right) \cos\left(kx + \phi\right)$$
$$u(t,x) = \frac{k|W_0|}{\rho} \left(\frac{-1 \pm \sqrt{1 - 4k^2 \beta \gamma \rho^{-1}}}{2\beta}\right)^{-2} \exp\left(\left(\frac{-1 \pm \sqrt{1 - 4k^2 \beta \gamma \rho^{-1}}}{2\beta}\right)t\right) \cos\left(kx + \phi + \frac{\pi}{2}\right)$$

И

$$w(t,x) = |W_0| \exp\left(\left(\frac{-1 \pm \sqrt{1 - 4k^2 \beta \gamma \rho^{-1}}}{2\beta}\right)t\right) \sin\left(kx + \phi\right)$$
$$u(t,x) = \frac{k|W_0|}{\rho} \left(\frac{-1 \pm \sqrt{1 - 4k^2 \beta \gamma \rho^{-1}}}{2\beta}\right)^{-2} \exp\left(\left(\frac{-1 \pm \sqrt{1 - 4k^2 \beta \gamma \rho^{-1}}}{2\beta}\right)t\right) \sin\left(kx + \phi + \frac{\pi}{2}\right)$$

также являются решениями системы (3.1). В последних формулах присутствует отрицательный экспоненциальный член вида $\exp\left(-(2\beta)^{-1}\left(1+\sqrt{1-4k^2\beta\gamma\rho^{-1}}\right)t\right)$, который соответствует затуханию или диссипации.

Таким образом, при распространении колебаний в вязкоупругих по модели Максвелла стержнях присутствуют эффекты затухания и дисперсии.

6. Сохранение модифицированной энергии. Определим модифицированную "энергию" системы (3.1) как

$$\tilde{E}(t) = \frac{1}{2} \int_{-\infty}^{+\infty} \left(\rho \left(\frac{\partial u}{\partial t} \right)^2 + \frac{\beta}{\gamma} w^2 \right) (t, x) dx + \frac{1}{\gamma} \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} w^2(\tau, x) dx$$

Замечание 1. Величину \tilde{E} не совсем корректно называть энергией, ведь она имеет размерность $[\tilde{E}] = MT^{-2}$, вместо требуемого L^2MT^{-2} .

Замечание 2. Как известно [1], полная механическая энергия стержня в отсутствии внешних сил и теплового расширения может быть найдена по формуле

$$E = T + \Pi, \quad T = \frac{1}{2} \int_{V} \rho \left(\partial_{t} u\right)^{2} dV, \quad \Pi = \frac{1}{2} \int_{V} \sigma \varepsilon dV = \frac{1}{2} \int_{V} \sigma \partial_{x} u dV, \tag{6.1}$$

где T – кинетическая энергия стержня, Π – потенциальная энергия стержня, V – объем стержня, dV = dxdydz – элемент объема.

Справедливо утверждение о том, что модифицированная "энергия" сохраняется.

Теорема 2. Пусть пара функций *u*, *w* есть классическое решение уравнения (3.1) и функции $u(t, \cdot)$ и $w(t, \cdot)$ имеют компактный носитель в пространстве для любого $t \in \mathbb{R}$. Тогда функция $t \mapsto \tilde{E}(t)$ есть константа.

Доказательство. В самом деле, легко рассчитать

$$E'(t) = \int_{-\infty}^{+\infty} \left(\rho \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} + \frac{\beta}{\gamma} w \frac{\partial w}{\partial t} \right)(t, x) dx + \frac{1}{\gamma} \int_{-\infty}^{+\infty} w^2(t, x) dx =$$
$$= \int_{-\infty}^{+\infty} \left(\rho \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} + \frac{1}{\gamma} w \left(\gamma \frac{\partial^2 u}{\partial t \partial x} - w \right) + \frac{1}{\gamma} w^2 \right)(t, x) dx =$$
$$= \int_{-\infty}^{+\infty} \left(\rho \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} - \frac{\partial w}{\partial x} \frac{\partial u}{\partial t} \right)(t, x) dx = \int_{-\infty}^{+\infty} \frac{\partial u}{\partial t} \left(\rho \frac{\partial^2 u}{\partial t^2} - \frac{\partial w}{\partial x} \right)(t, x) dx = 0$$

Интегрирование по частям в этом доказательстве корректно, поскольку функции *и* и *w* имеют компактный носитель в пространстве для любой временной координаты.

