ТЕОРИЯ ПРОГРАММИРОВАНИЯ: ФОРМАЛЬНЫЕ МОДЕЛИ И СЕМАНТИКА

УЛК 519.7

ТЕСТОВЫЕ ЭКВИВАЛЕНТНОСТИ ВРЕМЕННЫХ СЕТЕЙ ПЕТРИ

© 2020 г. Е. Н. Боженкова^{а,b,*}, И. Б. Вирбицкайте^{а,b,**}

^а Институт систем информатики им. А.П. Ершова СО РАН 630090 Новосибирск, пр. ак. Лавреньтева, д. 6, Россия

^b Новосибирский государственный университет 630090 Новосибирск, ул. Пирогова, д. 2, Россия

*E-mail: bozhenko@iis.nsk.su

**E-mail: virb@iis.nsk.su

Поступила в редакцию 10.02.2020 г.
После доработки 20.02.2020 г.
Принята к публикации 15.03.2020 г.

В данной работе определяется и исследуется семейство тестовых эквивалентностей в интерливинговой семантике, семантике частичного порядка и комбинации этих семантик в контексте непрерывно-временных безопасных сетей Петри (элементарных сетевых систем, переходы которых помечены временными интервалами и каждый переход, имеющий достаточное количество фишек во входных местах, должен срабатывать тогда, когда его счетчик достигнет некоторого значения, принадлежащего его временному интервалу). Для этого разрабатываются три представления поведения непрерывно-временной сети Петри: последовательности срабатываний сетевых переходов, представляющие семантику интерливинга, временные причинные сети-процессы, из которых выводятся частичные порядки, и временное причинное дерево, вершинами которого являются последовательности срабатываний переходов, а дуги помечены информацией о частичных порядках. Устанавливаются взаимосвязи между рассматриваемыми эквивалентностями и показывается совпадение семантик временных причинных сетей-процессов и временных причинных деревьев.

DOI: 10.31857/S0132347420040044

1. ВВЕДЕНИЕ

Тестовые эквивалентности используются при сравнении поведения систем и проверке соответствия между заданной спецификацией и полученной реализацией, а также при установлении выполнимости логических формул. Понятие тестовой эквивалентности параллельных процессов было предложено М. Хеннеси и Р. де Николой в статье [1]. Тест — это специальный процесс, который выполняется параллельно с тестируемым процессом. Такое выполнение считается успешным, если тест достигает выделенного успешного состояния, и процесс проходит тест, если каждое его совместное выполнение с процессом является успешным. Два процесса считаются тестово эквивалентными, если они проходят одни и те же наборы тестов. Чтобы облегчить исследование и применение тестовых эквивалентностей, были найдены их альтернативные характеризации например, сравнение проводится по совокупности всех тестов, которые представляют собой вычисления процессов и множества возможных их продолжений. Концепция тестовой эквивалентности интуитивно понятна и привела к появлению математической теории эквивалентностей и предпорядков на процессах.

Изначально тестовые эквивалентности были детально исследованы в контексте моделей систем переходов (см., например, [2, 3]), которые базируются на интерливинговой семантике - отношение параллелизма между действиями системы представляется не напрямую, а посредством недетерминированного выбора между выполнениями линейноупорядоченных поддействий. Интерливинговые тестовые эквивалентности для элементарных сетевых систем изучались в статье [4]. Чтобы преодолеть ограничения интерливингового подхода, отношение параллелизма часто моделируется как отсутствие причинной зависимости, представленной, как правило, частичным порядком, между действиями системы. В работах [5, 6] тестовые эквивалентности рассматривались в семантике частичного порядка в рамках моделей структур событий. Кроме того, тестовые эквивалентности активно изучались в контексте моделей структур событий для семантики причинных деревьев поведение системы представляется в виде дерева, в котором дуги помечаются действиями и сведениями об их предшественниках, т.е. сохраняется информация о причинной зависимости. Взаимосвязи между семантиками частичного порядка и причинных деревьев были хорошо изучены для моделей структур событий в работах [6—8]. Чаще всего семантика частичного порядка сетей Петри представляется посредством так называемых причинных сетей-процессов, включающих события и условия, находящиеся в отношениях причинной зависимости и параллелизма (см. [9—11] среди других статей). Сравнение разновидностей тестовой эквивалентности в частично-упорядоченной семантике сетей Петри было проведено в статье [4]. Исследование семантики причинных деревьев в контексте сетей Петри, на сколько нам известно, не проводилось.

При верификации сложных систем, критичных с точки зрения безопасности, важно исследовать не только качественные, но и количественные характеристики поведения систем. Для этих целей тестовые эквивалентности были применены в контексте ряда моделей с реальным временем. Для систем переходов с дискретным временем в работах [12] и [13] были даны альтернативные характеризации временных тестовых эквивалентностей с использованием расширенного понятия, так называемых, допустимых множеств. Семантическая теория на основе тестовых эквивалентностей была предложена для алгебр процессов с временными ограничениями в статьях [14] и [15], где формулируются альтернативные характеризации тестовых предпорядков через, так называемые, трассы отказов. Авторы статьи [15] доказали возможность дискретизации в контексте разработанной ими временной алгебры процессов и, как следствие, сведение непрерывно-временных тестовых отношений к дискретно-временным. В работе [16] интерливинговые тестовые отношения, а также результаты по их альтернативной характеризации и дискретизации распространяются на модель сетей Петри с временными характеристиками, сопоставленными фишкам, и с временными интервалами, связанными с дугами из мест в переходы. Тестовые отношения исследуются одновременно для временных и причинно-зависимых семантик моделей структур событий в статье [17]. Кроме того, в [18–20] дается классификация эквивалентностей из спектра линейного/ветвящегося времени для семантик интерливинга, причинных деревьев и частичного порядка в контексте моделей непрерывно-временных структур событий. Частично-упорядоченная семантика в работах [21, 22] была предложена для дискретновременных сетей Петри, где с каждым переходом связана длительность его срабатывания, а также в статье [23] – для непрерывно-временных безопасных сетей Петри, где каждому переходу сопоставлен интервал временных задержек его срабатывания. Однако, насколько нам известно, в литературе по временным сетям Петри не представлены исследования тестовых эквивалентностей в семантиках причинных сетей-процессов и причинных деревьев. Только в работах [24, 25] изучались взаимосвязи трассовых и бисимуляционных эквивалентностей в интерливинговой и частично-упорядоченной семантиках непрерывно-временных безопасных сетей Петри.

Цель данной работы состоит в определении, изучении и сравнении тестовых эквивалентностей в семантиках интерливинга, причинных сетей и причинных деревьев в контексте непрерывно-временных безопасных сетей Петри (элементарных сетевых систем, переходы которых помечены временными интервалами и каждый переход, имеющий достаточное количество фишек во входных местах, должен срабатывать тогда, когда его счетчик достигнет некоторого значения, принадлежащего его временному интервалу). Устанавливаются взаимосвязи между рассматриваемыми эквивалентностями и показывается совпадение эквивалентностей в семантиках временных причинных сетей-процессов и временных причинных деревьев.

2. ВРЕМЕННЫЕ СЕТИ ПЕТРИ: СИНТАКСИС И ИНТЕРЛИВИНГОВАЯ СЕМАНТИКА

В этом разделе рассмотрим базовую терминологию непрерывно-временных сетей Петри и их интерливинговую семантику. Сначала напомним определения структуры и поведения сетей Петри. Пусть Act — множество действий.

О п р е д е л е н и е 1. (Помеченная над Act) сеть Петри (СП) — это набор $\mathcal{N} = (P,T,F,M_0,L)$, где P- конечное множество мест, T- конечное множество переходов ($P \cap T = \emptyset$ и $P \cup T \neq \emptyset$), $F \subseteq (P \times T) \cup \cup (T \times P)$ — отношение инцидентости, $\emptyset \neq M_0 \subseteq P$ — начальная разметка, $L:T \to Act$ — помечающая функция. Для элемента $x \in P \cup T$ определим множество $x = \{y \mid (y,x) \in F\}$ входных и множество $x = \{y \mid (x,y) \in F\}$ выходных элементов, которые для подмножества $X \subseteq P \cup T$ элементов обобщаются соответственно до множеств $X = \bigcup_{x \in X} x$ и $X = \bigcup_{x \in X} x$.

Разметка M СП \mathcal{N} — это произвольное подмножество P. Переход $t \in T$ готов сработать при разметке M, если $^{\bullet}t \subseteq M^{1}$. Обозначим через En(M) множество всех переходов, готовых сработать при разметке M. Если переход t готов сработать при

¹ Для удобства последующих определений здесь не используется классическое определение: переход $t \in T$ готов сработать при разметке M, если $^{\bullet}t \subseteq M$ и $M \cap t^{\bullet} = \emptyset$. Второе требование будет введено в определении свойства свободы от контактов.

СП \mathcal{N} называется T-ограниченной, если ${}^{\bullet}t \neq \emptyset \neq t^{\bullet}$ для всех переходов $t \in T$, свободной от контактов, если для произвольной разметки $M \in RM(\mathcal{N})$ и любого перехода t, готового сработать при разметке M, выполняется условие $M \cap t^{\bullet} = \emptyset$.

Под непрерывно-временной сетью Петри (ВСП) [23] понимается СП, в которой с каждым переходом связан временной интервал, указывающий возможные временные моменты срабатывания перехода, готового по наличию фишек в его входных местах; готовый переход может сработать, только когда достигнута нижняя граница и не превышена верхняя граница его интервала, и, если он еще не сработал, то обязан сработать, когда достигнута верхняя граница его интервала.

Область \mathbb{T} временных значений — множество неотрицательных рациональных чисел. Считаем, что $[\tau_1, \tau_2]$ — замкнутый интервал между двумя временными значениями $\tau_1, \tau_2 \in \mathbb{T}$. Также, бесконечность может появляться как правая граница в открытых справа интервалах. Пусть *Interv* — множество всех таких интервалов.

