_____ КОМПЬЮТЕРНАЯ ____ Алгебра ____

КВАДРАТУРНАЯ ФОРМУЛА ДЛЯ ПРЯМОГО ЗНАЧЕНИЯ ПОТЕНЦИАЛА ДВОЙНОГО СЛОЯ

© 2022 г. О. И. Резниченко^{*a*,*}, П. А. Крутицкий^{*b*,**}

^а Московский государственный университет им. М.В. Ломоносова, 119991 Москва, ГСП-1, Ленинские горы, д. 1-52, Россия

^bИнститут прикладной математики им. М.В. Келдыша РАН, 125047 Москва, Миусская пл., 4, Россия

*E-mail: liorb@mail.ru

**E-mail: biem@mail.ru

Поступила в редакцию 14.12.2021 г. После доработки 11.01.2022 г. Принята к публикации 16.01.2022 г.

В работе выводится квадратурная формула для прямого значения потенциала двойного слоя с непрерывной плотностью, заданной на замкнутой либо разомкнутой поверхности. Рассматриваются потенциалы двойного слоя для уравнений Лапласа и Гельмгольца. Выведенная квадратурная формула может использоваться при численном решении краевых задач для уравнений Лапласа и Гельмгольца методом потенциалов и граничных интегральных уравнений. Предложенная квадратурная формула дает значительно более высокую точность, чем стандартная квадратурная формула, что подтверждается численными тестами, выполненными в системе компьютерных вычислений Matlab. Трудоемкие аналитические выкладки в работе выполнены с использованием системы компьютерной алгебры Symbolic Math Toolbox на базе Matlab.

DOI: 10.31857/S0132347422030098

ВВЕДЕНИЕ

Потенциал двойного слоя используется при численном решении краевых задач для уравнений Лапласа и Гельмгольца методом интегральных уравнений в [1–3]. С помощью потенциалов краевые задачи сводятся к интегральным уравнениям. Для численного решения интегральных уравнений нужно иметь квадратурные формулы, которые с достаточной точностью вычисляют прямые значения потенциалов на поверхности, где задана плотность потенциала. В инженерных расчетах используются стандартные квадратурные формулы для потенциалов [4], но их точность оставляет желать лучшего.

В двумерном случае улучшенная квадратурная формула для потенциала простого слоя с плотностью, заданной на разомкнутых кривых и имеющей степенные особенности на концах кривых, построена в [5, 6]. Эта формула может применяться при нахождении численных решений краевых задач для уравнений Лапласа и Гельмгольца вне разрезов и разомкнутых кривых на плоскости. Такие задачи изучались в [7–12]. В трехмерном случае улучшенная квадратурная формула для потенциала простого слоя предложена в [13], для потенциала двойного слоя в [14], а для прямого значения нормальной производной потенциала простого слоя в [15]. В настоящей работе выводится улучшенная квадратурная формула для прямого значения потенциала двойного слоя. Улучшенная формула дает значительно более высокую точность чем стандартная, что подтверждается численными тестами.

В процессе получения улучшенной квадратурной формулы одну из главных трудностей составляет вычисление так называемого канонического интеграла. Для численных тестов, а также для упрощения выкладок использовался программный пакет компьютерных вычислений Matlab [16], поскольку он содержит эффективные алгоритмы выполнения численных расчетов и систему компьютерной алгебры в виде расширения Symbolic Math Toolbox [17], которая позволяет выполнять аналитические преобразования и проверку результатов.

1. ПОСТАНОВКА ЗАДАЧИ

Введем в пространстве декартову систему ко-

ординат $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Пусть Γ – простая гладкая замкнутая либо ограниченная разомкнутая поверхность класса \mathbb{C}^2 , содержащая свои предельные точки. Если поверхность Γ замкнутая, то она должна ограничивать объемно-односвязную внутреннюю область. Предположим, что поверхность Γ параметризована так, что на нее отображается прямоугольник:

$$y = (y_1, y_2, y_3) \in \Gamma, \quad y_1 = y_1(u, v), \quad y_2 = y_2(u, v),$$
$$y_3 = y_3(u, v); \quad u \in [0, A], \quad v \in [0, B];$$
$$y_j(u, v) \in C^2([0, A] \times [0, B]), \quad j = 1, 2, 3.$$
(1)

Сфера, поверхность эллипсоида, гладкие поверхности фигур вращения, поверхность тора и многие другие более сложные поверхности можно параметризовать таким образом. Введем N точек u_n с шагом h на отрезке [0, A] и B точек v_m на отрезке [0, B] и рассмотрим разбиение прямоугольника $[0, A] \times [0, B]$, который отображается на поверхность Г

$$A = Nh, \quad B = MH, \quad u_n = (n + 1/2)h,$$

 $n = 0, ..., N - 1;$
 $v_m = (m + 1/2)H, \quad m = 0, ..., M - 1.$

Тем самым прямоугольник $[0, A] \times [0, B]$ разбивается на $N \times M$ маленьких прямоугольничков и через (u_n, v_m) обозначены серединки этих прямоугольничков.

