—— РАДИОНУКЛИДЫ ——

УДК 582.475.4:57.084.2:574.2:539.163:539.1.074

СОДЕРЖАНИЕ РАДИОНУКЛИДОВ В ХВОЕ *Pinus sylvestris* L. В УСЛОВИЯХ КАРАЧАЕВО-ЧЕРКЕССКОЙ РЕСПУБЛИКИ (ЗАПАДНЫЙ КАВКАЗ)

© 2023 г. М. З. Моллаева^{1,*}, Ф. А. Темботова¹, А. М. Гангапшев², В. В. Казалов², А. М. Гежаев²

¹Институт экологии горных территорий им. А.К. Темботова, Нальчик, Россия

²Институт ядерных исследований РАН, Москва, Россия *E-mail: monika.011@yandex.ru Поступила в редакцию 04.08.2022 г. После доработки 19.05.2023 г.

Принята к публикации 21.06.2023 г.

Представлены оригинальные данные о содержании радионуклидов естественного (примордиальные и космогенные) и техногенного происхождения в ассимиляционном аппарате сосны обыкновенной (*Pinus sylvestris* L.), произрастающей на территории Западного Кавказа (в пределах Карачаево-Черкесской Республики). В хвое сосны выявлено содержание радиоизотопов бериллия ⁷Ве, калия ⁴⁰К, тория ²³²Th, урана ²³⁸U и цезия ¹³⁷Cs. Выявлена связь содержания радионуклидов в образцах хвои сосны обыкновенной ⁷Be, ²³⁸U, ¹³⁷Cs с высотой мест произрастания.

Ключевые слова: естественные радионуклиды, ⁷Be, ⁴⁰K, ²³²Th, ²³⁸U, ¹³⁷Cs, гамма-спектрометр, *Pinus sylvestris* L., Западный Кавказ

DOI: 10.31857/S0869803123040069, EDN: OSCLJW

В связи с развитием атомной промышленности, созданием ядерного оружия, радиационными авариями наша планета подвержена загрязнению радионуклидами. Особый интерес представляет изучение лесообразующих древесных видов, отличающихся высокой чувствительностью к загрязнению воды, почвы и воздуха [1]. Сосна обыкновенная является одним из природных объектов для экологического и генетического мониторинга воздействия различного рода загрязнений на древесные растения, служит биоиндикатором окружающей среды [2, 3]. Данные о высокой чувствительности хвойных растений к загрязнению различными поллютантами, в том числе тяжелыми металлами и радионуклидами, известны в мире с 1960-х гг. и отмечены во многих исследованиях зарубежных и российских ученых [4-6]. Длительное воздействие ионизирующего излучения вызывают изменения морфометрических показателей вегетативных и генеративных органов сосны, особенно чувствительна пыльца [7]. Минимальная доза облучения, которая вызывает при длительном воздействии (несколько лет) морфологические изменения, составляет 0.02 Гр/сут. По данным авторов, высокая концентрация активности радионуклидов наблюдается в хвое, молодых побегах, тогда как древесина остается незагрязненной [4]. В Брянской области обнаружены треххвойные брахибласты в популяциях сосны, произрастающих на радиоактивно загрязненных участках [8, 9]. Сведения о содержании естественных радионуклидов в почве и растениях Кавказа носят фрагментарный характер [10–13], практически отсутствуют данные для лесной растительности, что не дает полноценной картины для оценки влияния естественного радиационного фона на растительность в условиях гор Кавказа.

Изучение содержания радионуклидов в хвое сосны в условиях Западного Кавказа представляет огромный интерес для оценки воздействия на растения радионуклидов как техногенного, так и природного происхождения в горных условиях. В связи с этим целью настоящей работы является оценка количественного содержания радионуклидов в хвое сосны обыкновенной на территории Карачаево-Черкесской Республики в пределах Тебердинского национального парка.

