__ НОВЫЕ РАДИОЭЛЕКТРОННЫЕ _ СИСТЕМЫ И ЭЛЕМЕНТЫ

УДК 528.8.044.6

ОБ ОДНОМ МЕТОДЕ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА НА ПРОТЯЖЕННЫХ АТМОСФЕРНЫХ ТРАССАХ С ПОМОЩЬЮ ДИСТАНЦИОННОГО ГАЗОАНАЛИЗАТОРА С МОШНЫМ РАМАНОВСКИМ УСИЛИТЕЛЕМ

© 2019 г. Г. А. Акимова², В. И. Григорьевский^{1,} *, Ю. П. Сырых², В. П. Садовников¹, Я. А. Тезадов¹, А. В. Феденев²

 ¹Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино, Московской обл., 141190 Российская Федерация
²Центральный научно-исследовательский институт машиностроения, ул. Пионерская, 4, Королев, Московской обл., 141070 Российская Федерация
*E-mail: vig248@ire216.msk.su Поступила в редакцию 14.01.2019 г. После доработки 14.01.2019 г. Принята к публикации 02.02.2019 г.

Представлены результаты измерений концентрации метана на протяженных горизонтальных и вертикальных трассах в атмосфере Земли с помощью созданного лазерного дистанционного газоанализатора на основе двухкаскадного рамановского усилителя с выходной мощностью около 3 Вт в квазинепрерывном режиме с линейно-частотной модуляцией лазера с распределенной обратной связью. Получено эмпирическое выражение весовой функции для аномального распределения газа с максимальной концентрацией на высоте ~700 м и аномально низкой концентрацией на высотах свыше 1000 м. Такое распределение хорошо согласуется с полученными экспериментальными данными для ситуационного плана с дополнительными источниками выбросов метана. В процессе измерений обнаружена линия поглощения воды, которая сильно зависит от влажности атмосферы и может быть использована для уточнения метеоданных и экологической обстановки.

DOI: 10.1134/S0033849419110019

введение

В последние годы для обнаружения и мониторинга парникового газа метана было разработано и исследовано много вариантов дистанционных лазерных газоанализаторов и методов обработки получаемых данных. Среди основных методов измерений выделяются три: метод с линейно-частотной модуляцией (ЛЧМ) лазерного источника с выделением полной линии поглощения газа [1], метод с синусоидальной модуляцией и последующим измерением второй гармоники в измеряемом сигнале в случае наличия исследуемого газа на трассе измерений [2]. Третий, импульсный метод дистанционного измерения концентрации метана, применяемый на больших расстояниях, также достаточно распространен. В этом методе используются импульсы длительностью ~100 нс с пиковой мощностью 50-90 кВт, излучаемые оптическим параметрическим генератором света, которые принимаются после отражения от мишени фотоприемником на основе лавинного фотодиода. Принимаемые импульсы света на двух лазерных частотах в линии поглощения метана и

вне ее позволяют определить интегральную концентрацию метана на трассе распространения, однако ширина линии поглощения метана определяется лишь оценочно. Такой метод планируют применить в 2021 г. для спутникового мониторинга метана в глобальном масштабе в проекте "Мерлин". Данный проект возглавляется двумя группами из французской LMD (Laboratoire de Météorologie Dynamique) и Немецкого института физики атмосферы при дополнительной поддержке нескольких французских и немецких исследовательских институтов Германии и Франции на базе Германского центра космических и воздушных полетов (DLR) [3]. Каждый из представленных методов обладает своими достоинствами и недостатками при определении распределения метана в пространстве. Если третий импульсный метод отличается большой дальностью действия, точностью измерений концентрации и расстояния до точки отражения, то первый и второй методы обладая достаточно высокой точностью определения концентрации газа и возможностью регистрировать несколько газов одновре-

Рис. 1. Блок-схема дистанционного газоанализатора с рамановским усилителем.

менно, имеют меньшую точность определения расстояния и меньшую дальность действия.

Целью настоящей работы является создание и исследование газоанализатора, обладающего высокой точностью измерения концентрации газа, достаточной дальностью действия с возможностью определения расстояния до точки отражения, ширины линии поглощения газа и, как следствие, возможностью определения распределения газа в окружающем пространстве.

1. АППАРАТУРА И МЕТОДИКА ИЗМЕРЕНИЙ

Для измерений был создан макет газоанализатора с ЛЧМ задающего лазера с последующим усилением в мощном волоконном двухкаскадном рамановском усилителе (рис. 1). Передатчик на выходе коллиматора излучал мощность около 3 Вт на длине волны 1653 нм. Предварительное усиление излучения лазера с распределенной обратной связью (DFB лазер OL6109L-10B) осуществлялось полупроводниковым усилителем Booster Optical Amplifier BOA-15296 до величины ~10 мВт. С помощью блока модуляции осуществлялась линейно-частотная модуляция задающего лазера по синхронизирующим импульсам, поступающим с блока обработки и синхронизации. Сигнал с фотоприемника оцифровывался аналого-цифровым преобразователем и поступал в блок обработки.