Замечание 3. В теореме 2 требование компактного носителя можно ослабить, например, $u \in C^2(\mathbb{R}; H^2(\mathbb{R}))$ и $w \in C^1(\mathbb{R}; H^1(\mathbb{R})) \cap L^2([0, T] \times \mathbb{R})$ для любого T > 0.

Из сохранения модифицированной энергии следует, что задача (3.1), (3.2) не может иметь двух и более различных классических решений.

Теорема 3. Задача Коши (3.1)–(3.2) имеет не более одного классического решения, если оно существует.

Доказательство. Пусть существует два решения задачи Коши (3.1) и (3.2): (u_1, w_1) и (u_2, w_2) . Обозначим $u = u_1 - u_2$ и $w = w_1 - w_2$. Тогда пара функций u и w удовлетворяет задаче (3.1) и (3.2), в которой $\mu = \varphi = \psi = 0$. Тогда для любого $t \ge 0$ верно равенство $\tilde{E}(t) = \tilde{E}(0) = 0$. Отсюда следует, что на множестве $[0, \infty) \times \mathbb{R}$ имеют место равенства $\partial_t u = 0$ и w = 0. Из первого из последних равенств следует, что функция u не зависит от t, так как она непрерывна, то в силу условия u(0, x) = 0 на всем множестве $[0, \infty) \times \mathbb{R}$ выполняется u = 0. Из последних результатов следует, что $u_1 = u_2$ и $w_1 = w_2$.

7. Конечная скорость распространения волн. Для фиксированных $x_0 \in \mathbb{R}$ и t > 0 рассмотрим *конус прошлого* с вершиной (t_0, x_0)

$$K(t_0, x_0) := \{(t, x) \mid 0 \le t \le t_0 \land |x - x_0| \le \sqrt{\gamma/(\rho\beta)} |t_0 - t|\}$$

Теорема 4. Если $u \equiv \partial_t u \equiv w \equiv 0$ на отрезке $[x_0 - t_0 \sqrt{\gamma/(\rho\beta)}, x_0 + t_0 \sqrt{\gamma/(\rho\beta)}]$, то $u \equiv w \equiv 0$ внутри конуса $K(t_0, x_0)$.

Доказательство. Определим локальную модифицированную энергию как

$$\tilde{e}(t) = \frac{1}{2} \int_{x_0 - (t_0 - t)\sqrt{\gamma/(\rho\beta)}}^{x_0 + (t_0 - t)\sqrt{\gamma/(\rho\beta)}} \left(\rho\left(\frac{\partial u}{\partial t}\right)^2 + \frac{\beta}{\gamma} w^2 \right)(t, x) dx + \frac{1}{\gamma} \int_0^t d\tau \int_{x_0 - (t_0 - t)\sqrt{\gamma/(\rho\beta)}}^{x_0 + (t_0 - t)\sqrt{\gamma/(\rho\beta)}} w^2(\tau, x) dx; \quad t \in [0, t_0]$$

Тогда

$$\tilde{e}'(t) = \int_{x_0-(t_0-t)\sqrt{\gamma/(\rho\beta)}}^{x_0+(t_0-t)\sqrt{\gamma/(\rho\beta)}} \left(\rho \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} + \frac{\beta}{\gamma} w \frac{\partial w}{\partial t}\right)(t, x) dx + \frac{1}{\gamma} \int_{x_0-(t_0-t)\sqrt{\gamma/(\rho\beta)}}^{x_0+(t_0-t)\sqrt{\gamma/(\rho\beta)}} w^2(t, x) dx - \mathcal{B}(u, w) \left(t, x_0 + (t_0-t)\sqrt{\frac{\gamma}{\beta\rho}}\right) - \mathcal{B}(u, w) \left(t, x_0 - (t_0-t)\sqrt{\frac{\gamma}{\beta\rho}}\right) - \mathcal{W}(w)(t) = 0$$

$$= \int_{x_0-(t_0-t)\sqrt{\gamma/(\rho\beta)}}^{x_0+(t_0-t)\sqrt{\gamma/(\rho\beta)}} \left(\rho \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} + w \frac{\partial^2 u}{\partial t \partial x} \right) (t, x) dx -$$