Известно [18, Гл. 14, §1], что компоненты вектора нормали (не единичного) $\eta(y) = (\eta_1(y), \eta_2(y), \eta_3(y))$ в точке поверхности $y = (y_1, y_2, y_3) \in \Gamma$ выражаются через определители второго порядка формулами

$$\eta_{1} = \begin{vmatrix} (y_{2})_{u} & (y_{3})_{u} \\ (y_{2})_{v} & (y_{3})_{v} \end{vmatrix}, \quad \eta_{2} = \begin{vmatrix} (y_{3})_{u} & (y_{1})_{u} \\ (y_{3})_{v} & (y_{1})_{v} \end{vmatrix}, \\ \eta_{3} = \begin{vmatrix} (y_{1})_{u} & (y_{2})_{u} \\ (y_{1})_{v} & (y_{2})_{v} \end{vmatrix}.$$
(2)

Положим $|\eta(y)| = \sqrt{(\eta_1(y))^2 + (\eta_2(y))^2 + (\eta_3(y))^2}$. Кроме того, известно [18, Гл. 14], что

$$\int_{\Gamma} F(y) ds_y = \int_0^A du \int_0^B dv F(y(u,v)) |\eta(y(u,v))|.$$

ПРОГРАММИРОВАНИЕ № 3 2022

Потребуем, чтобы

$$|\eta(y(u,v))| \ge 0, \quad \forall (u,v) \in ((0,A) \times (0,B)).$$
 (3)

Из условия (3) следует, что $|\eta(y(u,v))| \in C^1((0,A) \times (0,B))$. Обозначим через **n**_y единичную нормаль в точке $y \in \Gamma$, т.е. **n**_y = $\eta(y)/|\eta(y)|$. Производная по нормали **n**_y имеет вид

$$\frac{\partial}{\partial \mathbf{n}_{y}} = |\eta(y)|^{-1} (\eta(y), \nabla_{y}).$$

Обозначим |x - y(u,v)| == $\sqrt{(x_1 - y_1(u,v))^2 + (x_2 - y_2(u,v))^2 + (x_3 - y_3(u,v))^2}$ и заметим, что

$$\frac{\partial}{\partial \mathbf{n}_{y}} |x - y| = \frac{1}{|\eta(y)|} \sum_{j=1}^{3} \eta_{j}(y) \frac{y_{j} - x_{j}}{|x - y|}$$

Потенциал двойного слоя для уравнения Гельмгольца используется при решении краевых задач методом интегральных уравнений. Пусть $\mu(y) \in C^0(\Gamma)$. Прямое значение потенциала двойного слоя в точке $x = y(u_{\hat{n}}, v_{\hat{m}}) \in \Gamma$ имеет вид

$$\begin{split} \mathscr{W}_{k}[\mu](x) &= \frac{1}{4\pi} \int_{\Gamma} \mu(y) \frac{\partial}{\partial \mathbf{n}_{y}} \frac{e^{ik|x-y|}}{|x-y|} ds_{y} = \\ &= \frac{1}{4\pi} \int_{\Gamma} \mu(y) \frac{1}{|\eta(y)|} \frac{\exp(ik|x-y|)(ik|x-y|-1)}{|x-y|^{2}} \times \\ &\quad \times \sum_{j=1}^{3} \frac{\eta_{j}(y)(y_{j}-x_{j})}{|x-y|} ds_{y} = \\ &= \frac{1}{4\pi} \int_{0}^{4} du \int_{0}^{B} dv \mu(y(u,v)) \times \\ &\quad \times \exp(ik|x-y(u,v)|)(ik|x-y(u,v)|-1) \times \qquad (4) \\ &\quad \times \sum_{j=1}^{3} \frac{\eta_{j}(y(u,v))(y_{j}(u,v)-x_{j})}{|x-y(u,v)|^{3}} = \\ &= \frac{1}{4\pi} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \int_{u_{n}-h/2}^{u_{n}+h/2} dv \mu(y(u,v)) \times \\ &\quad \times \exp(ik|x-y(u,v)|)(ik|x-y(u,v)|-1) \times \\ &\quad \times \exp(ik|x-y(u,v)|)(ik|x-y(u,v)|-1) \times \\ &\quad \times \sum_{j=1}^{3} \frac{\eta_{j}(y(u,v))(y_{j}(u,v)-x_{j})}{|x-y(u,v)|^{3}}, \end{split}$$

где $k \ge 0$. Известно [19, §27.5], что прямое значение потенциала двойного слоя в наших предпо-

ложениях является непрерывной на Γ функцией. Пусть $\mu_{nm} = \mu(y(u_n, v_m))$, тогда

$$\mu(y(u,v)) = \mu_{nm} + o(1),$$

для $u \in [u_n - h/2, u_n + h/2]$ и $v \in [v_m - H/2, v_m + H/2]$. Так же как и в [13] можно показать, что при $u \in [u_n - h/2, u_n + h/2]$ и $v \in [v_m - H/2, v_m + H/2]$ выполняются оценки

$$\begin{aligned} x - y(u, v) &|= |x - y(u_n, v_m)| + O(h + H), \\ \exp(ik |x - y(u, v)|) &= \\ &= \exp(ik |x - y(u_n, v_m)|) + O(h + H). \end{aligned}$$

Константы в оценках функций, обозначенных как O(h + H), не зависят от *n*, *m* и от расположения *x* в узлах Γ . Следовательно,

$${}^{\circ} \mathcal{W}_{k}[\mu](x)|_{x=y(u_{n},v_{m})\in\Gamma} \approx \frac{1}{4\pi} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \mu_{nm} \times \\ \times \exp\left(ik \left|x - y(u_{n},v_{m})\right|\right) \left(ik \left|x - y(u_{n},v_{m})\right| - 1\right) \times \quad (5) \\ \times \int_{u_{n}-h/2}^{u_{n}+h/2} du \int_{v_{m}-H/2}^{y} dv \sum_{j=1}^{3} \frac{\eta_{j}(y(u,v))(y_{j}(u,v) - x_{j})}{\left|x - y(u,v)\right|^{3}}.$$

Таким образом, чтобы получить квадратурную формулу для прямого значения потенциала двойного слоя при $x = y(u_{\hat{n}}, v_{\hat{m}}) \in \Gamma$, необходимо вычислить двойной интеграл в (5), который будем называть каноническим интегралом.