Достоинствами является возможность определения как расстояния до точки отражения по заднему фронту квазиимпульса или по корреляционной функции [4], так и ширины линии поглощения газа. Ширину линии поглощения можно измерить достаточно точно, поскольку принимается и оцифровывается вся линия в интервале сканирования лазерного излучения по частоте. Данная информация позволяет уточнять распределение газа в пространстве. Для выделения линии поглощения газа были осуществлены также калибровочные измерения, когда излучение после передающего коллиматора с помощью отражающей поверхности через калибровочную кювету направлялось непосредственно в приемный объектив, минуя трассу. Нетрудно показать с помощью закона Бугера [2], что формула для определения концентрации газа при использовании такой методики выглядит следующим образом:

$$l = l_{\text{калибр}} - \ln\left(\frac{S}{S_{\text{калибр}}}\right) / k, \qquad (1)$$

где l — концентрация газа на трассе (осажденный слой метана), S — нормированная величина сигнала в центре линии поглощения при измерениях на трассе, $S_{\text{калибр}}$ — нормированная величина сигнала в центре линии поглощения при калибровочных измерениях, $l_{\text{калибр}}$ — осажденный слой метана в кювете при калибровочных измерениях, k — коэффициент поглощения метана. Если в процессе калибровок кювета на пути луча не устанавливается, то $l_{\text{калибр}} = 0$ и, следовательно, формула (1) упрощается.

Для измерений была выбрана горизонтальная трасса длиной 1200 м и высотой над поверхностью Земли около 30 м, под которой шла интенсивная стройка большого производственного здания, а также вертикальная трасса, причем отражение света на этой трассе осуществлялось от облаков. Кроме того, с подветренной стороны от трассы были расположены две газовые котельные, от которых, возможно, также распространялся метан с повышенной фоновой концентрацией. Типичные изображения принимаемых сиг-

Рис. 2. Пример осциллограмм сигналов, принимаемых от облаков с высотой расположения ~1.2–1.9 км над поверхностью Земли.

налов представлены на рис. 2, а ситуационный план измерений — на рис. 3.

Сигналы с фотоприемника оцифровывались в аналого-цифровом преобразователе и далее обрабатывались: высчитывалась концентрация метана, ширина линии поглощения и расстояние до точки отражения. Выходной оптический рамановский усилитель работал в режиме насыщения, что несколько сглаживало вершину принимаемого ЛЧМ-сигнала, однако это никак не сказывалось на точности измерений, поскольку калибровочные измерения учитывали изменение формы излучаемого сигнала. Величина провала сигнала на линии поглошения метана на вершине квазиимпульса изменялась в соответствии с высотой облачного слоя. Как правило, закономерность такова, что чем выше облако, тем меньше принимаемый сигнал и больше относительная величина провала на линии поглошения газа. Были проведены и обработаны пять серий измерений по облакам и по горизонтальной трассе. Получены следующие средние значения: ширина линии поглощения и осажденный слой метана оказались равными на горизонтальной трассе соответственно 0.0618 нм и 2.625 мм, а на вертикальной трассе 0.0624 нм и 3.385 мм. Теоретические значения для стандартного распределения метана на горизонтальной трассе при стандартном фоне метана ~2 мм/км составляют соответственно 0.0618 нм и 2.40 мм при атмосферном давлении ~760 мм рт.ст, а теоретические значения для стандартного барометрического распределения метана по высоте дают значения 0.056 нм и 3.1 мм соответственно. Теоретическое значение концентрации метана для стандартной атмосферы на вертикальной трассе вычислялось по барометрической формуле:

$$l = \int_{0}^{16.5} l_0 \exp(-N/89) dN.$$
 (2)

Интегрирование ведется до N = 16.5 стометрового слоя атмосферы (высота облака $h \sim 1.65$ км), а в каждом стометровом слое содержание метана составляет $l_0 = 0.2$ мм осажденного слоя метана. Теоретическое значение ширины линии поглощения при атмосферном давлении равно $\gamma_0 = 0.0618$ нм [2].

Рис. 3. Ситуационный план измерений на вертикальной и горизонтальной атмосферных трассах.

2. МОДЕЛЬНЫЕ ДАННЫЕ

Из сопоставления полученных экспериментальных и теоретических данных видно, что результаты отличаются друг от друга. В силу этого была предложена модель распределения метана по высоте, которая бы удовлетворяла экспериментальным данным в момент измерений. Модель основана на том, что концентрация газа была аномально высокой в приземном слое атмосферы до высот ~1000 м, а на большей высоте была ниже нормальной величины (см. рис. 3). Такое распределение апроксимировалось эмпирической весовой функцией (рис. 4).

$$f(N) = 0.1 + 0.875 \exp\left(-\frac{N^{2.05} - 150}{160}\right) - (3) - 1.115 \exp\left(-\frac{N^{2.75} - 9.77}{100}\right),$$