$$- \mathcal{B}(u, w) \left(t, x_0 + (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}} \right) - \mathcal{B}(u, w) \left(t, x_0 - (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}} \right) - \mathcal{W}(w)(t) =$$

$$= \int_{x_0-(t_0-t)\sqrt{\gamma/(\rho\beta)}}^{x_0+(t_0-t)\sqrt{\gamma/(\rho\beta)}} \left(\rho \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} - \frac{\partial w}{\partial x} \frac{\partial u}{\partial t} \right) (t, x) dx +$$

$$+ \left(w \partial_t u \right) \left(t, x_0 + (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}} \right) - \left(w \partial_t u \right) \left(t, x_0 - (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}} \right) -$$

$$- \mathcal{B}(u, w) \left(t, x_0 + (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}} \right) - \mathcal{B}(u, w) \left(t, x_0 - (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}} \right) - \mathcal{W}(w)(t); \quad t \in [0, t_0],$$

где использованы обозначения

$$\mathcal{B}(u,w) = \sqrt{\frac{\gamma\rho}{\beta} \left(\frac{\partial u}{\partial t}\right)^2} + \sqrt{\frac{\beta}{\gamma\rho}} w^2$$
$$\mathcal{W}(w)(t) = \int_0^t \sqrt{\frac{1}{\gamma\beta\rho}} \left(w^2 \left(\tau, x_0 - (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}}\right) + w^2 \left(\tau, x_0 + (t_0 - t)\sqrt{\frac{\gamma}{\beta\rho}}\right) \right) d\tau$$

В силу неравенства Коши-Шварца имеем

$$\pm w\partial_t u \le \sqrt{\frac{\beta}{\gamma \rho}} w^2 + \frac{1}{4} \sqrt{\frac{\gamma \rho}{\beta}} (\partial_t u)^2$$
(7.2)

Подставляя (7.2) в (7.1), получаем

$$\tilde{e}'(t) \leq -\frac{3}{4}\sqrt{\frac{\gamma p}{\beta}} \left(\left(\frac{\partial u}{\partial t}\right)^2 \left(t, x_0 - (t_0 - t)\sqrt{\frac{\gamma}{\beta p}}\right) + \left(\frac{\partial u}{\partial t}\right)^2 \left(t, x_0 + (t_0 - t)\sqrt{\frac{\gamma}{\beta p}}\right) \right) - \mathcal{W}(w)(t) \leq 0$$

В таком случае, $0 \le e(t) \le e(0) = 0$ для всех $t \in [0, t_0]$. Отсюда следует, что на множестве $K(t_0, x_0)$ имеют место равенства $\partial_t u = 0$ и w = 0. Из первого из последних равенств следует, что функция u не зависит от t, так как она непрерывна, то в силу условия u(0, x) = 0 при $x \in [x_0 - t_0 \sqrt{\gamma/(\rho\beta)}, x_0 + t_0 \sqrt{\gamma/(\rho\beta)}]$, на всем множестве $K(t_0, x_0)$ выполняется u = 0.

Таким образом, любое возмущение начальных данных, заданное вне отрезка $[x_0 - t_0 \sqrt{\gamma/(\rho\beta)}, x_0 + t_0 \sqrt{\gamma/(\rho\beta)}]$, не влияет на решение внутри $K(t_0, x_0)$. Следовательно, эффекты ненулевых начальных данных распространяются со скоростью, не превышающей $\sqrt{\gamma/(\rho\beta)}$.

8. Классическое решение задачи Коши о свободных колебаниях. Формально найдем выражения для решения задачи (3.1)–(3.2). Дифференцируя первое уравнение системы (3.1) по x, а второе по t и выражая $\partial_t^2 \partial_x u$ из обеих уравнений, получаем

$$\frac{\partial^2 w}{\partial t^2}(t,x) - \frac{\gamma}{\rho\beta} \frac{\partial^2 w}{\partial x^2}(t,x) + \frac{1}{\beta} \frac{\partial w}{\partial t}(t,x) = 0; \quad (t,x) \in (0,\infty) \times \mathbb{R}$$
$$w(0,x) = \mu(x), \quad \partial_t w(0,x) = \frac{\gamma}{\beta} \psi'(x) - \frac{1}{\beta} \mu(x); \quad x \in \mathbb{R}$$