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом исследования послужили разновысотные выборки сосны обыкновенной, произрастающей на Западном Кавказе, на территории Тебердинского заповедника в пределах высот 1300–2000 м над уровнем моря (рис. 1). Выборки заложены в изолированных ущельях рек: Большой Зеленчук – "Архыз", (1820 м), Теберда –

Рис. 1. Схема расположения выборок сосны обыкновенной в Карачаево-Черкесской Республике. **Fig. 1.** Schematic view of arrangement of samples of Scots pine in the Karachay-Cherkess Republic.

"Теберда" (1330 м), и его притоков — правый берег р. Гоначхир — "Гоначхир" (1671 м), Джамагат — "Джамагат" (1820 м).

Рис. 2. Схематический вид низкофонового гаммаспектрометра в пассивной защите. Розово-коричневый цвет обозначает медный защитный слой, красный – свинцовый слой, а белый – борированный полиэтилен.

Fig. 2. Schematic view of a low-background gamma spectrometer in passive protection. The pink-brown color marks the copper layer of protection, the red - the lead layer, and the white - the borated polyethylene.

Материалом исследования были образцы хвои (0.345 кг), которые отбирали в средней части кроны с 12 деревьев. Такой небольшой объем выборки считается достаточным для получения достоверных результатов исследований [14-16]. Для учета всех факторов радиационного загрязнения (пыль, осадки и пр.) пробоподготовку образцов хвои не проводили. Радиационно-экологические исследования хвои сосны включали определение удельной активности радионуклидов различного происхождения. Определение содержания радионуклидов проводили гамма-спектрометрическим методом, который заключается в определении величины пиков полного поглощения в спектрах образцов от полного поглощения у-квантов, образующихся при распаде некоторых радионуклидов.

В работе использовали низкофоновые гаммаспектрометры МКГБ-01 "РАДЭК" (Россия) с блоком детектирования из сверхчистого германия БДЕГ-К специального исполнения для низкофоновых исследований (рис. 2). В целях защиты блока детектирования от внешней радиации (α -, β -, γ -излучений и нейтронов) сконструирована комплексная пассивная защита из меди, свинца и борированного полиэтилена. Для снижения фона гамма-спектрометра, связанного с космическими лучами (в основном от мюонов), установка расположена в подземной низкофоновой лаборатории (в штольне БНО ИЯИ РАН), где

Выборки	Высота местности, м	Масса образца, г	Время измерений, ч	
Архыз	1820	24	105	
Джамагат	1820	35	111	
Гоначхир	1671	26	105	
Теберда	1330	13	105	

Таблица 1. Длительность измерений и масса образцов Table 1. Duration of measurements and weight of samples

поток мюонов космических лучей снижен более чем в 100 раз.

Далее проводили расчет активности радионуклидов с учетом эффективности регистрации γ -квантов — k. Значение k определялось по результатам розыгрыша 10⁶ распадов радионуклида в исследуемом образце хвои с помощью программы МСС-МТ, предназначенной для имитационного трехмерного моделирования процессов переноса и регистрации ионизирующих излучений (метод Монте-Карло), внесенной в Единый реестр российских программ для ЭВМ. Количество событий в пике полного поглошения S определялось из величины соответствующего пика (площади под пиком) в измеренном спектре для каждого образца. Проверка правильности расчетов с помощью программы МСС-МТ проводилась калибровочными измерениями с образцами с известной активностью радионуклидов в них.

Удельную активность радионуклидов определяли по формуле:

$$A = \frac{10^6}{k} \cdot \frac{S}{tm},\tag{1}$$

где A — удельная активность радионуклида [Бк/кг], k — расчетное количество регистрируемых γ -квантов на 10⁶ распадов, S — количество событий в пике, t — время измерения [c], m — масса образца, кг (табл. 1).