О пределение 2. (Помеченная над Act) временная сеть Петри (ВСП) — это пара $\mathcal{TN} = (\mathcal{N}, D)$, где \mathcal{N} — (помеченная над Act) базовая сеть Петри и $D: T \to Interv$ — статическая временная функция, сопоставляющая каждому переходу временной интервал. Границы временного интервала $D(t) \in Interv$ называются ранним (Eft) и поздним (Lft) временами срабатывания перехода $t \in T$.

Состояние $BC\Pi \ \mathcal{TN} -$ это пара S = (M,I), где M- разметка $C\Pi \ \mathcal{N}$ и $I:En(M) \to \mathbb{T}-$ динамическая временная функция. Начальное состояние $BC\Pi \ \mathcal{TN} -$ это пара $S_0 = (M_0,I_0)$, где M_0- начальная разметка $C\Pi \ \mathcal{N}$ и $I_0(t) = 0$ для $\mathrm{Bcex}\ t \in En(M_0)$. Переход t, готовый сработать при разметке M в $C\Pi \ \mathcal{N}$, готов сработать $\theta \in \mathbb{T}$ в $\theta \in \mathbb{T}$ для $\theta \in \mathbb{T}$ в $\theta \in \mathbb{T}$ для $\theta \in \mathbb{T}$ в $\theta \in \mathbb$

состояние S' = (M, I') (обозначается $S \stackrel{(t,\theta)}{\to} S'$) такое, что верно: $M \stackrel{t}{\to} M'$ и $\forall t' \in T_{\circ}$

$$I'(t') = \begin{cases} I(t') + \theta, & \text{если } t' \in \textit{En}(M \setminus^{\bullet} t), \\ 0, & \text{если } t' \in \textit{En}(M') \setminus \textit{En}(M \setminus^{\bullet} t), \\ \text{не определено иначе.} \end{cases}$$

Будем писать $S \xrightarrow{\sigma} S'$, если $\sigma = (t_1, \theta_1) \dots (t_k, \theta_k)$ и $S = S^0 \xrightarrow{(t_1, \theta_1)} S^1 \dots S^{k-1} \xrightarrow{(t_k, \theta_k)} S^k = S' (k \ge 0)$. Тогда, σ — последовательность срабатываний из S (в S') и S' — состояние, достижимое из S, в ВСП $\mathcal{T} \mathcal{N}$. Пусть $\mathcal{F} \mathcal{G}(\mathcal{T} \mathcal{N})$ — множество всех последовательностей срабатываний из S_0 и $RS(\mathcal{T} \mathcal{N})$ — множество всех состояний, достижимых из S_0 , в ВСП $\mathcal{T} \mathcal{N}$. Для $\sigma = (t_1, \theta_1) \dots (t_k, \theta_k) \in \mathcal{F} \mathcal{G}(\mathcal{T} \mathcal{N})$ $L(\sigma) = (a_1, \theta_1) \dots (a_k, \theta_k)$, если $a_i = L(t_i)$ для всех $1 \le i \le k$. Определим интерливинговый язык $BC\Pi \mathcal{T} \mathcal{N}$ следующим образом: $\mathcal{L}(\mathcal{T} \mathcal{N}) = \{L(\sigma) \in (Act \times \mathbb{T})^* \mid \sigma \in \mathcal{F} \mathcal{G}(\mathcal{T} \mathcal{N})\}$.

ВСП \mathcal{TN} называется T-ограниченной, если базовая СП T-ограничена; csofodhoй от контактов, если для любого состояния $S = (M, I) \in RS(\mathcal{TN})$ и любого перехода t, готового сработать в состоянии S в относительный момент времени θ , верно, что $(M \setminus^{\bullet} t) \cap t^{\bullet} = \emptyset^2$; прогрессирующей по времени, если для любой последовательности переходов $\{t_1, t_2, \ldots, t_n\} \subseteq T$ такой, что $t_i^{\bullet} \cap {}^{\bullet} t_{i+1} \neq \emptyset$ $(1 \le i < n)$ и $t_n^{\bullet} \cap {}^{\bullet} t_1 \neq \emptyset$, выполяняется неравенство $\sum_{1 \le i \le n} Eft(t_i) > 0^3$. В дальнейшем будем рассматривать только T-ограниченные, свободные от контактов и прогрессирующие по времени ВСП.

Пример 1. Пример помеченной над $Act = \{a,b,c,d\}$ ВСП \mathcal{TN} показан на рис. 1, где места представлены окружностями, переходы — барьерами; рядом с элементами ВСП размещены их имена; между элементами, включенными в отношение инцидентности, изображены стрелки; каждое место, входящее в начальную разметку, отмечено наличием в нем фишки (жирной точки); значения помечающей и статической временной функций указаны рядом с переходами. Нетрудно проверить, что переходы t_1 и t_3 готовы сработать при начальной разметке $M_0 = \{p_1, p_2\}$ и, более того, готовы сработать в начальном состоя-

нии
$$S_0 = (M_0, I_0)$$
, где $I_0(t) = \begin{cases} 0, & \text{если } t \in \{t_1, t_3\}, \\ \text{не определено иначе,} \end{cases}$ в относительный момент времени $\theta \in [2, 3]$. При этом, $\sigma = (t_1, 3) \ (t_3, 0) \ (t_2, 2) \ (t_3, 2) \ (t_1, 0) \ (t_5, 2) \ (t_4, 0) - 1$

 $^{^2}$ Заметим, что если базовая СП $\mathbb N$ свободна от контактов, то и ВСП $\mathcal T\mathcal N$ свободна от контактов, но обратное неверно.

³ Свойство прогрессирования по времени гарантирует корректность измененного определения совойства свободы от контактов.

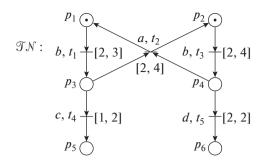


Рис. 1. Пример временной сети Петри.

последовательность срабатываний из S_0 в ВСП \mathcal{TN} . Кроме того, \mathcal{TN} является T-ограниченной, свободной от контактов и прогрессирующей по времени. \square

3. ПРИЧИННО-ЗАВИСИМЫЕ СЕМАНТИКИ ВРЕМЕННЫХ СЕТЕЙ ПЕТРИ

3.1. Базовые определения

Сначала рассмотрим определения, связанные с временными сетями.

О п р е д е л е н и е 3. (Помеченной над Act) временной сетью называется конечная, ациклическая сеть $TN = (B, E, G, l, \tau)$, где B — множество условий, E — множество событий, $G \subseteq (B \times E) \cup (E \times B)$ — отношение инцидентности такое, что $\{e \mid (e,b) \in G\} = \{e \mid (b,e) \in G\} = E, l : E \to Act$ — помечающая функция и $\tau : E \to \mathbb{T}$ — временная функция такая, что $eG^+e' \Rightarrow \tau(e) \leq \tau(e')$.

Введем дополнительные обозначения для временной сети $TN = (B, E, G, l, \tau)$. Пусть $\prec = G^+$, $\preceq = G^*$ и $\tau(TN) = \max\{\tau(e) | e \in E\}$. Определим множества: ${}^{\bullet}x = \{y | (y, x) \in G\}$ и $x^{\bullet} = \{y | (x, y) \in G\}$ для $x \in B \cup E$; ${}^{\bullet}X = \bigcup_{x \in X} {}^{\bullet}x$ и $X^{\bullet} = \bigcup_{x \in X} x^{\bullet}$ для $X \subseteq B \cup E$; ${}^{\bullet}TN = \{b \in B \mid {}^{\bullet}b = \varnothing\}$ и $TN^{\bullet} = \{b \in B \mid b^{\bullet} = \varnothing\}$.

 $TN = (B, E, G, l, \tau)$ называется (помеченной над Act) временной причинной сетью, если $|{}^{\bullet}b| \le 1$ и $|b^{\bullet}| \le 1$ для всех условий $b \in B$. Заметим, что $\eta(TN) = (E_{TN}, \preceq_{TN} \cap (E_{TN} \times E_{TN}), l_{TN}, \tau_{TN})$ является (помеченным над Act) временным частично-упорядоченным множеством (BYYM) 4 .

Введем дополнительные определения и обозначения для временной причинной сети $TN = (B, E, G, l, \tau)$:

- $\downarrow e = \{x \mid x \leq e\}$ множество предшественников события $e \in E$, $Earlier(e) = \{e' \in E \mid \tau(e') < \tau(e)\}$ множество временных предшественников события $e \in E$;
- $E' \subseteq E левозамкнутое$ подмножество E, если $\downarrow e' \cap E \subseteq E'$ для каждого $e' \in E'$. Для такого подмножества будем использовать обозначение $Cut(E') = (E'' \cup TN) \setminus E'$. $E' \subseteq E непротиворечивое по времени подмножество <math>E$, если $\tau(e') \leq \tau(e)$ для всех $e' \in E'$ и $e \in E \setminus E'$;
- последовательность $\rho = e_1 \dots e_k \ (k \geq 0)$ событий из E- линеаризация временной причинной сети TN, если каждое событие из E встречается в последовательности только один раз и выполняется следующее условие: $(e_i \prec e_j \lor \tau(e_i) < \tau(e_j)) \Rightarrow i < j$ для всех $1 \leq i, \ j \leq k$. Определим множество $E_\rho^l = \bigcup_{1 \leq i \leq l} e_i \ (0 \leq l \leq k)$. Очевидно, что E_ρ^l являются левозамкнутыми и непротиворечивыми по времени подмножествами E и, кроме того, $\tau(e_k) = \tau(TN)$.

Из определений временной причинной сети и ее линеаризации получаем справедливость следующей

Лемма 1. Любая временная причинная сеть имеет линеаризацию.