Такая задача Коши легко интегрируется, и ее классическое решение существует и единственно [6]. Но для нахождения решения в явном аналитическом виде сделаем замену

$$w(t,x) = w_{KG}(t,x) \exp\left(-\frac{t}{2\beta}\right),$$
(8.1)

и в результате получим задачу Коши для уравнения Клейна-Гордона-Фока в виде

$$\frac{\partial^2 w_{KG}}{\partial t^2}(t,x) - \frac{\gamma}{\rho\beta} \frac{\partial^2 w_{KG}}{\partial x^2}(t,x) - \frac{w_{KG}}{4\beta^2}(t,x) = 0; \quad (t,x) \in (0,\infty) \times \mathbb{R}$$
$$w_{KG}(0,x) = \mu(x), \quad \partial_t w_{KG}(0,x) = \frac{\gamma}{\beta} \psi'(x) - \frac{1}{2\beta} \mu(x); \quad x \in \mathbb{R}$$

Выражение для *w_{KG}* можно взять из работы [7], а с учетом формулы (8.1) имеем

$$w(t,x) = \frac{1}{2} \exp\left(-\frac{t}{2\beta}\right) \left(\mu\left(x - \sqrt{\frac{\gamma}{\rho\beta}}t\right) + \mu\left(x + \sqrt{\frac{\gamma}{\rho\beta}}t\right)\right) + \frac{1}{2} \exp\left(-\frac{t}{2\beta}\right) \sqrt{\frac{\rho\beta}{\gamma}} \int_{x-t\sqrt{\gamma/(\rho\beta)}}^{x+t\sqrt{\gamma/(\rho\beta)}} I_0\left(\frac{1}{2\beta}\sqrt{t^2 - \frac{\rho\beta(x-\xi)^2}{\gamma}}\right) \left(\frac{\gamma}{\beta}\psi'(\xi) - \frac{1}{2\beta}\mu(\xi)\right) d\xi + \frac{t}{4} \exp\left(-\frac{t}{2\beta}\right) \sqrt{\frac{\rho}{\gamma\beta}} \int_{x-t\sqrt{\gamma/(\rho\beta)}}^{x+t\sqrt{\gamma/(\rho\beta)}} \frac{1}{4\beta} {}_0F_1\left(2;\frac{t^2 - \gamma^{-1}\beta\rho(x-\xi)^2}{16\beta^2}\right) \mu(\xi) d\xi; \quad (t,x) \in [0,\infty) \times \mathbb{R}$$
(8.2)

Тогда

$$\begin{split} u(t,x) &= \varphi(x) + t\psi(x) + \frac{1}{\rho} \int_{0}^{t} d\lambda \int_{0}^{\lambda} \frac{\partial w}{\partial x}(\tau,x) d\tau = \\ &= \varphi(x) + t\psi(x) + \frac{1}{\rho} \int_{0}^{t} d\lambda \int_{0}^{\lambda} (16\beta)^{-1} \exp(-\tau/(2\beta)) \times \\ &\times \left(8\beta \sqrt{\frac{\beta\rho}{\gamma}} \int_{x-\tau\sqrt{\gamma/(\beta\rho)}}^{x+\tau\sqrt{\gamma/(\beta\rho)}} \frac{\rho(x-\xi)}{64\beta^{2}\gamma} {}_{0}F_{1}\left(; 2; \frac{\tau^{2} - \beta\gamma^{-1}(x-\xi)}{16\beta^{2}} \right) (\mu(\xi) - 2\gamma\psi'(\xi)) d\xi + \\ &+ t\sqrt{\frac{\rho}{\beta\gamma}} \left(\mu\left(x + \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) - \mu\left(x - \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) \right) + 8\beta \left(\mu'\left(x - \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) + \mu'\left(x + \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) \right) + \\ &+ 4\sqrt{\frac{\beta\rho}{\gamma}} \left(\mu\left(x - \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) - \mu\left(x + \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) - 2\gamma\psi'\left(x - \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) + 2\gamma\psi'\left(x + \tau\sqrt{\frac{\gamma}{\beta\rho}}\right) \right) + \\ &+ 4\beta\tau\sqrt{\frac{\rho}{\beta\gamma}} \int_{x-\tau\sqrt{\gamma/(\beta\rho)}}^{x+\tau\sqrt{\gamma/(\beta\rho)}} \frac{\rho(\xi-x)}{64\beta^{2}\gamma} {}_{0}F_{1}\left(; 3; \frac{\tau^{2} - \beta\gamma^{-1}(x-\xi)}{16\beta^{2}} \right) \mu(\xi)d\xi \right) d\tau; \quad (t,x) \in [0,\infty) \times \mathbb{R}$$

$$(8.3)$$

В формулах (8.2) и (8.3) использованы обозначения: I_n – модифицированная функция Бесселя первого рода порядка n и $_0F_1$ – вырожденная гипергеометрическая функция.