Ввиду короткого периода полураспада (53.22 сут) [17] и относительно большого интервала между сбором образцов хвои и серединным временем измерений (42—48 сут) активность ⁷Ве существенно снизилась. Для определения его активности на момент сбора образцов хвои с учетом его периода полураспада измеренная активность ⁷Ве умножалась на коэффициенты: 1.82, 1.75, 1.73 и 1.87 для выборок Архыз, Джамагат, Гоначхир и Теберда соответственно (временные интервалы

РАДИАЦИОННАЯ БИОЛОГИЯ. РАДИОЭКОЛОГИЯ

равны 46, 43, 42 и 48 сут). Коэффициенты определялись по формуле:

$$r = e^{\left(\frac{\ln 2t}{T_{1/2}}\right)},\tag{2}$$

где r — коэффициент, t — временной интервал между сбором образца и серединным временем измерений, $T_{1/2}$ — период полураспада ⁷Ве.

В связи с тем, что хвоя не подвергалась какой либо пробоподготовке, активность ⁷Ве обусловлена его наличием на поверхности хвои, накопленного в результате его осаждения из верхних слоев атмосферы вместе с осадками. Для наглядности данные по активности ⁷Ве на момент сбора образцов хвои также были использованы для определения коэффициента корреляции Спирмена.

Статистическую обработку полученных данных проводили посредством нескольких программ: MMC – расчет эффективности регистрации γ-квантов, SciDAVIS – построение и обработка спектров. Для выявления взаимосвязей рассчитывали коэффициенты корреляции Спирмена в программе STATISTICA-12.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Активность ²³²Th определяли по линии 238.6 кэB, ²³⁸U – по линии 351.9 кэB, ²³⁵U – по линии 143.8 кэB, ⁴⁰K – по линии 1460.8 кэB, ⁷Be – по линии 477.6 кэB, ¹³⁷Cs – по линии 661,7 кэB. На рис. 3 представлен спектр, полученный на гамма-спектрометре с образцом хвои, где во вкладке показан пик от γ -линии 1460.8 кэB (⁴⁰K) и функция Гаусса, полученная в результате фитирования.

По результатам исследования хвои в выборках сосны обыкновенной Карачаево-Черкесской Республики отмечаются радионуклиды естественного и техногенного происхождения (табл. 2).

том 63 № 4 2023

Рис. 3. Спектр, измеренный на гамма-спектрометре с образцом хвои. Во вкладке показаны пик от γ-линии 1460.8 кэВ (⁴⁰K) и результат фитирования функцией Гаусса.

Fig. 3. Spectrum of the sample needles measured with gamma spectrometer. The tab shows the peak of 1460.8 keV gammas (40 K) and the result of fitting by Gaussian.

Так, согласно табл. 2, наибольшее количество ⁷Ве обнаружено в выборке Теберда (170.5 Бк/кг), меньше всего бериллия в выборке Джамагат (52.0 Бк/кг). Содержание радионуклида естественного происхождения ⁴⁰К варьирует от 76.9 до 103.6 Бк/кг, тория ²³²Th от 0.11 до 0.34 Бк/кг. Удельная активность радионуклидов ²³⁵U не отмечается в данных образцах, а радионуклид ²³⁸U присутствует в количестве от 0.18 до 2.06 Бк/кг.

С учетом короткого периода полураспада ⁷Ве (53.22 сут) [17] и сильной связи содержания ⁷Ве с осадками [18, 19] сбор материала и измерения проводили в летний период. Максимальное зна-

чение ⁷Ве в хвое сосны на исследуемой территории составляет 91.2 Бк/кг, что в сравнении с данными литературы [20–22] не превышает значений в растительных объектах.

Из радионуклидов техногенного происхождения на исследуемой территории обнаружен цезий ¹³⁷Cs, содержание его в наших образцах, вероятно, обусловлено глобальным загрязнением (последствиями испытаний ядерного оружия и аварии на Чернобыльской АЭС и т.д.). Максимальная удельная активность ¹³⁷Cs отмечается в выборке Теберда 0.68 Бк/кг, что в разы превышает содержание в образцах остальных выборок, но гораздо ниже, чем в хвое сосны в зоне техногенного воз-