Временные причинные сети $TN = (B, E, G, l, \tau)$ и $TN' = (B', E', G', l', \tau')$ изоморфны (обозначается $TN \simeq TN'$), если существует биективное отображение β : $B \cup E \to B' \cup E'$ такое, что: (а) $\beta(B) = B'$ и $\beta(E) = E'$; (б) $xGy \Leftrightarrow \beta(x)G'\beta(y)$ для всех x, $y \in B \cup E$; (в) $l(e) = l'(\beta(e))$ и $\tau(e) = \tau'(\beta(e))$ для всех $e \in E$. Кроме того, будем говорить, что TN является префиксом TN' (обозначается $TN \to TN'$), если $B \subseteq B'$, E — левозамкнутое и непротиворечивое по времени подмножество E', $E \setminus E = \{e\}$, $G = G' \cap (B \times E \cup E \times B)$, $l = l'|_E$ и $\tau = \tau'|_E$.

Пример 2. На рис. 2 показана временная причинная сеть $TN = (B, E, G, l, \tau)$, где условия представлены окружностями, а события — барьерами; рядом с элементами сети размещены их имена; между элементами, включенными в отношение инцидентности, изображены стрелки; значения функций l и τ указаны рядом с событиями. Определим временные причинные сети $TN' = (B', E', G', l', \tau')$, где $B' = \{b_1, b_2, b_3, b_4\}$, $E' = \{e_1, e_3\}$, $G' = G \cap (B' \times E' \cup E' \times B')\}$, $l' = l|_{E'}$, $\tau' = \tau|_{E}$, и $TN'' = (B'', E'', G'', l'', \tau'')$, где $B'' = \{b_1, b_2, b_3\}$, $E'' = \{e_1\}$, $G'' = G \cap (B'' \times E'' \cup E'' \times B''')$, $l'' = l|_{E''}$, $\tau'' = \tau|_{E''}$. Легко проверить, что TN'' является префиксом TN'. \square

⁴ (Помеченный над Act) ВЧУМ — это набор $\eta = (X, \leq, \lambda, \tau)$, состоящий из конечного множества элементов X; рефлексивного, антисимметричного и транзитивного отношения \leq ; помечающей функции $\lambda: X \to Act$ и временной функции $\tau: X \to \mathbb{T}$ такой, что $e \leq e' \Rightarrow \tau(e) \leq \tau(e')$. Пусть $\tau(\eta) = \max\{\tau(x) | x \in X\}$.

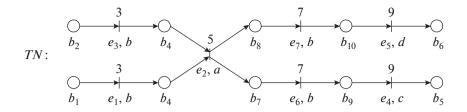


Рис. 2. Пример временной причинной сети.

3.2. Временные причинные сети-процессы временных сетей Петри

В этом разделе рассмотрим понятие временных причинных сетей-процессов ВСП, предложенное в статье [23].

Определение 4. Пусть $\mathcal{TN} = ((P, T, F, M_0, L), D)$ — ВСП и $TN = (B, E, G, l, \tau)$ — временная причинная сеть. Отображение $\varphi: B \cup E \to P \cup T$ называется *гомоморфизмом из TN* в \mathcal{TN} , если выполняются следующие условия:

- $\varphi(B) \subseteq P$, $\varphi(E) \subseteq T$;
- ограничение φ на e является биекцией между e и $\varphi(e)$ и ограничение φ на e является биекцией между e и $\varphi(e)$ для всех $e \in E$;
- ограничение φ на [•]TN является биекцией между [•]TN и M_0 ;
 - $l(e) = L(\varphi(e))$ для всех $e \in E$.

Пара $\pi = (TN, \varphi)$ называется временным причинным сетью-процессом $BC\Pi \ \mathcal{TN}$, если TN — временная причинная сеть и φ — гомоморфизм из TN в \mathcal{TN} .

Пусть $\pi = (TN, \varphi)$ — временной причинный сеть-процесс ВСП \mathcal{TN} , $B' \subseteq B_{TN}$ и $t \in En(\varphi(B'))$. Тогда глобальный момент времени, когда фишки появляются во всех входных местах перехода t, определяется следующим образом: $\mathbf{TOE}_{\pi}(B', t) = \max_{\theta \in \mathcal{A}} (\mathcal{T}_{\pi}(\theta')) h \in \mathcal{B}' \setminus {}^{\bullet}TN) + I(0)$

$$= \max(\{\tau_{TN}({}^{\bullet}b) | b \in B'_{[t]} \setminus {}^{\bullet}TN\} \cup \{0\}), \text{ где } B'_{[t]} = \{b \in B' | \phi_{TN}(b) \in {}^{\bullet}t\}.$$

Для того, чтобы значения временных функций временных причинных сетей-процессов ВСП соответствовали временным интервалам срабатывания сетевых переходов, вводится понятие корректных временных причинных сетей-процессов ВСП.

О пределение 5. Временной причинный сеть-процесс $\pi = (TN, \varphi)$ ВСП \mathcal{TN} называется *корректным*, если для каждого $e \in E$ выполняются следующие условия:

•
$$\tau(e) \ge \mathbf{TOE}_{\pi}(^{\bullet}e, \varphi(e)) + Eft(\varphi(e)),$$

• $\forall t \in En(\varphi(C_e)) \land \tau(e) \leq \mathbf{TOE}_{\pi}(C_e, t) + Lft(t)$, где $C_e = Cut(Earlier(e))$.

Пусть $\mathscr{CP}(\mathcal{TN})$ — множество корректных временных причинных сетей-процессов ВСП \mathcal{TN} . Через $\mathcal{TP}os(\mathcal{TN}) = \{TP | \exists \pi = (TN, \varphi) \in \mathscr{CP}(\mathcal{TN}) : TP \cong^5 \cong \eta(TN) \}$ обозначим множество ВЧУМов, изоморфных ВЧУМам, полученным из корректных временных причинных сетей-процессов ВСП \mathcal{TN} .

Пример 3. Определим отображение ф из временной причинной сети TN (см. рис. 2) в ВСП \mathcal{TN} (см. рис. 1) следующим образом: $\varphi(b_i) = p_i$ ($1 \le i \le 6$), $\varphi(b_i) = p_{i-6}$ ($7 \le i \le 10$) и $\varphi(e_i) = t_i$ ($1 \le i \le 5$), $\varphi(e_6) = t_1$, $\varphi(e_7) = t_3$. Далее, для временной причинной сети TN, заданной в примере 2, определим $\varphi' = \varphi|_{E \cup B}$. Легко видеть, что $\pi = (TN, \varphi)$ и $\pi' = (TN, \varphi')$ являются временными причинными сетями-процессами ВСП \mathcal{TN} .

Для множества $\tilde{B} = \{b_3, b_4\} \subset B$ и перехода $t_2 \in En(\varphi(\tilde{B}))$ вычислим $\mathbf{TOE}_{\pi}(\tilde{B}, t_2) = \max(\{\tau_{TN}(^{\bullet}b) | b \in \tilde{B}_{[t_2]} \setminus ^{\bullet}TN\} \cup \{0\}) = \max(\{\tau(e_1) = 3, \tau(e_3) = 3\} \cup \{0\}) = 3$. Также, нетрудно проверить, что временные причинные сети-процессы $\pi = (TN, \varphi)$ и $\pi' = (TN', \varphi')$ являются корректными. \square

Будем говорить, что $\pi = (TN, \varphi)$ и $\pi' = (TN', \varphi')$ из $\mathscr{CP}(\mathcal{TN})$ изоморфны (обозначается $\pi \approx \pi'$), если существует изоморфизм $f: TN \simeq TN'$ такой, что $\varphi(x) = \varphi'(f(x))$ для всех $x \in B \cup E$; а также будем писать $\pi \to \pi'$ в \mathcal{TN} , если $TN \to TN'$ и $\varphi = \varphi'|_{B \cup E}$.

Рассмотрим взаимосвязи между последовательностями срабатываний и корректными временными причинными сетями-процессами ВСП. Для $\pi = (TN, \varphi) \in \mathscr{CP}(\mathcal{TN})$ определим функцию FS_{π} , которая отображает линеаризацию $\rho = e_1 \dots e_k$ TN в последовательность вида: $FS_{\pi}(\rho) = (\varphi(e_1), \tau(e_1) - 0) \dots (\varphi(e_k), \tau(e_k) - \tau(e_{k-1}))$.

Утверждение 1. Пусть $\mathcal{T}\mathcal{N}-BC\Pi$. Тогда

⁵Два ВЧУМ $\eta = (X, \leq, \lambda, \tau)$ и $\eta' = (X', \leq', \lambda', \tau')$ изоморфны (обозначается $\eta \simeq \eta'$), если существует биекция $\beta: X \to X'$ такая, что (а) $x \leq y \Leftrightarrow \beta(x) \leq '\beta(y)$ для всех $x, y \in X$; (б) $\lambda(x) = \lambda'(\beta(x))$ и $\tau(x) = \tau'(\beta(x))$ для всех $x \in X$.

- (а) если $\pi = (TN, \varphi) \in \mathscr{CP}(\mathcal{TN})$ и ρ линеаризация TN, то существует единственная последовательность срабатываний $FS_{\pi}(\rho) \in \mathscr{FS}(\mathcal{TN})$;
- (б) если $\sigma \in \mathcal{FS}(\mathcal{TN})$, то существует единственный (с точностью до изоморфизма) временной причинный сеть-процесс $\pi_{\sigma} = (TN, \phi) \in \mathscr{CP}(\mathcal{TN})$ и единственная линеаризация ρ_{σ} TN такие, что $FS_{\pi_{\sigma}}(\rho_{\sigma}) = \sigma$.

Доказательство. Пункт (a) без факта единственности последовательности срабатываний $FS_{\pi}(\rho)$ и пункт (δ) без факта единственности линеаризации ρ_{σ} — это переформулировки результатов, доказанных в теоремах соответственно 19 и 21, 22 в [23].