Решение было построено формально, поэтому непосредственной проверкой убеждаемся, что функции *и* и *w* обладают необходимой степенью гладкости, удовлетворяют уравнениям (3.1) и начальным условиям (3.2), если, например, $\mu \in C^2(\mathbb{R})$, $\phi \in C^2(\mathbb{R})$ и $\psi \in C^2(\mathbb{R})$. дачи Коши (3.1)–(3.2). Сформулируем результат в виде теоремы. *Теорема* 5. Пусть выполняются условия $\mu \in C^2(\mathbb{R})$, $\phi \in C^2(\mathbb{R})$ и $\psi \in C^2(\mathbb{R})$. Тогда за-

Теорема 5. Пусть выполняются условия $\mu \in C$ (\mathbb{R}), $\phi \in C$ (\mathbb{R}) и $\psi \in C$ (\mathbb{R}). Гогда задача (3.1)–(3.2) имеет единственное классическое решение, представленное формулами (8.2) и (8.3), которое непрерывно зависит от начальных данных.

Доказательство следует из рассуждений выше.

9. Классическое решение задачи Коши о вынужденных колебаниях. Рассмотрим начальную задачу (3.2)–(3.3). Ее решение можно искать в виде суммы

$$u_{\text{forced}} = u + u_p, \quad w_{\text{forced}} = w + w_p, \tag{9.1}$$

где пара функций ("общее" решение однородной системы) u, w есть решение задачи (3.1)—(3.2), а функции (частное решение неоднородной системы) u_p , w_p удовлетворяют уравнениям (3.3) и однородным граничным условиям

$$w_p(0,x) = u_p(0,x) = \partial_t u_p(0,x) = 0; \quad x \in \mathbb{R}$$

Фактически, при условии $f \in C^{1,4}([0,\infty) \times \mathbb{R})$, функции u_p , w_p построены в работах [6, 8], и они имеют вид [8]

$$w_{p}(t,x) = \frac{1}{4} \exp\left(-\frac{t}{2\beta}\right) \sqrt{\frac{\gamma}{\rho\beta_{0}}} \int_{0}^{t} d\tau \int_{x-\sqrt{\gamma/(\rho\beta)(t-\tau)}}^{x+\sqrt{\gamma/(\rho\beta)(t-\tau)}} \left(\exp\left(\frac{\tau}{2\beta}\right) \times \partial_{x}f(\tau,\lambda)I_{0}\left(\frac{1}{2\beta}\sqrt{(t-\tau)^{2}-\rho\beta\gamma^{-1}(x-\lambda)^{2}}\right)\right) d\lambda$$

$$u_{p}(t,x) = \frac{1}{\rho} \int_{0}^{t} d\lambda \int_{0}^{\lambda} \left(\frac{\partial w_{p}}{\partial x} + f\right)(\tau,x)d\tau$$
(9.2)

Они принадлежат классам $C^3([0,\infty) \times \mathbb{R})$ и $C^{2,4}([0,\infty) \times \mathbb{R})$ соответственно при условии $f \in C^{1,4}([0,\infty) \times \mathbb{R})$. Кроме того, $\partial_t w_p(0,x) = 0$ и $\partial_t^2 w_p(0,x) = \gamma \rho^{-1} \beta^{-1} \partial_x f(0,x)$.

Единственность решения задачи устанавливается методом энергий, аналогично теореме 3.

Теорема 6. Пусть выполняются условия $f \in C^{1,4}([0,\infty) \times \mathbb{R}), \mu \in C^2(\mathbb{R}), \phi \in C^2(\mathbb{R})$ и

 $\psi \in C^2(\mathbb{R})$. Тогда задача (3.2)—(3.3) имеет единственное классическое решение u_{forced} и w_{forced} , представленное формулами (9.1), (9.2), (8.2) и (8.3), которое непрерывно зависит от начальных данных.