Таблица 2. Удельная активность радионуклидов в образцах хвои сосны обыкновенной **Table 2.** Specific activity of radionuclides in samples of pine needles

	Радионуклид								
Образец хвои	⁷ Be	⁴⁰ K	²³² Th	²³⁵ U	²³⁸ U	¹³⁷ Cs			
	Удельная активность, Бк/кг								
Архыз	94.3 ± 2.5	94.8 ± 3.1	0.34 ± 0.05	н/о	0.49 ± 0.07	0.27 ± 0.05			
Джамагат	52.0 ± 1.6	76.9 ± 2.2	0.11 ± 0.04	н/о	0.18 ± 0.05	0.04 ± 0.02			
Гоначхир	67.6 ± 2.1	103.6 ± 3.1	0.15 ± 0.05	н/о	1.17 ± 0.11	0.25 ± 0.04			
Теберда	170.5 ± 2.5	95.4 ± 4.3	0.27 ± 0.11	н/о	2.06 ± 0.19	0.68 ± 0.09			

Рис. 4. Формы спектров, измеренных на гамма-спектрометрах, с образцами хвои. **Fig. 4.** Spectra of the samples of needles.

действия [3, 20, 23]. Следует отметить, что цезий не был отмечен нами для сосны в соседней республике [16], но присутствует в значительных количествах в криоконитах Центрального Кавказа [24], что дает основание для дальнейших исследований на Кавказе.

Таким образом, наиболее "чистыми" образцами обладает выборка Джамагат, где отмечается наименьшее количество указанных выше изотопов. И наоборот, наибольшей радиоактивностью отличается выборка Теберда. На рис. 4 хорошо видны пики, соответствующие γ-линиям от космогенного радиоизотопа ⁷Ве и примордиального радиоизотопа ⁴⁰К с энергиями 477.6 и 1460.8 кэВ соответственно.

С целью изучения изменчивости содержания радионуклидов с высотным градиентом местности выборки Джамагат и Архыз были объединены в один высотный уровень (1820 м над уровнем моря). Полученные результаты корреляционного анализа свидетельствуют о наличии связи содержания радионуклидов с высотным градиентом местности, за исключением ²³²Th (r = 0.12 при p = 0.005) (рис. 5). Наблюдается тенденция уменьшения содержания радионуклидов ⁷Ве (r = -0.62 при p = 0.005), ⁴⁰К (r = -0.71 при p = 0.005), ²³⁸U (r = -0.95 при p = 0.005), ¹³⁷Cs (r = -0.63 при p = 0.005) в образцах хвои сосны с высотой мест произрастания, что не согласуется с данными Т.А. Асваровой, полученными для других видов растений в горах [12].

ЗАКЛЮЧЕНИЕ

В результате исследования содержания радионуклидов в ассимиляционном аппарате сосны обыкновенной (*Pinus sylvestris* L.), произрастающей на территории Западного Кавказа (в пределах Карачаево-Черкесской Республики), обнаружены изотопы как природного (космогенного и террогенного), так и техногенного происхождения. В хвое сосны выявлено содержание радиоизотопов бериллия (⁷Be), калия (⁴⁰K), тория (²³²Th), урана (²³⁸U) и цезия (¹³⁷Cs). Наибольшей удельной активностью хвои отличаются выборки Теберда и Гоначхир. Выявлена корреляция содержания радионуклидов в образцах хвои сосны обыкновенной с высотой мест произрастания, наиболее тесная связь выявлена между содержа-

том 63 № 4 2023

Рис. 5. Содержание радионуклидов в хвое в высотном градиенте Западного Кавказа: 1 - 1330 м; 2 - 1670 м; 3 - 1820 м. **Fig. 5.** Radionuclide content in coniferous pine needles in the altitudinal gradient of the Western Caucasus: 1 - 1330 m; 2 - 1670 m; 3 - 1820 m.

нием изотопов ²³⁸U (r = -0.95). Однако, несмотря на высокие значения содержания радионуклидов в хвое сосны в некоторых выборках (Теберда, Гоначхир), данные радиоэкологические показатели не выходят за пределы природного фона.