2. ВЫЧИСЛЕНИЕ КАНОНИЧЕСКОГО ИНТЕГРАЛА, КОГДА ТОЧКА *х* ЛЕЖИТ В ОБЛАСТИ ИНТЕГРИРОВАНИЯ

В данном случае интегрирование ведется по прямоугольничку с центром в точке $(u_{\hat{n}}, v_{\hat{m}})$, которой отвечает точка $y(u_{\hat{n}}, v_{\hat{m}}) = x$ на поверхности Г. Применяя формулу Тейлора с центром в точке $(u_{\hat{n}}, v_{\hat{m}})$, находим

$$|y(u,v) - x|^{2} = |y(u,v) - y(u_{\hat{n}},v_{\hat{m}})|^{2} \approx$$

$$\approx \sum_{j=1}^{3} ((y_{j})'_{u}(u - u_{\hat{n}}) + (y_{j})'_{v}(v - v_{\hat{m}}))^{2} =$$

$$= \sum_{j=1}^{3} (((y_{j})'_{u})^{2}(u - u_{\hat{n}})^{2} +$$

$$+ ((y_{j})'_{v})^{2}(v - v_{\hat{m}})^{2} + 2(y_{j})'_{u}(y_{j})'_{v}(u - u_{\hat{n}})(v - v_{\hat{m}})) =$$

$$= \alpha^{2}(u-u_{\hat{n}})^{2} + \beta^{2}(v-v_{\hat{m}})^{2} + 2\delta(u-u_{\hat{n}})(v-v_{\hat{m}}),$$

$$\alpha^{2} = \sum_{j=1}^{3} ((y_{j})'_{u})^{2},$$

$$\beta^{2} = \sum_{j=1}^{3} ((y_{j})'_{v})^{2}, \quad \delta = \sum_{j=1}^{3} (y_{j})'_{u} (y_{j})'_{v}$$

где $(y_j)'_u$ и $(y_j)'_v$ берутся в точке $(u_{\hat{n}}, v_{\hat{m}})$. Заметим, что $\alpha^2 \beta^2 - \delta^2 = |\eta(x)|^2$ согласно [18, Гл. 14, §1], поэтому $\alpha^2 > 0$ и $\beta^2 > 0$ в силу условия (3). Далее, используя формулу Тейлора в точке $(u_{\hat{n}}, v_{\hat{m}})$ с остаточным членом в форме Пеано [18, Гл. 10, §5.3], получаем

$$y_{j} - x_{j} = (y_{j})'_{u}(u - u_{\hat{n}}) + (y_{j})'_{v}(v - v_{\hat{m}}) + \frac{1}{2}(y_{j})''_{uu}(u - u_{\hat{n}})^{2} + \frac{1}{2}(y_{j})''_{vv}(v - v_{\hat{m}})^{2} + (y_{j})''_{uv} \times (u - u_{\hat{n}})(v - v_{\hat{m}}) + o((u - u_{\hat{n}})^{2} + (v - v_{\hat{m}})^{2}),$$

$$\eta_j(y(u,v)) = \eta_j(y(u_{\hat{n}},v_{\hat{m}})) + (\eta_j)'_u(u-u_{\hat{n}}) + (\eta_j)'_v(v-v_{\hat{m}}) + o(\sqrt{(u-u_{\hat{n}})^2 + (v-v_{\hat{m}})^2}).$$

Производные по u и v берутся в точке $(u_{\hat{n}}, v_{\hat{m}})$. Лег-ко проверить, что

$$\sum_{j=1}^{3} \eta_{j}(y(u_{\hat{n}}, v_{\hat{m}}))(y_{j})'_{u} =$$
$$= \sum_{j=1}^{3} \eta_{j}(y(u_{\hat{n}}, v_{\hat{m}}))(y_{j})'_{v} = 0$$

следовательно

$$\begin{split} \sum_{j=1}^{3} \eta_{j}(y(u,v))(y_{j}-x_{j}) &\approx \xi_{1}(u-u_{\hat{n}})^{2} + \\ &+ \xi_{2}(v-v_{\hat{m}})^{2} + \xi_{3}(u-u_{\hat{n}})(v-v_{\hat{m}}), \end{split}$$

$$\begin{aligned} \xi_{1} &= \sum_{j=1}^{3} \left(\frac{1}{2} \eta_{j}(y(u_{\hat{n}},v_{\hat{m}}))(y_{j})''_{uu} + (\eta_{j})'_{u}(y_{j})'_{u} \right), \\ \xi_{2} &= \sum_{j=1}^{3} \left(\frac{1}{2} \eta_{j}(y(u_{\hat{n}},v_{\hat{m}}))(y_{j})''_{vv} + (\eta_{j})'_{v}(y_{j})'_{v} \right), \end{split}$$

ПРОГРАММИРОВАНИЕ № 3 2022

$$\xi_{3} = \sum_{j=1}^{3} \left(\eta_{j}(y(u_{\hat{n}}, v_{\hat{m}}))(y_{j})''_{uv} + (\eta_{j})'_{u}(y_{j})'_{v} + (\eta_{j})'_{v}(y_{j})'_{u} \right).$$