Доказательство следует из рассуждений выше.

Заключение. В данной работе показано, что задача Коши для одномерной системы уравнений с частными производными, описывающей продольные колебания вязкоупругого по модели Максвелла стержня, является корректной. Найдено ее решение в явном аналитическом виде. Также указаны некоторые качественные свойства решений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: в 10 тт. М.: Физматлит, 2003. Т. VII: Теория упругости. 264 с.
- 2. Ржаницын А.Р. Теория ползучести. М.: Стройиздат, 1968. 418 с.
- 3. *Ржаницын А.Р.* Некоторые вопросы механики систем, деформирующихся во времени. М.: ГИТТЛ, 1949. 248 с.
- 4. *Strikwerda J.C.* Finite Difference Schemes and Partial Differential Equations. 2nd ed. Philadelphia: Soc. for Industr.&Appl. Math., 2004. 439 p.
- 5. Evans L.C. Partial Differential Equations. 2nd ed. Providence, R.I.: Amer. Math. Soc., 2010. 749 p.

- 6. *Корзюк В.И., Рудько Я.В.* Классическое решение задачи Коши для одномерного квазилинейного волнового уравнения // Докл. Нац. АН Беларуси. 2023. Т. 67. № 1. С. 14–19.
- 7. Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: Физматлит, 2001. 576 с.
- Корзюк В.И., Рудько Я.В. Частное решение задачи для системы уравнений из механики с негладкими условиями Коши // Изв. Нац. АН Беларуси. Сер. Физ.-мат. наук. 2022. Т. 58. № 3. С. 300–311.

Problem of Longitudinal Vibrations of a Viscoelastic Rod of Maxwell Type

V. I. Korzyuk^{*a,b,#*}, J. V. Rudzko^{*a,##*}, and V. V. Kolyachko^{*b,###*}

^aInstitute of Mathematics of the NAS of Belarus, Minsk, Belarus ^bBelarusian State University, Minsk, Belarus [#]e-mail: korzyuk@bsu.by ^{##}e-mail: janycz@yahoo.com ^{###}e-mail: vlad.kolyachko@yandex.ru

In this paper, we study well-posedness in the sense of Hadamard of the Cauchy problem for a one-dimensional hyperbolic system of partial differential equations describing the longitudinal vibrations of a viscoelastic rod of Maxwell type with constant cross-section. We discuss some properties of the system and its solutions: the conservation of modified "energy", the finite propagation speed, dispersion, and dissipation of solutions.

Keywords: longitudinal vibrations, Maxwell material, Cauchy problem, well-posed problem

REFERENCES

- 1. *Landau L.D., Lifshitz E.M.* Course of Theoretical Physics. in 10 vol. Vol. 7. Theory of Elasticity. Moscow: Fizmatlit, 2003. 264 p. (in Russian)
- 2. Rzhanitsyn A.R. Theory of Creep. Moscow: Stroiizdat, 1968. 418 p. (in Russian)
- 3. *Rzhanitsyn A.R.* Some Questions of the Mechanics of Systems Deforming in Time. Moscow: GITTL, 1949. 248 p. (in Russian)
- 4. *Strikwerda J.C.* Finite Difference Schemes and Partial Differential Equations. 2nd ed. Philadelphia: Soc. for Industr.&Appl. Math., 2004. 439 p.
- 5. Evans L.C. Partial Differential Equations. 2nd ed. Providence, R.I.: Amer. Math. Soc., 2010. 749 p.
- 6. *Korzyuk V.I., Rudzko J.V.* Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation // Dokl. Nat. Acad. of Sci. Belarus, 2023, vol. 67, no. 1, pp. 14–19.
- 7. *Polyanin A.D.* Handbook of Linear Partial Differential Equations for Engineers and Scientists. Boca Raton: Chapman & Hall/CRC, 2002. 800 p.
- 8. *Korzyuk V.I., Rudzko J.V.* A particular solution of a problem for a system of equations from mechanics with nonsmooth Cauchy conditions // Proc. of the Nat. Acad. of Sci. Belarus. Ser. Phys.&Math., 2022, vol. 58, no. 3, pp. 300–311. (in Russian)