где текущая высота над поверхностью Земли определяется номером N стометрового слоя. Эта функция показана на рис. 4, откуда видно, что в момент измерений облако метана распространялось вверх и вдоль трассы с максимумом концентрации на высоте около 700 м, а выше ~1000 м наблюдалась пониженная концентрация фона метана. На основе этого распределения модельную интегральную концентрацию метана определяли в соответствии с весовой функцией (3) по формуле

$$l = \int_{0}^{16.5} l_0 f(N) \exp(-N/89) dN.$$
 (4)

Здесь под знаком интеграла значение l_0 соответствует, как и в (1), содержанию метана в стометровом слое атмосферы. Ширину линии поглощения определяли по формуле

$$\gamma = \frac{1}{16.5} \int_{0}^{16.5} \gamma_0 f(N) \exp(-N/89) dN, \qquad (5)$$

где $\gamma_0 = 0.0618$ нм — ширина линии поглощения в приземном слое. Результаты, вычисленные по этим модельным формулам, а также теоретические и экспериментальные результаты представлены в табл. 1.

Как видно из табл. 1, ширина линии и осажденный слой метана для стандартной атмосфе-

Рис. 4. Модельная весовая функция f(N) относительного распределения метана по высоте во время измерений; N — номер стометрового слоя атмосферы, 17 слоев соответствуют высоте 1.7 км; штриховой линией показано стандартное распределение.

ры отличаются от измеренных значений, а предложенная модель распределения метана по высоте (см. рис. 4) уменьшает это различие до величин погрешностей измерений и более адекватно описывает реальную картину облака метана в момент измерений. Отличия результатов моделирования и экспериментальных данных возможны также из-за небольшого отклонения угла измерений по облакам от 90° к горизонту.

В процессе измерений было также обнаружено, что в экспериментальных данных наряду с линией поглощения метана наблюдается еще одна линия поглощения газа в левой части разностного сигнала *3* (рис. 5).

Разностный сигнал — это разность между калибровочным сигналом и сигналом с трассы, поэтому для точных измерений калибровочный сигнал должен обеспечивать на выходе фотоприемника нормированный сигнал, полностью повторяющий сигнал с трассы, за исключением областей с линиями поглощения газов. В противном случае измерения будут неточны. Как оказалось, левый пик в разностном сигнале 3 — это линия поглощения воды, отстоящая от пика поглощения метана на ~0.2 нм, который находится на длине волны 1653.7 нм. Поскольку при увеличении тока накач-

Таблица 1. Сравнение экспериментальных, теоретических и модельных величин концентраций и ширины линии поглощения метана на трассах измерений

Источник получения данных	Горизонтальная трасса 1.2 км		Вертикальная трасса 1.65 км	
	ширина линии, нм	осажденный слой, мм	ширина линии, нм	осажденный слой, мм
Теория	0.0618	2.4	0.056	3.1
Эксперимент	0.0618	2.625	0.0624	3.385
Моделирование	0.0618	2.64	0.0631	3.37

Рис. 5. Форма калибровочного сигнала (1) и сигнала с трассы 1.2 км (2), а также разность сигналов 1 и 2 (3), слева видна линия поглощения воды.

ки лазера длина волны его излучения растет, то слабый пик поглощения соответствует длине волны 1653.5 нм и сдвинут на ~0.2 нм относительно линии поглощения метана в сторону меньших токов накачки лазера и меньших длин волн, что находится в полном соответствии с данными спектральной базы поглощения атмосферных газов HITRAN для области длин волн 1653...1654 нм (рис. 6).

В процессе измерений величина линии поглощения воды была достаточно изменчива и сильно зависела от влажности воздуха. Одновременная регистрация линий поглощения метана и воды может быть использована для уточнения влажности в момент измерений, а также полезна для калибровочных измерений, уточняющих и дополняющих информационную и метеорологическую базу эксперимента.

ЗАКЛЮЧЕНИЕ

Таким образом, в процессе работы создан и исследован дистанционный лазерный газоанализатор на основе мощного двухкаскадного рамановского усилителя, а также сделана попытка

Рис. 6. Спектры поглощения метана CH₄ и воды в атмосфере в диапазоне 1653...1654 нм по базе HITRAN.

определения пространственного распределения фоновой концентрации метана на основе измерений на двух протяженных трассах: горизонтальной и вертикальной. Расхождение теоретических и экспериментальных данных привели к уточнению весовой функции распределения метана по высоте на основе модельных расчетов при использовании стандартной барометрической формулы зависимости давления воздуха от высоты. Данная методика может быть полезна при мониторинге содержания и распределения метана в окружающем пространстве с целью уточнения фоновой и экологической обстановки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Григорьевский В.И., Садовников В.П., Тезадов Я.А., Элбакидзе А.В. // РЭ. 2018. Т. 63. № 9. С. 895.
- Wei-hua Zhang, Wen-qing Wang, Lei Zhang et al. // 7th Intern. Conf. on Intelligent Computation Technology and Automation. IEEE. 2014. V. 95. P. 365.
- 3. https://directory.eoportal.org/web/eoportal/satellitemissions/m/merlin
- 4. Григорьевский В.И., Садовников В.П., Тезадов Я.Т., Элбакидзе А.В. // Приборы и системы. Управление, контроль, диагностика. 2017. № 6. С. 32.