Производные по *и* и *v* берутся в точке $(u_{\hat{n}}, v_{\hat{m}})$. Из приведенных соотношений вытекает, что в рассматриваемом случае канонический интеграл в (5) приближенно равен следующему интегралу, который обозначим через $\mathcal{J}_{\hat{n}\hat{m}}$

$$\int_{u_{\hat{n}}+h/2}^{u_{\hat{n}}+h/2} du \int_{v_{\hat{m}}-H/2}^{3} dv \frac{\sum_{j=1}^{3} \eta_{j}(y(u,v))(y_{j}-x_{j})}{|x-y|^{3}} \approx$$
$$= \int_{-h/2}^{h/2} dU \int_{-H/2}^{H/2} dV \frac{\xi_{1}U^{2} + \xi_{2}V^{2} + \xi_{3}UV}{(\alpha^{2}U^{2} + \beta^{2}V^{2} + 2\delta UV)^{3/2}} = \oint_{\hat{n}\hat{m}},$$

где $U = u - u_{\hat{n}}$, $V = v - v_{\hat{m}}$. Вычислим интеграл $\mathscr{J}_{\hat{n}\hat{m}}$ в явном виде. Перейдя к полярным координатам $\rho = \sqrt{U^2 + V^2}$, $U = \rho \cos \phi$, $V = \rho \sin \phi$, мы преобразуем выражение под интегралом в сумму двух рациональных дробей. Применяя в получившися двух интегралах замены $t = tg\phi$ и $t = ctg = \phi$ соответственно, а затем сделав замену $z = t + \delta/\alpha^2$ мы приходим к табличным интегралам. В итоге получается явное выражение для $\mathscr{J}_{\hat{n}\hat{m}}$. Выкладки были выполнены в системе компьютерной алгебры Symbolic Math Toolbox [17] на базе пакета программ для компьютерных вычислений Matlab [16]. Подробно процесс вывода интеграла $\mathscr{J}_{\hat{n}\hat{m}}$ имеет вид

$$\begin{aligned} \mathscr{J}_{\hat{n}\hat{m}} &= \frac{h}{\beta^{3}} \Biggl(-\frac{\xi_{2}z}{\sqrt{z^{2} + (\alpha/\beta)^{2} - (\delta/\beta^{2})^{2}}} + \\ &+ \xi_{2} \ln|z + \sqrt{z^{2} + (\alpha/\beta)^{2} - (\delta/\beta^{2})^{2}}| - \\ &- \frac{\xi_{3} - 2\xi_{2}\delta/\beta^{2}}{\sqrt{z^{2} + (\alpha/\beta)^{2} - (\delta/\beta^{2})^{2}}} + \\ &+ z \frac{\xi_{2}(\delta/\beta^{2})^{2} + \xi_{1} - \xi_{3}\delta/\beta^{2}}{((\alpha/\beta)^{2} - (\delta/\beta^{2})^{2})\sqrt{z^{2} + (\alpha/\beta)^{2} - (\delta/\beta^{2})^{2}}} \Biggr) \Biggr|_{-H/h+\delta/\beta^{2}}^{H/h+\delta/\beta^{2}} - \\ &- \frac{H}{\alpha^{3}} \Biggl(- \frac{\xi_{1}z}{\sqrt{z^{2} - (\delta/\alpha^{2})^{2} + (\beta/\alpha)^{2}}} + \\ &+ \xi_{1} \ln|z + \sqrt{z^{2} - ((\delta/\alpha^{2})^{2} + (\beta/\alpha)^{2})^{2}} \Biggr|_{-H/h+\delta/\beta^{2}}^{H/h+\delta/\beta^{2}} - \\ \end{aligned}$$

ПРОГРАММИРОВАНИЕ № 3 2022

$$-\frac{\xi_3 - 2\xi_1\delta/\alpha^2}{\sqrt{z^2 - (\delta/\alpha^2)^2 + (\beta/\alpha)^2}} + z\frac{\xi_1(\delta/\alpha^2)^2 + \xi_2 - \xi_3\delta/\alpha^2}{(-(\delta/\alpha^2)^2 + (\beta/\alpha)^2)\sqrt{z^2 - (\delta/\alpha^2)^2 + (\beta/\alpha)^2}}\right|_{h/H+\delta/\alpha^2}^{-h/H+\delta/\alpha^2}$$

3. ВЫЧИСЛЕНИЕ КАНОНИЧЕСКОГО ИНТЕГРАЛА, КОГДА ТОЧКА *х* НЕ ЛЕЖИТ В ОБЛАСТИ ИНТЕГРИРОВАНИЯ

Пусть точка *x* не принадлежит кусочку поверхности Γ , на котором изменяется точка y = y(u,v), когда $(u - u_n) \in [-h/2, h/2]$ и $(v - v_m) \in [-H/2, H/2]$. Разложим $y_j(u,v)$ по формуле Тейлора с центром в точке (u_n, v_m) , тогда для j = 1, 2, 3 получим

$$y_i(u,v) = y_i(u_n,v_m) + D_i + O(H^2 + h^2),$$

где

$$D_{i} = (y_{i})'_{u}(u - u_{n}) + (y_{i})'_{v}(v - v_{m})$$

Здесь и далее все производные по u и v берутся в точке (u_n, v_m) . Положим

$$r^{2} = |x - y(u_{n}, v_{m})|^{2} = \sum_{j=1}^{3} r_{j}^{2} \neq 0,$$

$$r_{j} = y_{j}(u_{n}, v_{m}) - x_{j}, \quad j = 1, 2, 3,$$

тогда

$$y_j(u,v) - x_j = r_j + D_j + O(H^2 + h^2), \quad j = 1, 2, 3.$$

Следовательно,

$$|x - y(u, v)|^{2} = \sum_{j=1}^{3} (x_{j} - y_{j}(u, v))^{2} \approx$$
$$\approx \sum_{j=1}^{3} (r_{j}^{2} + 2r_{j}D_{j} + D_{j}^{2}) =$$
$$= r^{2} + 2P(u - u_{n}) + 2Q(v - v_{m}) + \alpha^{2}(u - u_{n})^{2} + \beta^{2}(v - v_{m})^{2} + 2\delta(u - u_{n})(v - v_{m}) =$$