СПИСОК ЛИТЕРАТУРЫ

- Крючков В.В., Сыроид Н.А. Северотаежные биогеоценозы в условиях аэротехногенного воздействия. Общие проблемы биогеоценологии. М.: АН СССР, 1986. С. 13–15. [Kryuchkov V.V., Syroid N.A. Severotaezhnye biogeocenozy v usloviyah aerotekhnogennogo vozdejstviya. Obshchie problemy biogeocenologii. M.: AN SSSR, 1986. s. 13–15. (In Russ.)]
- 2. Козубов Г.М., Таскаев А.И., Ладанова Н.В. Радиобиологические исследования сосновых лесов в

районе аварии на Чернобыльской АЭС. Сыктывкар: Коми НЦ УрО АН СССР, 1987. 52 с. [Kozubov G.M., Taskaev A.I., Ladanova N.V. Radiobiologicheskie issledovaniya sosnovyh lesov v rajone avarii na CHernobyl'skoj AES. Syktyvkar: Komi NC UrO AN SSSR, 1987. 52 s] (In Russ.)

- 3. Мельник Н.А., Кизеев А.Н. Радиоэкологические исследования хвойных пород деревьев // Вестник МГТУ. 2006. Т. 9. № 3. С. 429–433. [Mel'nik N.A., Kizeev A.N. Radioekologicheskie issledovaniya hvojnyh porod derev'ev // Vestnik MGTU. 2006. Т. 9. № 3. S. 429–433. (In Russ.)]
- 4. *Sparrow A.H., Woodwell G.M.* Prediction of the sensitivity of plants to chronic gamma irradiation // Radiat. Botany. 1962. V. 2. P. 9–26.
- 5. Кальченко В.А., Спирин Д.А Генетические эффекты в популяциях сосны обыкновенной, произрастающих в условиях хронического облучения малыми

дозами // Генетика. 1989. Т. 25. № 6. С. 1059–1064. [*Kal'chenko V.A., Spirin D.A* Geneticheskie effekty v populyaciyah sosny obyknovennoj, proizrastayushchih v usloviyah hronicheskogo oblucheniya malymi dozami // Genetika. 1989. Т. 25. № 6. S. 1059–1064. (In Russ.)]