- (*a*) Единственность последовательности срабатываний $FS_{\pi}(\rho)$ следует из определений гомоморфизма ϕ и функции FS_{π} .
- (б) Пусть $\rho_{\sigma} = e_1 \dots e_n \ (n \geq 0)$ линеаризация TN такая, что $FS_{\pi_{\sigma}}(\rho_{\sigma}) = \sigma = (t_1, \theta_1) \dots (t_n, \theta_n) \in \mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N})$. Предположим обратное, т.е. существует линеаризация $\overline{\rho} = \overline{e}_1 \dots \overline{e}_n \ TN$ такая, что $FS_{\pi_{\sigma}}(\overline{\rho}) = \sigma$ и $\overline{\rho} \neq \rho_{\sigma}$. Так как все линеаризации TN конечны, то можно найти минимальное k такое, что $e_k \neq \overline{e}_k$. Ясно, что $\phi(e_k) = \phi(\overline{e}_k) = t_k$. Поскольку $\mathcal{T}\mathcal{N} T$ -ограниченная ВСП, то $t_k \neq \emptyset$. Возьмем произвольное место $p_k \in t_k$. По определению гомоморфизма, существуют условия $b \in t_k$ и $\overline{b} \in t_k$ такие, что $\phi(b) = \phi(\overline{b}) = p_k$. В силу определения временной причинной сети, верно, что $b \neq \overline{b}$.

Рассмотрим возможные случаи.

- $-\{b, \overline{b}\} \subseteq {}^{\bullet}TN$. Тогда верно, что $p_k \in M_0$. Это противоречит определению гомоморфизма ϕ .
- $b \in {}^{\bullet}TN$ и $\overline{b} \notin {}^{\bullet}TN$ (случай, когда $\overline{b} \in {}^{\bullet}TN$ и $b \notin {}^{\bullet}TN$, аналогичен). Поскольку $b \in {}^{\bullet}TN$, то получаем, что $p_k \in M_0$, по определению гомоморфизма \mathfrak{q} . Тогда имеем, что $b = b_{0,p_k}$, по построению $\pi_{\mathfrak{q}}$ в [23]. Предполагая, что $\overline{b} \notin {}^{\bullet}TN$, найдем событие \widetilde{e} такое, что $\{\widetilde{e}\} = {}^{\bullet}\overline{b}$. Так как k минимальное, то в обеих линеаризациях \mathfrak{p} и $\overline{\mathfrak{p}}$ событие \widetilde{e} имеет один и тот же порядковый номер, т.е. $\widetilde{e} = e_i = \overline{e_i}$ для некоторого 0 < i < k. По определению функции $FS_{\pi_{\mathfrak{q}}}$, верно, что $\mathfrak{q}(\widetilde{e}) = t_i$. Тогда $p_k \in t_i^{\bullet}$, согласно определению \mathfrak{q} . Кроме того, имеем, что $\overline{b} = b_{i,p_k}$, в силу построения $\pi_{\mathfrak{q}}$ в [23]. Таким образом, получили противоречие со свойством (41) из [23]: не существует b_{i,p_k} для любого 0 < i < k.
- $-b, \overline{b} \notin {}^{\bullet}TN$. Следовательно, существует событие \tilde{e} (\hat{e}) такое, что $\{\tilde{e}\}={}^{\bullet}b$ $(\{\hat{e}\}={}^{\bullet}\overline{b}$). В силу опре-

деления гомоморфизма φ , верно, что $\tilde{e} \neq \hat{e}$. Так как k — минимальное, то в обеих линеаризациях φ и $\overline{\varphi}$ событие \tilde{e} (\hat{e}) имеет один и тот же порядковый номер, т.е. $\tilde{e} = e_i = \overline{e_i}$ для некоторого $1 \leq i < k$ ($\hat{e} = e_j = \overline{e_j}$ для некоторого $1 \leq j < k$). Тогда $i \neq j$, согласно определению линеаризации. По определению функции $FS_{\pi_{\sigma}}$, имеем, что $\varphi(\tilde{e}) = t_i$ ($\varphi(\hat{e}) = t_j$). Из определения гомоморфизма следует, что $p_k \in t_i^{\bullet}$ ($p_k \in t_j^{\bullet}$). По построению π_{σ} в [23] верно, что $b = b_{i,p_k}$ ($\overline{b} = b_{j,p_k}$). В случае, когда $i \leq j \leq k$ ($j \leq i \leq k$), получаем противоречие со свойством (41) из [23]: не существует b_{l,p_k} для любого i < l < k (j < l < k). \square

Пример 4. Для временного причинного сети-процесса $\pi = (TN, \varphi)$ ВСП \mathcal{TN} (см. пример 3) и линеаризации $\rho = e_1e_3e_2e_7e_6e_5e_4$ временной причинной сети TN получаем, что $FS_{\pi}(\rho) = (t_1, 3)$ $(t_3, 0)$ $(t_2, 2)$ $(t_3, 2)$ $(t_1, 0)$ $(t_5, 2)$ $(t_4, 0)$ является последовательностью срабатываний ВСП \mathcal{TN} (см. пример 1).

Используя определение префикса временной причинной сети и утверждение 1, легко показать, что если последовательность срабатываний и временной причинный сеть-процесс ВСП взаимосвязаны, то их непосредственные расширения тоже взимосвязаны.

 Π е м м а 2. Пусть $\sigma \in \mathcal{FS}(\mathcal{TN})$ и $\pi \in \mathcal{CP}(\mathcal{TN})$ такие, что $\sigma = FS_{\pi}(\rho)$, где ρ — линеаризация TN_{π} . Тогда

- (a) если $\sigma(t,\theta) \in \mathcal{FS}(\mathcal{TN})$, то существует $\tilde{\pi} \in \mathcal{CP}(\mathcal{TN})$ такой, что $\pi \to \tilde{\pi}$ в \mathcal{TN} и $\sigma(t,\theta) = FS_{\tilde{\pi}}(\rho e)$, где $\rho e \Lambda$ инеаризация $TN_{\tilde{\pi}}$;
- (б) если $\pi \to \tilde{\pi}$ в \mathcal{TN} , то существует $\sigma(t,\theta) \in \mathcal{FS}(\mathcal{TN})$ такая, что $\sigma(t,\theta) = FS_{\tilde{\pi}}(\rho e)$, где $\rho e -$ линеаризация $TN_{\tilde{\pi}}$.

3.3. Временные причинные деревья временных сетей Петри

Причинные деревья [8] — это деревья синхронизации, у которых в пометках дуг кроме имен действий содержится дополнительная информация о предшественниках этих действий, что обеспечивает интерливинговое представление параллельных процессов с описанием причинной зависимости между их действиями. Добавляя времена выполнения действий в пометки причинных деревьев, получаем временные причинные деревья. Во временном причинном дереве ВСП \mathcal{TN} вершинами являются последовательности срабатываний из множества $\mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N})$ и дуги проводятся между двумя вершинами, если одна последовательность является непосредственным расширением другой. Информация о предшественниках для пометок дуг получается из отношений инцидентности соответствующих временных причинных сетей-процессов ВСП \mathcal{TN} .

О п р е д е л е н и е 6. Временное причинное дерево ВСП \mathcal{TN} , $TCT(\mathcal{TN})$, — это дерево ($\mathcal{FS}(\mathcal{TN})$, A, ϕ), где $\mathcal{FS}(\mathcal{TN})$ — множество вершин с корнем ε ; $A = \{(\sigma, \sigma(t, \theta)) | \sigma, \sigma(t, \theta) \in \mathcal{FS}(\mathcal{TN})\}$ — множество дуг; ϕ — помечающая функция такая, что $\phi(\varepsilon) = \varepsilon$ и $\phi(\sigma, \sigma(t, \theta)) = (l_{\mathcal{TN}}(t), \theta, K)$, где $K = \{n - l + 1 \mid \sigma(t, \theta) = FS_{\pi_{\sigma(t, \theta)}}(e_1 \dots e_n e)$, где $e_1 \dots e_n e$ — линеаризация $TN_{\pi_{\sigma(t, \theta)}}$, и $e_l \prec_{TN_{\pi_{\sigma(t, \theta)}}} e\}$. Пусть $path(\sigma)$ — путь в $TCT(\mathcal{TN})$ из корня в вершину σ^6 . Через $\mathcal{L}(TCT(\mathcal{TN})) = \{\phi(path(\sigma)) \in (Act \times \mathbb{T} \times 2^{\mathbb{N}})^* | \sigma \in \mathcal{FS}(\mathcal{TN})\}$ обозначим множество последовательностей пометок путей временного причинного дерева ВСП \mathcal{TN} .

Пример 5. Рассмотрим ВСП \mathcal{TN} (см. рис. 1) и последовательность срабатываний $\sigma = (t_1,3)$ $(t_3,0)$ $(t_2,2)$ $(t_3,2)$ $(t_1,0)$ $(t_5,2)$ $(t_4,0) \in \mathcal{FS}(\mathcal{TN})$. Получаем, что последовательность пометок пути из корня в вершину σ имеет вид: $\phi(path(\sigma)) = (a,3,\emptyset)$ $(b,0,\emptyset)$ $(a,2,\{1,2\})$ $(b,2,\{1,2,3\})$ $(a,0,\{2,3,4\})$ $(d,2,\{2,3,4,5\})$ $(c,0,\{2,4,5,6\})$. \square

Установим взаимосвязи между корректными временными причинными сетями-процессами и помеченными путями во временных причинных деревьях двух ВСП.

Утверждение 2. Пусть $\mathcal{T}\mathcal{N}$ и $\mathcal{T}\mathcal{N}' - BC\Pi$ и $TCT(\mathcal{T}\mathcal{N}) = (\mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N}), A, \phi)$ и $TCT(\mathcal{T}\mathcal{N}') = (\mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N}'), A, \phi') - их$ временные причинные деревья. Тогда

(а) если $\pi \in \mathscr{CP}(\mathcal{TN})$ и $\pi' \in \mathscr{CP}(\mathcal{TN'})$ — временные сети-процессы и $f: \eta(TN_{\pi}) \to \eta(TN_{\pi'})$ — изоморфизм, то $\phi(path(FS_{\pi}(\rho))) = \phi'(path(FS_{\pi'}(f(\rho))))$ для любой линеаризации ρ TN_{π} ;

(б) если $\phi(path(\sigma)) = \phi'(path(\sigma'))$ для $\sigma \in \mathcal{FS}(\mathcal{TN}')$ и $\sigma' \in \mathcal{FS}(\mathcal{TN})$, то существует изоморфизм $f \colon \eta(TN_{\pi_\sigma}) \to \eta(TN_{\pi_{\sigma'}})$ такой, что $f(\rho_\sigma) = \rho_{\sigma'}$.