+

$$= \beta^{2} (V + \delta U / \beta^{2} + Q / \beta^{2})^{2} - (\delta U + Q)^{2} / \beta^{2} + \alpha^{2} U^{2} + 2PU + r^{2},$$

где $U = u - u_n, V = v - v_m,$

$$P = \sum_{j=1}^{3} r_{j}(y_{j})'_{u}, \quad Q = \sum_{j=1}^{3} r_{j}(y_{j})'_{v}, \quad \alpha^{2} = \sum_{j=1}^{3} ((y_{j})'_{u})^{2},$$
$$\beta^{2} = \sum_{j=1}^{3} ((y_{j})'_{v})^{2}, \quad \delta = \sum_{j=1}^{3} (y_{j})'_{u}(y_{j})'_{v}.$$

Производные по *и* и *v* берутся в точке $u = u_n$, $v = v_m$. Используя результаты из §1 главы 14 в [18], можно показать, что $\alpha^2\beta^2 - \delta^2 = |\eta(y(u_n, v_m))|^2$. По условию (3), $|\eta(y(u_n, v_m))| > 0$ для всех возможных *n*, *m*, поэтому $\alpha^2\beta^2 - \delta^2 > 0$. Следовательно, $\alpha^2 > 0$ и $\beta^2 > 0$. Применяя формулу Тейлора в точке (u_n, v_m) с остаточным членом в форме Пеано, находим

$$\eta_{j}(y(u,v)) = \eta_{j}(y(u_{n},v_{m})) + (\eta_{j})'_{u}(u-u_{n}) + (\eta_{j})'_{v}(v-v_{m}) + o(\sqrt{(u-u_{m})^{2} + (v-v_{m})^{2}}).$$

Производные по u и v берутся в точке (u_n, v_m) . Для вычисления выражения

$$\sum_{j=1}^3 \eta_j(y(u,v))(y_j(u,v)-x_j)$$

с учетом формул

$$\sum_{j=1}^{3} \eta_{j}(y(u_{n}, v_{m}))(y_{j})'_{u} = \sum_{j=1}^{3} \eta_{j}(y(u_{n}, v_{m}))(y_{j})'_{v} = 0$$

отражающих ортогональность вектора нормали и касательных векторов к поверхности (см. главу 14 в [18]), воспользуемся разложением по формуле

Тейлора в точке (u_n, v_m) с остаточным членом в форме Пеано

$$y_{j}(u,v) - x_{j} = r_{j} + (y_{j})'_{u}(u - u_{m}) + (y_{j})'_{v}(v - v_{m}) + \frac{1}{2}(y_{j})''_{uu}(u - u_{m})^{2} + \frac{1}{2}(y_{j})''_{vv}(v - v_{m})^{2} + (y_{j})''_{uv}(u - u_{m})(v - v_{m}) + o((u - u_{n})^{2} + (v - v_{m})^{2}),$$

тогда

$$\sum_{j=1}^{3} \eta_{j}(y(u,v))(y_{j}(u,v) - x_{j}) \approx$$

$$\approx R + \xi_{4}U + \xi_{5}V + \xi_{1}U^{2} + \xi_{2}U^{2} + \xi_{2}V^{2} + \xi_{3}UV,$$

где $U = u - u_n, V = v - v_m$ и

$$\xi_{1} = \sum_{j=1}^{3} \left(\frac{1}{2} \eta_{j} (y(u_{n}, v_{m}))(y_{j})''_{uu} + (\eta_{j})'_{u} (y_{j})'_{u} \right),$$

$$\xi_{2} = \sum_{j=1}^{3} \left(\frac{1}{2} \eta_{j} (y(u_{n}, v_{m}))(y_{j})''_{vv} + (\eta_{j})'_{v} (y_{j})'_{v} \right),$$

$$\xi_{3} = \sum_{j=1}^{3} (\eta_{j}(y(u_{n}, v_{m}))(y_{j})''_{uv} + (\eta_{j})'_{u}(y_{j})'_{v} + (\eta_{j})'_{v}(y_{j})'_{u}),$$

$$\xi_{4} = \sum_{j=1}^{3} (\eta_{j})'_{u}r_{j}, \quad \xi_{5} = \sum_{j=1}^{3} (\eta_{j})'_{v}r_{j},$$

$$R = \sum_{j=1}^{3} \eta_{j}(y(u_{n}, v_{m}))r_{j}.$$

Все производные по u, v берутся в точке (u_n, v_m) . Из приведенных соотношений вытекает, что в рассматриваемом случае канонический интеграл из (5) приближенно равен следующему интегралу, который обозначим через $K_{nm}(x)$

$$= \int_{-h/2}^{u_n+h/2} dU \int_{v_m-H/2}^{v_m+H/2} dV \frac{1}{|x-y(x,v)|^3} \sum_{j=1}^3 \eta_j(y(u,v))(y_j(u,v)-x_j) \approx$$

$$= \int_{-h/2}^{h/2} dU \int_{-H/2}^{H/2} dV \frac{R + \xi_4 U + \xi_5 V + \xi_1 U^2 + \xi_2 V^2 + \xi_3 UV}{\beta^3 ((V + \delta U/\beta^2 + Q/\beta^2)^2 - (\delta U + Q)^2/\beta^4 + (\alpha^2 U^2 + 2PU + r^2)/\beta^2)^{3/2}} = K_{nm}(x).$$

$$(6)$$

Интеграл $K_{nm}(x)$ вычислен в явном виде в работе [14]. Выкладки были выполнены в системе компьютерной алгебры Symbolic Math Toolbox [17] на базе пакета программ для компьютерных вычислений Matlab [16].