- 6. Кальченко В.А., Абрамов В.И., Рубанович А.В., Шевченко В.А. Цитогенетические эффекты в популяциях растений, произрастающих на Восточно-Уральском радиоактивном следе // Радиац. биология. Радиоэкология. 2002. Т. 42. № 6. С. 745–749. [Kal'chenko V.A., Abramov V.I., Rubanovich A.V., Shevchenko V.A. Cytogenetic effects in plant population from the east Ural radioactive track // Radiation biology. Radioecology. 2002. V. 42. № 6. Р. 745–749. (In Russ.)]
- Козубов Г.М., Таскаев А.И. Радиобиологические исследования хвойных в районе Чернобыльской катастрофы. М.: НПЦ "Дизайн. Информация. Картография", 2002. 256 с. [Когиbov G.M., Taskaev A.I. Radiobiologicheskie issledovaniya hvojnyh v rajone CHernobyl'skoj katastrofy. M.: NPC "Dizajn. Informaciya. Kartografiya", 2002. 256 s. (In Russ.)]
- 8. Макаренко Е.С., Удалова А.А., Гераськин С.А. Морфометрические показатели хвои сосны обыкновенной в условиях хронического радиационного воздействия // Лесоведение. 2016. № 5. С. 355–364. [Makarenko E.S., Oudalova A.A., Geras'kin S.A. Morphometric indices of Scots pine needle under chronic radiation exposure // Contemporary Problems of Ecology. 2017. V. 10. № 7. С. 761–769. (In Russ.)]
- Макаренко Е.С. Исследование морфологических параметров и генетического полиморфизма в природных популяциях сосны обыкновенной в условиях хронического радиационного воздействия: Автореф. Дис. ... канд. биол. наук. Обнинск, 2018.
 25 с. [Makarenko E.S. Issledovanie morfologicheskih parametrov i geneticheskogo polimorfizma v prirodnyh populyaciyah sosny obyknovennoj v usloviyah hronicheskogo radiacionnogo vozdejstviya. Avtoref. dissertacii kandidata biologicheskih nauk special'nost' "Radiobiologiya", Obninsk, 2018. 25 s. (In Russ.)]
- Ананян В.Л. К вопросу о естественной радиоактивности почв Армении // Микроэлементы и естественная радиоактивность почв. Ростов-на-Дону, 1962. С. 56–63. [Ananyan V.L. K voprosu o estestvennoj radioaktivnosti pochv Armenii // Mikroelementy i estestvennaya radioaktivnost' pochv. Rostov-na-Donu. 1962. S. 56–63. (In Russ.)]
- 11. Брендаков В.Ф., Иохельсон С.Б., Чуркин В.Н. Содержание радия, тория и калия в верхнем слое почв Кавказа // Почвоведение. 1967. № 1. С. 41–47. [*Brendakov V.F., Iohel'son S.B., CHurkin V.N.* Soderzhanie radiya, toriya i kaliya v verhnem sloe pochv Kavkaza // Pochvovedenie. 1967. № 1. S. 41–47. (In Russ.)]
- 12. Асварова Т.А. Содержание урана и тория в доминирующих видах растений Центрального Кавказа // Юг России: экология, развитие. 2008. № 2. С. 39– 44. [Asvarova T.A. The contents of uranium and thorium in the dominating kinds of plants of the Central Caucasus // South of Russia: Ecology, Development Journal. 2008. № 2. Р. 39–44. (In Russ.)]

- 13. Асварова Т.А., Абдулаева А.С., Магомедов М.А. Естественные радионуклиды в породах и почвах высокогорных районов Большого Кавказа // Почвоведение. 2012. № 6. С. 695–707. [Asvarova T.A., Abdulaeva A.S., Magomedov M.A. Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus Eurasian // Soil Sci. 2012. V. 45. № 6. P. 625–637. (In Russ.)]
- Helmisaari H.-S. Spatial and age-related variation in nutrient concentrations of Pinus sylvestris needles // Silva Fennica. 1992. V. 26. № 3. P. 145–153.
- 15. *Мельник Н.А.* Радиационный мониторинг естественных радионуклидов в северных широтах. Север-2003: проблемы и решения. Апатиты: Изд-во КНЦ РАН, 2004. С. 77–89. [*Mel'nik N.A.* Radiacionnyj monitoring estestvennyh radionuklidov v severnyh shirotah. Sever-2003: problemy i resheniya. Apatity: Izd-vo KNC RAN, 2004. S. 77–89, (In Russ.)]
- 16. Темботова Ф.А., Гангапшев А.М., Моллаева М.З., Казалов В.В. Предварительные результаты радиоэкологических исследований хвойных пород на примере сосны обыкновенной // VIII науч.-практ. конф. "Горные экосистемы и их компоненты". Нальчик, 2021. С. 55–56. [Tembotova F.A., Gangapshev A.M., Mollaeva M.Z., Kazalov V.V. Predvaritel'nye rezul'taty radioekologicheskih issledovanij hvojnyh porod na primere sosny obyknovennoj // Mat. Konf. "Gornye ekosistemy i ih komponenty". Nal'chik, 2021. S. 55–56. (In Russ.)]
- Audi G., Wapstra A.H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references // Nucl. Phys. A. 2003. V. 729. P. 337–676.
- Бураева Е.А., Малышевский В.С., Ратушный В.И. Космогенный бериллий-7 в земной атмосфере // Глобальная ядерная безопасность. 2020. № 4. (37). С. 17–29. [Buraeva E.A., Malyshevskij V.S., Ratushnyj V.I. Kosmogennyj berillij-7 v zemnoj atmosphere // Global'naya yadernaya bezopasnost'. 2020. № 4 (37). S. 17–29. (In Russ.)]
- Zhang F., Yang M., Zhang B. Activity concentration of beryllium-7 in plants on a loess plateau, China // J. Radioanal. Nucl. Chem. 2011. V. 289. P. 353–359. https://doi.org/10.1007/s10967-011-1078-y
- 20. Кизеев А.Н., Жиров В.К., Никанов А.Н. Влияние промышленных эмиссий предприятий Кольского полуострова на ассимиляционный аппарат сосны // Экология человека. 2009. № 1. С. 9–13. [*Kizeev A.N.*, *Zhirov V.K.*, *Nikanov A.N.* Vliyanie promyshlennyh emissij predpriyatij Kol'skogo poluostrova na assimilyacionnyj apparat sosny // Ekologiya cheloveka. 2009. № 1. S. 9–13. (In Russ.)]
- Pöschl M., Brunclík T., Hanák J. Seasonal and inter-annual variation of Beryllium-7 deposition in birch-tree leaves and grass in the northeast upland area of the Czech Republic // J. Environ. Radioact. 2010. V. 101. P. 744–750.
- 22. Li X., Zhang F, He Y., Delang C.O., Yang M. Variations of ⁷Be concentration in plants and significance for ⁷Be in soil on the Loess Plateau China: Based on three-year monitoring data// Plant Soil. 2022. P. 725–741.
- 23. Куртмулаева В.Э., Карпенко Е.И., Нуштаев С.Н. Результаты комплексного радиоэкологического