Доказательство. (a) Следует из утверждения 1(a) и свойств изоморфизма f.

(б) Следует из утверждения 1(б), определения 6 и свойств гомоморфизма ϕ и функции FS.

Рассмотрим и докажем вспомогательный полезный факт.

Утверждение 3. Пусть $\mathcal{T}\mathcal{N}$ и $\mathcal{T}\mathcal{N}' - BC\Pi$. Тогда $\mathcal{L}(\mathcal{T}\mathcal{N}) = \mathcal{L}(\mathcal{T}\mathcal{N}') \Leftarrow \mathcal{L}(\mathcal{T}\mathcal{C}\mathcal{T}(\mathcal{T}\mathcal{N})) = \mathcal{L}(\mathcal{T}\mathcal{C}\mathcal{T}(\mathcal{T}\mathcal{N}')) \Leftrightarrow \mathcal{T}\mathcal{P}os(\mathcal{T}\mathcal{N}) = \mathcal{T}\mathcal{P}os(\mathcal{T}\mathcal{N}').$ \mathcal{L} оказательство. Факт, что $\mathcal{L}(\mathcal{TN}) = \mathcal{L}(\mathcal{TN}') \Leftarrow \mathcal{L}(\mathcal{TCT}(\mathcal{TN})) = \mathcal{L}(\mathcal{TCT}(\mathcal{TN}'))$, непосредственно следует из определений.

проверим, $\mathcal{L}(TCT(\mathcal{TN}))$ Теперь что $= \mathcal{L}(TCT(\mathcal{TN}'))$ $\Rightarrow \mathcal{TPos}(\mathcal{TN}') = \mathcal{TPos}(\mathcal{TN}_2).$ Возьмем произвольное ВЧУМ $TP \in \mathcal{TPos}(\mathcal{TN})$. Это означает, что можно найти временной причинный сеть-процесс $\pi = (TN, \phi) \in \mathscr{CP}(\mathcal{TN})$ такой, что $\eta(TN) \simeq TP$. Рассмотрим произвольную линеаризацию р TN. Согласно лемме 1, хотя бы одна линеаризация TN существует. Из утверждения 1(a) следует, что найдется последовательность срабатываний $\sigma = FS_{\pi}(\rho) \in \mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N})$. Согласно утверждению $1(\delta)$, можем без потери общности считать, что $\pi = \pi_{\sigma}$ и $\rho = \rho_{\sigma}$. По определению, в $TCT(\mathcal{TN})$ существует путь u из корня в вершину σ . Кроме того, верно, что $\phi(u) \in \mathcal{L}(TCT(\mathcal{TN})) = \mathcal{L}(TCT(\mathcal{TN}))$. Это означает наличие в $TCT(\mathcal{TN}')$ пути u' из корня в вершину $\sigma' \in \mathcal{FG}(\mathcal{TN}')$ такого, что $\phi(u') = \phi(u)$. В силу утверждения $1(\delta)$, существуют единственный (с точностью до изоморфизма) временной причинный сетьпроцесс $\pi_{\sigma'} = (TN_{\sigma'}, \varphi_{\sigma'}) \in \mathscr{CP}(\mathcal{TN}')$ и единственная линеаризация $\rho_{\sigma'}$ $TN_{\sigma'}$ такие, что $FS_{\pi_{\sigma'}}(\rho_{\sigma'}) = \sigma'$. Из утверждения 2(б) следует, что найдется изоморфизм $f: \eta(TN_{\sigma}) \to \eta(TN_{\sigma})$ такой, что $f(\rho_{\sigma}) = \rho_{\sigma}$. Таким образом, получаем, что $\eta(TN_{\sigma}) \simeq TP$, т.е. $TP \in \mathcal{TPos}(\mathcal{TN'}).$

И наконец, проверим, что $\mathcal{TPos}(\mathcal{TN}) =$ $\mathcal{L}(TCT(\mathcal{T}\mathcal{N})) = \mathcal{L}(TCT(\mathcal{T}\mathcal{N}')).$ $= \mathcal{TPos}(\mathcal{TN'}) \Rightarrow$ Возьмем произвольное $w \in \mathcal{L}(TCT(\mathcal{T}\mathcal{N}))$. Это означает, что существует путь u в $TCT(\mathcal{TN})$ из корня в вершину $\sigma \in \mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N})$ такой, что $\phi(u) = w$. Согласно утверждению $1(\delta)$, можно найти единственный (с точностью до изморфизма) временной причинный сеть-процесс $\pi_{\sigma} = (TN_{\sigma}, \varphi_{\sigma}) \in \mathscr{CP}(\mathcal{TN})$ и единственную линеаризацию ρ_{σ} TN_{σ} такие, что $FS_{\pi_{-}}(\rho_{\sigma}) = \sigma$. Значит, верно, что $\eta(TN_{\sigma}) \in$ $\in \mathcal{TPos}(\mathcal{TN}) = \mathcal{TPos}(\mathcal{TN}')$. Тогда существует временной причинный сеть-процесс $\pi' = (TN', \varphi') \in$ $\in \mathscr{CP}(\mathcal{TN}')$ такой, что $\eta(TN_{\sigma}) \simeq \eta(TN')$. Следовательно, найдется изоморфизм $f: \eta(TN_{\sigma}) \to \eta(TN')$. Применяя утверждение 2(a), получаем, что $w = \phi(path(FS_{\pi_{\sigma}}(\rho_{\sigma}))) = \phi'(path(FS_{\pi'}(f(\rho_{\sigma})))) \in$ $\in \mathcal{L}(TCT(\mathcal{TN}')). \square$

4. ТЕСТОВЫЕ ЭКВИВАЛЕНТНОСТИ

При интерливинговом подходе к определению тестовой эквивалентности в качестве тестов рассматриваются последовательности w выполняемых действий (вычисления системы) и множества W возможных дальнейших действий. Процесс проходит тест, если после выполнения

 $^{^6}$ Мы определяем $path(\epsilon) = \epsilon$. Заметим, что в $TCT(\mathcal{TN})$ для любой вершины $\sigma \in \mathcal{FS}(\mathcal{TN})$ существует путь из корня в вершину σ .

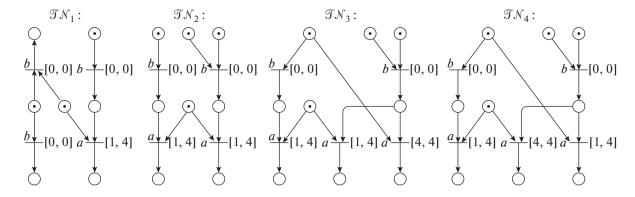


Рис. 3.

каждой последовательности *w* действий дальше может выполниться хотя бы одно действие из *W*. Два процесса тестово эквивалентны, если они проходят одно и то же множество тестов. Во временном варианте добавляется информация о временах выполнения действий.

Определение 7. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП.

Для последовательности $w \in (Act \times \mathbb{T})^*$ и множества $W \subseteq (Act \times \mathbb{T})$, $\mathcal{T} \mathcal{N}$ after w MUST $_{int}$ W, если для всех $\sigma \in \mathcal{F}\mathcal{G}(\mathcal{T} \mathcal{N})$ таких, что $L(\sigma) = w$, существуют $(a,\theta) \in W$ и $\sigma(t,\theta) \in \mathcal{F}\mathcal{G}(\mathcal{T} \mathcal{N})$ такие, что $L(\sigma(t,\theta)) = w(a,\theta)$.

 \mathcal{TN} и \mathcal{TN}' называются UHT -местово эквивалентными (обозначается $\mathcal{TN} \sim_{int} \mathcal{TN}'$), если для любой последовательности $w \in (Act \times \mathbb{T})^*$ и любого множества $W \subseteq (Act \times \mathbb{T})$, \mathcal{TN} after w MUST $_{int}$ $W \Leftrightarrow \mathcal{TN}'$ after w MUST $_{int}$ W.

Пример 6. ВСП \mathcal{TN}_2 , \mathcal{TN}_3 и \mathcal{TN}_4 , изображенные на рис. 3, ИНТ-тестово эквивалентны, тогда как \mathcal{TN}_1 и \mathcal{TN}_2 не являются таковыми. Легко проверить, что $\mathit{TCT}(\mathcal{TN}_2)$ after w=(b,0)(b,0) MUST $_{int}$ $W=\{(a,3.9)\}$. Однако в $\mathit{TCT}(\mathcal{TN}_1)$ существует последовательность срабатываний, которая помечена w и после которой невозможно срабатывание перехода, помеченного a, в момент времени 3.9. Таким образом, не выполняется $\mathit{TCT}(\mathcal{TN}_1)$ after w MUST $_{int}$ W. \square

Тестовые эквивалентности, учитывающие отношение причинной зависимости между действиями, были впервые введены Асето и др. в статье [5] в контексте моделей структур событий. При этом в качестве вычислений процесса вместо последовательностей выполняемых действий рассматривались их частично-упорядоченные мультимножества (ЧУММы). В работе [6] вместо множеств дальнейших действий использовались непосредственные расширения выполняемых ЧУММов. Кроме того, в [6] была предложена еще одна версия причинной тестовой эквивалентности, которая использует в качестве вычислений ЧУМы выполняе-

мых действий и которая, как было показано, является более строгой эквивалентностью. Следуя этому подходу, далее определяется временная ЧУМ-тестовая эквивалентность для ВСП с использованием ее корректных временных причинных сетей-процессов.

Определение 8. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП.