4. ОСНОВНОЙ РЕЗУЛЬТАТ

Сформулируем основной результат этой работы в виде теоремы.

Теорема. Пусть Γ – простая гладкая замкнутая поверхность класса C^2 , ограничивающая объемно-

ПРОГРАММИРОВАНИЕ № 3 2022

односвязную внутреннюю область, либо простая гладкая ограниченная разомкнутая ориентированная поверхность класса C^2 , содержащая свои предельные точки. Пусть Γ допускает параметризацию (1) со свойством (3), и $\mu(y) \in C^0(\Gamma)$. Тогда для прямого значения потенциала двойного слоя (4) на Γ при $x = y(u_{\hat{n}}, v_{\hat{m}}) \in \Gamma$ и $k \ge 0$ имеет место квадратурная формула

$$\begin{split} & \mathcal{W}_{k}[\mu](x)|_{x=y(u_{\hat{n}},v_{\hat{m}})\in\Gamma} \approx -\frac{1}{4\pi} \mu_{\hat{n}\hat{m}} \mathcal{J}_{\hat{n}\hat{m}} + \\ & + \frac{1}{4\pi} \sum_{\substack{n=0,m=0\\(n,m)\neq(\hat{n},\hat{m})}}^{n=N-1,m=M-1} \mu_{nm} \exp\left(ik\left|x-y(u_{n},v_{m})\right|\right) \times \qquad (7) \\ & \times \left(ik\left|x-y(u_{n},v_{m})\right|-1\right) K_{nm}(x), \end{split}$$

где интеграл $\mathcal{J}_{\hat{n}\hat{m}}$ вычислен в явном виде в пункте 2, а интеграл $K_{nm}(x)$ из (6) вычислен в явном виде в работе [14].

Если k = 0, то потенциал двойного слоя для уравнения Гельмгольца переходит в потенциал двойного слоя для уравнения Лапласа, соответственно, квадратурная формула (7) при k = 0 принимает вид квадратурной формулы для прямого значения гармонического потенциала двойного слоя на поверхности Г.

5. СТАНДАРТНАЯ КВАДРАТУРНАЯ ФОРМУЛА

Квадратурная формула (7) является альтернативой стандартной квадратурной формуле для прямого значения потенциала двойного слоя на поверхности Г, используемой в инженерных расчетах [4, глава 2]. Стандартная квадратурная формула получается из формулы (5) заменой канонического интеграла при $x \neq y(u_{\hat{n}}, v_{\hat{m}})$ на его приближенное значение

$$\mathcal{W}_{k}[\mu](x) \approx \frac{1}{4\pi} \sum_{\substack{n=0,=0\\(n,m)\neq(\hat{n},\hat{m})}}^{n=N-1,m=M-1} \mu_{nm} \times \exp\left(ik |x - y(u_{n}, v_{m})|\right) (ik |x - y(u_{n}, v_{m})| - 1) \times (8) \\ \times \frac{hH}{|x - y(u_{n}, v_{m})|^{3}} \sum_{j=1}^{3} \eta_{j}(y(u_{n}, v_{m}))(y_{j}(u_{n}, v_{m}) - x_{j}),$$

и обнулением канонического интеграла по кусочку поверхности Γ с центром в точке $x = y(u_{\hat{n}}, v_{\hat{m}})$. Обнуление канонического интеграла в данном случае можно обосновать следующим образом. Этот интеграл приближенно равен интегралу от той же функции по кусочку касательной плоско-

ПРОГРАММИРОВАНИЕ № 3 2022

сти, проведенной в точке *x*. Вектор нормали η к поверхности в точке *y* можно приближенно заменить на вектор нормали в точке $x = y(u_{\hat{n}}, v_{\hat{m}})$, а он является и вектором нормали к касательной плоскости. На касательной плоскости вектор (y(u, v) - x) ортогонален вектору нормали в точке *x*, поэтому их скалярное произведение тождественно равно нулю для всех *y*, а значит, и интеграл по кусочку касательной плоскости равен нулю. Поскольку этот интеграл приближенно равен каноническому интегралу по кусочку поверхности Γ с центром в точке $x = y(u_{\hat{n}}, v_{\hat{m}})$, то можно считать, что и последний интеграл приближенно равен нулю.

6. ЧИСЛЕННЫЕ ТЕСТЫ

Тестирование улучшенной (7) и стандартной (8) квадратурных формул проведено в случае, когда поверхность Γ является сферой единичного радиуса, которая задана параметрически уравнениями:

$$y_1(u,v) = \cos u \sin v,$$

 $y_2(u,v) = \sin u \sin v, \quad y_3(u,v) = \cos v,$
(9)

причем $(u, v) \in [0, 2\pi] \times [0, \pi]$. Отметим, что в данном случае $(\eta(y(u, v))] = \sin v$ и $|\eta(y(u, 0))| = |\eta(y(u, \pi))| = 0$ для всех $u \in [0, 2\pi]$. Иначе говоря, $|\eta(y)| = 0$ на полюсах сферы при такой параметризации, но условия теоремы выполняются.