РАДИАЦИОННАЯ БИОЛОГИЯ. РАДИОЭКОЛОГИЯ

том 63 № 4 2023

обследования региона размещения Ленинградской АЭС // IV науч.-практ. конф. "Экологическая и радиационная безопасность объектов атомной энергетики". Калининград, 2017. С. 149–151. [*Kurtmulaeva V.E., Karpenko E.I., Nushtaev S.N.* Rezul'taty kompleksnogo radioekologicheskogo obsledovaniya regiona razmeshcheniya Leningradskoj AES // IV nauchno-prakt. konf. "Ekologicheskaya i radiacionnaya bezopasnost' ob"ektov atomnoj energetiki". Kaliningrad, 2017. S. 149–151(In Russ.)]

24. Abakumov E., Gangapshev A, Tembotov R., Gezhaev A. Radionuclide activity in cryoconite from glaciers of the Central Caucasus, Russia // Solid Earth Sciences. 2022. V. 7. № 4. P. 268–275. . https://doi.org/10.1016/j.sesci.2022.08.001

Radionuclide Content in Needles of *Pinus sylvestris* L. in Conditions of the Karachay-Cherkessia Republic (Western Caucasus)

M. Z. Mollaeva^{a,#}, F. A. Tembotova^a, A. M. Gangapshev^b, V. V. Kazalov^b, and A. M. Gezhaev^b

^aTembotov Institute of Ecology of Mountain Territories of Russian Academy of Sciences, Nalchik, Russia ^bInstitute of Nuclear Research of the Russian Academy of Sciences, Moscow, Russia [#]E-mail: monika.011@vandex.ru

This study presents original data on the content of radionuclides of natural (cosmogenic and terrorogenic) and man-made origin in the assimilation apparatus of Scots pine (*Pinus sylvestris* L), which grows in the Western Caucasus (within the Karachay-Cherkessia Republic). The content of radioisotopes of beryllium (⁷ Be), potassium (⁴⁰K), thorium (²³²Th), uranium (²³⁸U) and cesium (¹³⁷Cs) was revealed in pine needles. Close correlation of radionuclide content in pine needles samples ⁷Be, ²³⁸U, ¹³⁷Cs with the height of growing places was revealed.

Keywords: natural radionuclides, ⁷Be, ⁴⁰K, ²³²Th, ²³⁸U, ¹³⁷Cs, gamma-spectrometer, *Pinus sylvestris* L., Western Caucasus

410