Для ВЧУМ TP и множества \mathbf{TP} ВЧУМов такого, что $TP \prec^7 TP'$ для любого $TP' \in \mathbf{TP}$, \mathcal{TN} after TP MUST $_{tpos}$ \mathbf{TP} , если для любого $\pi = (TN, \phi) \in \mathscr{CP}(\mathcal{TN})$ и для любого изоморфизма $f: \eta(TN) \to TP$ существуют $TP' \in \mathbf{TP}$, $\pi' = (TN', \phi') \in \mathscr{CP}(\mathcal{TN})$ и изоморфизм $f: \eta(TN') \to TP'$ такие, что $\pi \to \pi'$ и $f \subseteq f'$.

 \mathcal{TN} и \mathcal{TN}' называются BHYM -тестово эквивалентными (обозначается $\mathcal{TN} \sim_{tpos} \mathcal{TN}'$), если для любого ВЧУМ TP и любого множества TP ВЧУ-Мов такого, что $\mathit{TP} \prec \mathit{TP}'$ для всех $\mathit{TP}' \in \mathit{TP}$, выполняется условие: \mathcal{TN} after TP MUST_{tpos} $\mathit{TP}' \Leftrightarrow \mathcal{TN}'$ after TP MUST_{tpos} TP .

Пример 7. Рассмотрим ВСП \mathcal{TN}_2 , \mathcal{TN}_3 и \mathcal{TN}_4 , изображенные на рис. 3. Легко видеть, что \mathcal{TN}_2 и \mathcal{TN}_3 ВЧУМ-тестово эквивалентны, тогда как \mathcal{TN}_3 и \mathcal{TN}_4 не являются таковыми. Убедимся в последнем. Определим ВЧУМ $TP = (\{x_1, x_2\}, \preceq, \lambda, \tau)$, где $\preceq = \{(x_i, x_i) | 1 \le i \le 2\}$, $\lambda(x_1) = \lambda(x_2) = b$, $\tau(x_1) = \tau'(x_2) = 0$; и ВЧУМ $TP' = (\{x_1, x_2, x_3\}, \preceq', \lambda', \tau')$ где $\preceq' = \{(x_i, x_i) | 1 \le i \le 3\} \cup \{(x_2, x_3)\}$, $\lambda'(x_1) = \lambda'(x_2) = b$, $\lambda'(x_3) = a$, $\tau'(x_1) = \tau'(x_2) = 0$ и $\tau'(x_3) = 3.9$. Для любого временного причинного сети-процесса $\pi_3 = (TN_3, \phi_3) \in \mathscr{CP}(\mathcal{TN}_3)$, в котором E_{TN_3} состоит из двух параллельных событий с пометками b и времен-

⁷ ВЧУМ $\eta = (X, \leq, \lambda, \tau)$ называется *префиксом* ВЧУМ $\eta' = (X, \leq', \lambda', \tau')$ (обозначается $\eta < \eta'$), если $X \subseteq X'$, $X \setminus X = \{x\}, \leq = \leq' \cap (X \times X), \lambda = \lambda'|_X, \tau = \tau'|_X$ и x является максимальным относительно \leq' элементом X'.

ными значениями, равными 0, и для любого изоморфизма $f_3: \eta(TN_3) \to TP$ можно найти временной причинный сеть-процесс $\pi'_3 = (TN'_3, \varphi'_3) \in \mathscr{CP}(\mathcal{TN}_3)$, в котором $E_{TN'_3}$ состоит из двух параллельных событий с пометками b и временными значениями 0 и третьего события с пометкой a и временным значением 3.9, находящегося в отношении причинной зависимости с одним из b, и изоморфизм $f_3': \eta(TN'_3) \to TP'$ такие, что $\pi_3 \to \pi'_3$ и $f_3 \subset f_3'$. Однако, это не так в случае ВСП \mathcal{TN}_4 . \square

Далее определим тестовую эквивалентность для ВСП на основе их временных причинных деревьев. При этом будем придерживаться метода, использованного для модели структур событий в [6]. Тесты будут строиться с учетом временных значений на основе множества пометок $Act \times \mathbb{T} \times 2^{\mathbb{N}}$ дуг деревьев.

Определение 9. Пусть \mathcal{TN} и \mathcal{TN}' – ВСП и $TCT(\mathcal{TN}) = (\mathcal{F}\mathcal{G}(\mathcal{TN}), A, \phi)$ и $TCT(\mathcal{TN}') = (\mathcal{F}\mathcal{G}(\mathcal{TN}'), A', \phi')$ – их временные причинные деревья.

Для последовательности $w \in (Act \times \mathbb{T} \times 2^{\mathbb{N}})^*$ и множества $\mathbf{W} \subseteq (Act \times \mathbb{T} \times 2^{\mathbb{N}})$, $TCT(\mathcal{T}\mathcal{N})$ after w **MUST**_{tct} \mathbf{W} , если для всех путей u в $TCT(\mathcal{T}\mathcal{N})$ из корня в вершину n таких, что $\phi(u) = w$, существуют пометка $(a, d, K) \in \mathbf{W}$ и дуга r из вершины n такие, что $\phi(r) = (a, d, K)$;

 $\mathcal{T}\mathcal{N}$ и $\mathcal{T}\mathcal{N}'$ называются $\mathcal{B}\Pi\mathcal{I}$ -тестово эквивалентными (обозначается $\mathcal{T}\mathcal{N} \sim_{tct} \mathcal{T}\mathcal{N}'$), если для любой последовательности $w \in (Act \times \mathbb{T} \times 2^{\mathbb{N}})^*$ и для любого множества $\mathbf{W} \subseteq (Act \times \mathbb{T} \times 2^{\mathbb{N}})$, $TCT(\mathcal{T}\mathcal{N})$ after w MUST $_{tct}$ $\mathbf{W} \Leftrightarrow TCT(\mathcal{T}\mathcal{N}')$ after w MUST $_{tct}$ \mathbf{W} .

Пример 8. Рассмотрим ВСП \mathcal{TN}_2 , \mathcal{TN}_3 и \mathcal{TN}_4 , изображенные на рис. 3. Легко видеть, что \mathcal{TN}_2 и \mathcal{TN}_3 ВПД-тестово эквивалентны, а \mathcal{TN}_3 и \mathcal{TN}_4 не являются таковыми. Убедимся в последнем факте. Для этого определим $w = (b,0,\varnothing)(b,0,\varnothing)$ и $\mathbf{W} = \{(a,3.9,\{l\})\}$. Легко проверить, что $TCT(\mathcal{TN}_3)$ after w MUST $_{tct}$ W. В $TCT(\mathcal{TN}_4)$ существуют два пути, помеченных $(b,0,\varnothing)(b,0,\varnothing)$, один из них заканчивается в вершине, из которой есть дуга с пометкой $(a,3.9,\{l\})$, а из вершины, в которую ведет другой путь, такой дуги нет. Таким образом, не выполняется $TCT(\mathcal{TN}_4)$ after w MUST $_{tct}$ W. \square

Из определений ИНТ-, ВЧУМ- и ВПД-тестовых эквивалентностей очевидным образом следует

$$\mbox{\mathcal{I} В M M A 3. $\Pi y cmb $\mathcal{T} \mathcal{N}_1$ u $\mathcal{T} \mathcal{N}_2$ — $BC\Pi$. $Torda$ $\mathcal{T} \mathcal{N}_1 \sim_{int} \mathcal{T} \mathcal{N}_2 \Rightarrow \mathcal{L}(\mathcal{T} \mathcal{N}_1) = \mathcal{L}(\mathcal{T} \mathcal{N}_2),$ $\mathcal{T} \mathcal{N}_1 \sim_{tpos} \mathcal{T} \mathcal{N}_2 \Rightarrow \mathcal{T} \mathcal{P} os(\mathcal{T} \mathcal{N}_1) = \mathcal{T} \mathcal{P} os(\mathcal{T} \mathcal{N}_2),$ $\mathcal{T} \mathcal{N}_1 \sim_{tct} \mathcal{T} \mathcal{N}_2 \Rightarrow \mathcal{L}(TCT(\mathcal{T} \mathcal{N}_1)) = \mathcal{L}(TCT(\mathcal{T} \mathcal{N}_2)).$ }$$

Установим связи между ИНТ- и ВПД-тестовыми эквивалентностями.

Теорема 1. $\mathcal{TN}_1 \sim_{tct} \mathcal{TN}_2 \Rightarrow \mathcal{TN}_1 \sim_{int} \mathcal{TN}_2$.

Доказательство. Предположим, $\mathcal{TN}_1 \sim_{tct} \mathcal{TN}_2$. Покажем, что верно $\mathcal{TN}_1 \sim_{int} \mathcal{TN}_2$. Предположим обратное, т.е. $w \in (Act \times \mathbb{T})^*$ и $W \subseteq (Act \times \mathbb{T})$ такие, что \mathcal{TN}_1 after w MUST $_{int}$ W, однако $\neg (\mathcal{TN}_{2}$ after w MUST $_{int}$ W). Последнее означает, что существует $\sigma_2 \in \mathcal{F}\mathcal{G}(\mathcal{TN}_2)$ такая, что $L(\sigma_2) = w$, и для любых $(a, \theta) \in W$ и $\sigma_2(t', \theta) \in$ $\in \mathcal{F}\mathcal{G}(\mathcal{TN}_2)$ не верно, что $L(\sigma_2(t',\theta)) = w(a,\theta)$. Используя определения, получаем, что $w \in \mathcal{L}(\mathcal{TN}_2)$ и, более того, $\tilde{w} = \phi_2(path(\sigma_2)) \in \mathcal{L}(TCT(\mathcal{TN}_2))$, при этом $\tilde{w}|_{(Act \times \mathbb{T})^*} = w$. Определим множество $\mathbf{W} =$ $\{(a, \theta, K) | (a, \theta) \in W, \exists \sigma \in \mathcal{F}\mathcal{G}(\mathcal{T}\mathcal{N}_1) : L(\sigma) = w$ и $\phi_1(path(\sigma)) = \tilde{w}, \exists$ дуга r из σ в $TCT(\mathcal{TN}_1) : \phi_1(r) =$ = (a, θ, K) }. Покажем, что \mathcal{TN}_1 after \tilde{w} MUST_{tet} W. Возьмем произвольную $\sigma_1 \in \mathcal{FG}(\mathcal{TN}_1)$ такую, что $\phi_1(path(\sigma_1)) = \tilde{w}$. Такая σ_1 существует, поскольку $\tilde{w} \in \mathcal{L}(TCT(\mathcal{TN}_1))$, по лемме 3. Более того, имеем, что $w \in \mathcal{L}(\mathcal{TN}_1)$, по утверждению 3. Так как \mathcal{TN}_1 **af**ter w \mathbf{MUST}_{int} W, то существуют $(a, \theta) \in W$ и $\sigma_1(t, \theta)$ θ) $\in \mathcal{F}\mathcal{G}(\mathcal{TN}_1)$ такие, что $L(\sigma_1(t,\theta)) = w(a,\theta)$. Согласно построению временного причинного дерева, найдется дуга $r = (\sigma_1, \sigma_1(t, \theta))$ в $TCT(\mathcal{TN}_1)$ такая, что $\phi_1(r) = (a, \theta, K)$. Значит, имеем, что $\phi_1(r) \in \mathbf{W}$. В силу произвольности выбора σ_1 , верно, что \mathcal{TN}_1 after \tilde{w} MUST_{tct} W. Таким образом, пришли к противоречию, так как легко проверить, что $-(\mathcal{TN}_2$ after \tilde{w} MUST_{tct} W). \square