Согласно [19, гл. 5, §27, п. 7], прямое значение потенциала двойного слоя на поверхности Г можно найти по формуле

$$\mathscr{W}_{k}[\mu](x)\big|_{\Gamma} = \frac{1}{2} \big[\mathscr{W}_{k}[\mu](x)\big|_{\Gamma^{+}} + \mathscr{W}_{k}[\mu](x)\big|_{\Gamma^{-}} \big].$$

Здесь поверхность Г рассматривается как двусто-

ронняя, через Γ^- обозначена сторона, которую мы видим, глядя навстречу вектору нормали \mathbf{n}_{ν} , а

через Γ^+ обозначена противоположная сторона. В формуле берутся предельные значения потенциала двойного слоя на разных сторонах Γ . Отметим, что направление единичной нормали \mathbf{n}_y совпадает с направлением нормали η , так как вектор \mathbf{n}_y получается из η в результате нормировки. Пусть теперь Γ – единичная сфера, заданная параметризацией (9), тогда формулы (2) для нормали η определяют внутреннюю нормаль на сфере, а значит, Γ^- – внутренняя сторона единичной сферы, а Γ^+ – ее внешняя сторона.

Номер теста	Квадратурная формула	M = N/2 = 25	M = N/2 = 50	M = N/2 = 100
1	стандартная	0.019	0.0097	0.0062
1	улучшенная	0.012	0.0063	0.0032
2	стандартная	0.019	0.0097	0.0049
2	улучшенная	0.00050	0.00014	3.8E-5
3	стандартная	0.011	0.0089	0.0062
3	улучшенная	0.011	0.0060	0.0031
4	стандартная	0.019	0.0097	0.0062
4	улучшенная	0.012	0.0063	0.0032
5	стандартная	0.011	0.0089	0.0062
5	улучшенная	0.012	0.0063	0.0032

Таблица 1. Максимальная абсолютная погрешность квадратурных формул в тестах 1–5

В тестах точное прямое значение потенциала двойного слоя в узловых точках сравнивалось с приближенными значениями, вычисленными по квадратурным формулам – по улучшенной формуле (7) в соответствии с Теоремой и по стандартной формуле (8). В каждой узловой точке вычислялась абсолютная погрешность по обеим форму-Вычисления проводились для разных лам. значений M и N. Значения шагов определяются формулами $h = 2\pi/N$, $H = \pi/M$. Если N/2 = M == 25, то $h = H \approx 0.13$; если N/2 = M = 50, то h = $= H \approx 0.063$; если N/2 = M = 100, то $h = H \approx 0.031$. В таблице для каждого теста приводится максимум абсолютной погрешности вычислений по всем узловым точкам сферы. В первой строке таблицы указаны значения N, M, в последующих строках – максимальные погрешности для стандартной и улучшенной квадратурных формул в каждом тесте.

Для тестирования квадратурных формул в случае уравнений Лапласа и Гельмгольца были использованы различные плотности в потенциале. Для каждой заданной в текстах плотности известно аналитическое выражение потенциала двойного слоя и его прямого значения на единичной сфере. При этом через φ и ϑ обозначаются азимутальный и зенитный углы в сферических координатах с началом в центре сферы. В случае уравнения Гельмгольца, значение *k* выбиралось равным единице.

Тест 1. Плотность потенциала $\mu(y(u, v)) = 1$,

$$\mathcal{W}_{0}[\mu](x) = \begin{cases} 1 & \Pi p \mu & |x| < 1 \\ 0 & \Pi p \mu & |x| > 1 \end{cases},$$
$$\mathcal{W}_{0}[\mu](x)|_{|x|=1} = \frac{1}{2}.$$

Тест 2. Плотность потенциала $\mu(y(u,v)) = \cos u \sin v$,

$${}^{\circ}W_{0}[\mu](x) = \begin{cases} \frac{2|x|\cos\varphi\sin\vartheta}{3} & \text{если} \quad |x| < 1, \\ -\frac{\cos\varphi\sin\vartheta}{3|x|^{2}} & \text{если} \quad |x| > 1, \end{cases}$$

 ${}^{\circ}W_{0}[\mu](x)|_{|x|=1} = \frac{\cos\varphi\sin\vartheta}{6}. \end{cases}$

Тест 3. Плотность потенциала $\mu(y(u, v)) = (3\cos^2 v - 1)/2$,

$$\mathscr{W}_{0}[\mu](x) = \begin{cases} \frac{3|x|^{2}(3\cos^{2}\vartheta - 1)}{10} & \pi p \mu \quad |x| < 1\\ -\frac{3\cos^{2}\vartheta - 1}{5|x|^{3}} & \pi p \mu \quad |x| > 1 \end{cases},\\ \mathscr{W}_{0}[\mu](x)|_{|x|=1} = \frac{3\cos^{2}\vartheta - 1}{20}. \end{cases}$$

ПРОГРАММИРОВАНИЕ № 3 2022

Тест 4. Плотность потенциала $\mu(y(u, v)) = k$,

$$\mathcal{W}_{k}[\mu](x) = \begin{cases} (1-ik)\exp(ik)\frac{\sin(k|x|)}{|x|} & \text{если} \quad |x| < 1, \\ (\sin k - k\cos k)\frac{\exp(ik|x|)}{|x|} & \text{если} \quad |x| > 1, \end{cases}$$

$$\mathscr{W}_{k}[\mu](x)\Big|_{|x|=1} = \frac{1}{2}((2-ik)\sin k - \cos k)\exp(ik).$$