В заключение, покажем совпадение тестовых эквивалентностей для ВСП в семантиках временных частично-упорядоченных множеств и временных причинных деревьев.

Теорема 2. Пусть \mathcal{TN}_1 и \mathcal{TN}_2 — ВСП. Тогда $\mathcal{TN}_1 \sim_{max} \mathcal{TN}_2 \Leftrightarrow \mathcal{TN}_1 \sim_{tct} \mathcal{TN}_2.$

Доказательство слева направо (доказательство слева направо (доказательство справа налево аналогично). Пусть $TCT(\mathcal{TN}_i) = (\mathcal{F}\mathcal{G}(\mathcal{TN}_i), A_i, \phi_i)$ (i=1,2). Предположим, что $\mathcal{TN}_1 \sim_{tpos} \mathcal{TN}_2$. Тогда, согласно лемме 3, имеем $\mathcal{TPos}(\mathcal{TN}_1) = \mathcal{TPos}(\mathcal{TN}_2)$. По утверждению 3, получаем, что $\mathcal{L}(TCT(\mathcal{TN}_1)) = \mathcal{L}(TCT(\mathcal{TN}_2))$. Покажем, что $\mathcal{TN}_1 \sim_{tct} \mathcal{TN}_2$. Возьмем произвольные $w \in (Act \times \mathbb{T} \times 2^{\mathbb{N}})^*$ и $\mathbf{W} \subseteq (Act \times \mathbb{T} \times 2^{\mathbb{N}})$. Без потери общности полагаем, что $|w| = n \ (n \ge 0)$. Предположим, что $TCT(\mathcal{TN}_1)$ after w MUST $_{tct}$ W. Проверим, что $TCT(\mathcal{TN}_2)$ after w MUST $_{tct}$ W.

Если $w \notin \mathcal{L}(TCT(\mathcal{T}\mathcal{N}_1)) = \mathcal{L}(TCT(\mathcal{T}\mathcal{N}_2))$, то результат очевиден. Рассмотрим случай, когда $w \in \mathcal{L}(TCT(\mathcal{T}\mathcal{N}_1)) = \mathcal{L}(TCT(\mathcal{T}\mathcal{N}_2))$. Тогда можно выбрать любой путь u из корня в некоторую вершину $\sigma \in \mathcal{F}\mathcal{L}(\mathcal{T}\mathcal{N}_1)$ такую, что $\phi_1(u) = w$. Согласно утверждению $1(\delta)$, существует единственный (с точностью до изоморфизма) временной причинный сеть-процесс $\pi_{\sigma} = (TN_{\sigma}, \phi_{\sigma}) \in \mathcal{CP}(\mathcal{T}\mathcal{N}_1)$ и единственная линеаризация $\rho_{\sigma} = e_1^{\sigma} \dots e_n^{\sigma} TN_{\sigma}$ такие, что $FS_{\pi_{\sigma}}(\rho_{\sigma}) = \sigma$. Обозначим $TP_w = \eta(TN_{\sigma}) \in \mathcal{TPos}(\mathcal{T}\mathcal{N}_1)$.

Для каждой $(a,\theta,K)\in \mathbf{W}$ сконструируем ВЧУМ $TP_{(a,\theta,K)}=(X,\preceq,\lambda,\tau)$ следующим образом: $X=E_{TN_\sigma}\cup\{e_{(a,\theta,K)}\}\ (e_{(a,\theta,K)}\notin E_{TN_\sigma}); \preceq=\preceq_{TN_\sigma}\cup\{(e_{n-k+1}^\sigma,e_{(a,\theta,K)})|k\in K\};\ \lambda|_{E_{TN_\sigma}}=\lambda_{TN_\sigma},\ \lambda(e_{(a,\theta,K)})=a;\ \tau|_{E_{TN_\sigma}}=\tau_{TN_\sigma},\ \tau(e_{(a,\theta,K)})=\tau(TN_\sigma)+\theta.$ Обозначим множество всех построенных ВЧУМ как $\mathbf{TP_W}=\{TP_{(a,\theta,K)}|(a,\theta,K)\in \mathbf{W}\}.$

Проверим, что \mathcal{TN}_1 after TP_w MUST_{toos} TP_{w} . Возьмем произвольный временной причинный сеть-процесс $\pi_1 = (TN_1, \varphi_1) \in \mathscr{CP}(\mathcal{TN}_1)$ и изоморфизм $f_1: \eta(TN_1) \to TP_w$. Так как $TP_w \in \mathcal{TP}os(\mathcal{TN}_1)$, то такие π_1 и f_1 существуют. Из утверждения 2(a) получаем, что $e_1^1 \dots e_n^1 = \rho_1 = (f_1)^{-1} : \eta(TN_{\sigma}) \rightarrow \eta(TN_1)(\rho_{\sigma})$ является линеаризацией TN_1 такой, что $w = \phi(path(\sigma_1 =$ $= FS_{\pi_t}(\rho_1)$). Τακ κακ $TCT(\mathcal{TN}_1)$ after w MUST_{tct} W, то существует пометка $(a'_1, \theta'_1, K'_1) \in \mathbf{W}$ и дуга r_1 из вершины σ_1 такие, что $\phi_1(r_1) = (a_1', \theta_1', K_1')$. Тогда можно найти $TP_{\mathbf{l}}' = TP_{(a_{\mathbf{l}}', \theta_{\mathbf{l}}', K_{\mathbf{l}}')} \in \mathbf{TP}_{\mathbf{W}}$. Следовательно, по построению множества $\mathbf{TP}_{\mathbf{W}}$, получаем, что $\{e_{(a',\theta',K')}\} = E_{TP'_1} \setminus E_{TN_{\sigma}}, \quad a'_1 = \lambda_{TP'_1}(e_{(a',\theta',K')}),$ $= \tau_{TP}(e_{(q_i \mid \theta(K))}) - \tau(TN_{\sigma}), K_1' = \{n - l + 1 \mid e_l^{\sigma} \leq_{TP} e_{l}^{\sigma}\}$ $e_{(a_i,\theta_i,K_i)}$ }. Более того, по определению $TCT(\mathcal{TN}_1)$, существует $\sigma_1(t'_1, \theta'_1) \in \mathcal{FG}(\mathcal{TN}_1), (t'_1 \in T_{\mathcal{TN}_1}),$ такая что $r_1 = (\sigma_1, \sigma_1(t'_1, \theta'_1))$ и $\phi_1(\sigma'_1, \sigma_1(t'_1, \theta'_1)) =$ = $(l_{\mathcal{T},\mathcal{N}_1}(t_1') = a_1', \theta_1', K_1')$. Из леммы 2(a) следует наличие временного причинного сети-процесса π'_1 = $=(TN_1', \varphi_1') \in \mathscr{CP}(\mathcal{TN}_1)$ такого, что $\pi_1 \to \pi_1'$ и $\sigma_{l}(t'_{l}, \theta'_{l}) = FS_{\pi'_{l}}(\rho_{l}e'_{l})$ для некоторой линеаризации $\rho_1 e_1' TN_1'$, т.е. $\varphi_1'(e_1') = t_1'$. Определим функцию $f_1': \eta(TN_1') \to TP_1'$ Tak: $f_1'|_{E_{\eta(TN_1)}} = f_1, f_1'(e_1') = e_{(a_1', \theta_1', K_1')}$ Кроме того, $\lambda_{n(TN_i)}(e_1') = a_1' = \lambda_{TP_1}(e_{(a_1',\theta_1',K_1')}); \tau_{n(TN_1')}(e_1') =$ $= \theta'_1 + \tau(TN_1) = \theta'_1 + \tau(TN_{\sigma}) = \tau_{TP}(e_{(a',\theta'_1,K'_1)}); e^1_{n-k+1}$

 $\preceq_{\eta(TN_1')} e_1' \Leftrightarrow f_1'(e_{n-k+1}^1) = e_{n-k+1}^{\sigma} \preceq_{TP_1} e_{(a_1',\theta_1',K_1')}$, для всех $k \in K_1'$. Следовательно, f_1' является изоморфизмом и $f_1 \subseteq f_1'$. Таким образом, \mathcal{TN}_1 after TP_w **MUST**_{tpos} TP_w . Тогда, по предположению теоремы, получаем, что \mathcal{TN}_2 after TP_w **MUST**_{tpos} TP_w .