Тест 5. Плотность потенциала $\mu(y(u, v)) = k^3 \cos v$,

$$W_{k}[\mu](x) = = \begin{cases} (k^{2} + 2(ik - 1)) \exp(ik) \times \\ \times \frac{k |x| \cos(k |x|) - \sin(k |x|)}{|x|^{2}} \cos \vartheta & \text{если} \quad |x| < 1, \\ (2k \cos k + (k^{2} - 2) \sin k) \times \\ \times \frac{(ik |x| - 1) \exp(ik |x|)}{|x|^{2}} \cos \vartheta & \text{если} \quad |x| > 1, \end{cases}$$

$$\mathcal{W}_{k}[\mu](x)|_{|x|=1} = \frac{1}{2}((k^{2} + 4(ik - 1)) \times (k\cos k - \sin k) + k^{2}\sin k(ik - 1))\exp(ik)\cos\vartheta.$$

Результаты расчетов в приведенных тестовых примерах показывают, что улучшенная квадратурная формула имеет первый порядок сходимости, в то время как как стандартная формула сходится медленнее. Погрешность вычислений по улучшенной квадратурной формуле, предложенной в Теореме, меньше, чем погрешность вычислений по стандартной квадратурной формуле. Тем самым, улучшенная квадратурная формула обеспечивает более высокую точность вычислений прямого значения потенциала двойного слоя.

Отметим, что в тестовых примерах погрешность вычислений по улучшенной квадратурной формуле возрастает к полюсам сферам, которые являются особыми точками в силу выбранной параметризации (9). Вычисления по улучшенной квадратурной формуле в тесте 2 показывают более высокую точность, так как плотность в потенциале двойного слоя и его прямое значение обращаются в нуль на полюсах сферы.

Улучшенная квадратурная формула может найти применение при численном решении граничных интегральных уравнений, возникающих

ПРОГРАММИРОВАНИЕ № 3 2022

в процессе решения краевых задач для уравнений Лапласа и Гельмгольца методом потенциалов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Белоцерковский С.М., Лифанов И.К.* Численные методы в сингулярных интегральных уравнениях. М.: Наука, 1985.
- 2. Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М.: ТОО Янус, 1995.
- 3. *Сетуха А.В.* Численные методы в интегральных уравнениях и их приложения. М.: Аргамак-медиа, 2016.
- 4. Бреббия К., Теллес Ж., Броубел Л. Методы граничных элементов. М.: Мир, 1987.
- Krutitskii P.A., Kwak D.Y., Hyon Y.K. Numerical treatment of a skew-derivative problem for the Laplace equation in the exterior of an open arc // Journal of Engineering Mathematics. 2007. V. 59. P. 25–60.
- 6. *Крутицкий П.А., Колыбасова В.В.* Численный метод решения интегральных уравнений в задаче с наклонной производной для уравнения Лапласа вне разомкнутых кривых // Дифференциальные уравнения. 2016. Т. 62. № 9. С. 1262–1276.
- 7. *Крутицкий П.А.* Смешанная задача для уравнения Лапласа вне разрезов на плоскости // Дифференциальные уравнения. 1997. Т. 33. № 9. С. 1181–1190.
- 8. *Krutitskii P.A.* The Dirichlet problem for the two-dimensional Laplace equation in a multiply connected domain with cuts // Proceedings of the Edinburgh Mathematical Society. 2000. V. 43. № 2. P. 325–341.
- 9. *Krutitskii P.A.* The Neumann problem for the 2-D Helmholtz equation in a multiply connected domain with cuts // Zeitschrift fur Analysis und ihre Anwend-ungen. 1997. V. 16. № 2. P. 349–361.
- Krutitskii P.A. Mixed problem for the Helmholtz outside cuts in a plane // Differential Equations. 1996. V. 36. № 9. P. 1204–1212.
- 11. *Krutitskii P.A.* The Dirichlet problem for the 2-D Helmholtz equation in a multiply connected domain with cuts // ZAMM. 1997. V. 77. № 12. P. 883–890.
- 12. *Krutitskii P.A.* The Helmholtz equation in the exterior of slits in a plane with different impedance boundary conditions on opposite sides of the slits // Quarterly of Applied Mathematics. 2009. V. 67. № 1. P. 73–92.
- Крутицкий П.А., Федотова А.Д., Колыбасова В.В. Квадратурная формула для потенциала простого слоя // Дифференциальные уравнения. 2019. Т. 55. № 9. С. 1269–1284.

РЕЗНИЧЕНКО, КРУТИЦКИЙ

- Крутицкий П.А., Резниченко И.О. Квадратурная формула для гармонического потенциала двойного слоя // Дифференциальные уравнения. 2021. Т. 57. № 7. С. 932–950.
- Крутицкий П.А., Резниченко И.О., Колыбасова В.В. Квадратурная формула для прямого значения нормальной производной потенциала простого слоя // Дифференциальные уравнения. 2020. Т. 56. № 9. С. 1270–1288.
- 16. *Gdeisat M., Lilley F.* Matlab by Example: Programming Basics. Elsevier, 2013.
- 17. Symbolic Math Toolbox User's Guide. MathWorks, 2021.
- 18. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. Математический анализ в вопросах и задачах. М.: Физматлит, 2000.
- 19. Владимиров В.С. Уравнения математической физики. М.: Физматлит, 1981.

100