Далее покажем, что $TCT(\mathcal{TN}_2)$ after w MUST_{tot} **W**. Возьмем произвольный путь u_2 в $TCT(\mathcal{TN}_2)$ из корня в вершину σ_2 такой, что $\phi_2(u_2) = w$. Так как $w \in \mathcal{L}(TCT(\mathcal{TN}_2))$, то найдется хотя бы один такой путь u_2 в $TCT(\mathcal{TN}_2)$. Согласно утверждению $1(\delta)$, существует единственный (с точностью до изоморфизма) временной причинный сеть-процесс $\pi_{\sigma_2} = (TN_2, \varphi_2) \in \mathscr{CP}(\mathcal{TN}_2)$ и единственная линеаризация $\rho_2 = e_1^2 \dots e_n^2 TN_2$ такие, что $FS_{\pi_{00}}(\rho_2) =$ = σ_2 . Используя утверждение 2(δ), получаем наличие изоморфизма $f_2: \eta(TN_2) \to TP_w$ такого, что $f_2(\rho_2) = \rho_{\sigma}$. Так как \mathcal{TN}_2 after TP_w MUST_{toos} TP_w , то существуют $TP_2' \in \mathbf{TP_W}$, $\pi_{\sigma_2}' = (TN_2', \varphi_2') \in$ $\mathscr{CP}(\mathcal{TN}_2)$ и изоморфизм $f_2': \eta(TN_2') \to TP_2'$ такие, что $\pi_{\sigma_2} \to \pi_2'$ и $f_2 \subseteq f_2'$. Согласно лемме $2(\delta)$, найдется $\sigma_2(\tilde{t},\tilde{\theta}) \in \mathcal{F}\mathcal{G}(\mathcal{TN}_2)$ такая, что для некоторой линеаризации $\rho_2 e_2' TN_2'$ имеем, что $\sigma_2(\tilde{t}, \tilde{\theta}) = FS_{\pi}(\rho_2 e_2')$. По построению $\mathbf{TP}_{\mathbf{W}}$, существует пометка $(a, \theta, K) \in$ \in **W** такая, что $TP_2' = TP_{(a,\theta,K)}$, и, следовательно, $\{e_{(a,\theta,K)}\} = E_{TP_2} \setminus E_{TN_{\sigma}}$. Так как $TN_2 \to TN_2'$ и $TP_w \prec \cdot TP_2'$, то $\{e_2'\} = E_{TN_2} \setminus E_{TN_2}$ и $f_2'(e_2') = e_{(a,\theta,K)}$. Поскольку f_2' изоморфизм, верно: $\lambda_{n(TN')}(e'_2) = \lambda_{TP'}(e_{(a,\theta,K)}) = a$, $\tau_{\eta(TN'_2)}(e'_2)\tau_{TP'_2} = (e_{(a,\theta,K)}) = \tau(TN_{\sigma}) + \theta = \tau(TN_2) + \theta$, и $e_i^{\sigma} \preceq_{TP_i} e_{(a,\theta,K)} \Leftrightarrow (f_2')^{-1} (e_i^{\sigma}) = e_i^2 \preceq_{\mathsf{n}(TN_i)} e_2'$ для всех $1 \le i \le n$. Тогда получаем, что $(\tilde{t}, \tilde{\theta}) = (\phi_2'(e_2'), \theta)$ и $e_{n-k+1}^{2} \preceq_{\mathfrak{n}(TN)} e_{2}^{\prime}$ для всех $k \in K$. Следовательно, в $TCT(\mathcal{TN}_2)$ существует дуга $r_2 = (\sigma_2, \sigma_2(\tilde{t}, \tilde{\theta}))$ такая, что $\phi_2(r_2) = (a, \theta, K)$. Таким образом, имеем, что $TCT(\mathcal{TN}_1)$ after w MUST_{tct} W \Rightarrow $TCT(\mathcal{TN}_2)$ after w $MUST_{tct}W$.

В силу симметрии, верно, что $\mathcal{TN}_1 \sim_{\textit{tpos}} \mathcal{TN}_2 \Rightarrow \mathcal{TN}_1 \sim_{\textit{tct}} \mathcal{TN}_2$. \square

5. ЗАКЛЮЧЕНИЕ

В данной статье было показано, что хорошо известные в теории безвременных и временных моделей структур событий причинно-зависимые тестовые эквивалентности могут быть обобщены на модели непрерывно-временных сетей Петри.

В частности, были введены и изучены тестовые эквивалентности в интерливинговой, частичноупорядоченной и комбинированных семантиках в контексте безопасных сетей Петри, переходы которых помечены временными интервалами и каждый переход, имеющий достаточное количество фишек во входных местах, должен срабатывать тогда, когда его счетчик достигнет некоторого значения, принадлежащего его временному интервалу. При исследованиях были построены три представления вычислений непрерывно-временной сети Петри: последовательности срабатываний, представляющие интерливинговую семантику, временные сети-процессы, из причинных сетей которых выводятся частичные порядки, и причинное дерево, построенное из последовательностей срабатываний и частичных порядков причинных сетей. Были найдены взаимосвязи, с одной стороны, между последовательностями срабатываний и корректными временными причинными сетями-процессами, и, с другой стороны, между последними и помеченными путями во временных причинных деревьях. Было установлено, что интерливинговая тестовая эквивалентость слабее, чем тестовая эквивалентность, определенная с использованием временного причинного дерева. Как основной результат, доказано совпадение тестовых эквивалентностей в семантиках временного частичного порядка и временного причинного дерева. Заметим, что подобный результат верен и для безвременных версий тестовых эквивалентностей в контексте свободных от контактов элементарных сетевых систем.

В дальнейшем планируется исследовать взаимосвязи рассмотренных эквивалентностей и семантик с другими эквивалентностями из спектров линейного/ветвящегося времени и интерливинга/частичного порядка ([25]). Также следует изучить возможность расширения полученных результатов на модели непрерывно-временных сетей Петри с невидимыми действиями.

СПИСОК ЛИТЕРАТУРЫ

- De Nicola R., Hennessy M. Testing equivalence for processes // Theoretical Computer Science. 1984. V. 34. P. 83–133.
- 2. *De Nicola R*. Extensional equivalences for transition systems // Acta Informatica. 1987. V. 24. № 2. P. 211–237.
- 3. *Cleaveland R., Hennessy M.* Testing equivalence as a bisimulation equivalence // Lecture Notes in Computer Science. 1989. V. 407. P. 11–23.
- Pomello, L., Rozenberg, G., Simone C. A Survey of Equivalence Notions for Net Based Systems // Lecture Notes in Computer Science. 1992. V. 609. P. 410–472.
- Aceto L., De Nicola R., Fantechi A. Testing equivalences for event structures // Lecture Notes in Computer Science. 1987. V. 280. P. 1–20.

- 6. Goltz U., Wehrheim H. Causal testing // Lecture Notes in Computer Science. 1996. V. 1113. P. 394–406.
- 7. Aceto L. History preserving, causal and mixed-ordering equivalence over stable event structures // Fundamenta Informaticae. 1992. V. 17. № 4. P. 319—331.
- 8. *Darondeau Ph.*, *Degano P.* Refinement of actions in event structures and causal trees // Theoretical Computer Science. 1993. V. 118. № 1. P. 21–48.
- 9. *Nielsen M., Rozenberg G., Thiagarajan P.S.* Behavioural notions for elementary net systems // Distributed Computing. 1990. V. 4. № 1. P. 45–57.
- 10. *Hoogers P.W., Kleijn H.C.M., Thiagarajan P.S.* An event structure semantics for general Petri nets // Theoretical Computer Science. 1996. V. 153. № 1–2. P. 129–170.
- 11. van Glabbeek R.J., Goltz U., Schicke J.-W. On causal semantics of Petri nets // Lecture Notes in Computer Science. 2011. V. 6901. P. 43–59.
- 12. Cleaveland R., Zwarico A.E. A theory of testing for realtime // Proc. 6th IEEE Symp. on Logic in Comput. Sci. (LICS'91), Amsterdam, The Netherlands. 1991. P. 110–119.
- Llana L., de Frutos D. Denotational semantics for timed testing// Lecture Notes in Computer Science. 1997. V. 1233. P. 368–382.
- Hennessy M., Regan T. A process algebra for timed systems // Information and Computation. 1995. V. 117. P. 221–239.
- 15. Corradini F., Vogler W., Jenner L. Comparing the Worst-Case Efficiency of Asynchronous Systems with PAFAS // Acta Informatica. 2002. V. 38. 11–12. P. 735–792
- 16. *Bihler E., Vogler W.* Timed Petri Nets: Efficiency of Asynchronous Systems // Lecture Notes in Computer Science. 2004. V. 3185. P. 25–58.
- Murphy D. Time and duration in noninterleaving concurrency // Fundamenta Informaticae. 1993. V. 19. P. 403–416.
- 18. Andreeva M., Bozhenkova E., Virbitskaite I. Analysis of timed concurrent models based on testing equivalence // Fundamenta Informaticae. 2000. V. 43. P. 1–20.
- 19. *Andreeva M., Virbitskaite I.* Timed equivalences for timed event structures // Lecture Notes in Computer Science. 2005. V. 3606. P. 16–25.
- 20. *Andreeva M., Virbitskaite I.* Observational Equivalences for Timed Stable Event Structures // Fundamenta Informaticae. 2006. V. 72. № 1–3. P. 1–19.
- Valero V., de Frutos D., Cuartero F. Timed processes of timed Petri nets // Lecture Notes in Computer Science. 1995. V. 935. P. 490–509.
- 22. Вирбицкайте И.Б., Боровлев В.А., Попова-Цейгманн Л. Истинно-параллельная и недетерминированная семантика временных сетей Петри // Программирование. 2016. № 4. С. 4–16.
- 23. *Aura T., Lilius J.* A causal semantics for time Petri nets // Theoretical Computer Scinece. 2000. V. 243. № 1–2. P. 409–447.
- 24. *Бушин Д.И.*, *Вирбицкайте И.Б.* Компаративная трассовая семантика временных сетей Петри // Программирование. 2015. № 3. С. 20–31.
- 25. Virbitskaite I., Bushin D., Best E. True concurrent equivalences in time Petri nets // Fundamenta Informaticae. 2016. V. 149. № 4. P. 401–418.