ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 537.874

ИСКУССТВЕННЫЙ ДИЭЛЕКТРИК НА ОСНОВЕ РЕЗИСТИВНЫХ КВАДРАТОВ

© 2019 г. В. И. Пономаренко^{1, *}, И. М. Лагунов¹

¹Крымский федеральный университет им. В.И. Вернадского, Российская Федерация, 295007, Симферополь, просп. акад. Вернадского, 4 *E-mail: vponom@gmail.com Поступила в редакцию 29.01.2018 г.

После доработки 29.01.2018 г. Принята к публикации 19.03.2018 г.

На основе решения задачи дифракции нормально падающей электромагнитной волны на многослойных решетках из резистивных элементов проведен расчет дисперсии эффективной диэлектрической проницаемости структуры из резистивных квадратов, расположенных в диэлектрическом слое. Установлено, что дисперсия имеет релаксационный характер. Показана возможность управления дисперсионной характеристикой в широких пределах путем варьирования параметров структуры. Оценено отношение длины волны к периоду структуры, при котором адекватна процедура сопоставления рассматриваемой структуре однородного слоя.

DOI: 10.1134/S0033849419050103

введение

Одним из традиционно применяемых в технике сверхвысоких частот (СВЧ) материалов являются резистивные пленки [1–3]. Как показано в работах [4, 5], пленка приобретает емкостную компоненту поверхностного сопротивления, если она имеет островковый характер или дефекты типа трещин, вызванные деформацией. Емкостную компоненту пленке можно придать и искусственно, если разделить ее на элементы с зазорами между ними [6, 7]. Как было показано в работах [7, 8], применение такой резистивно-емкостной пленки (РЕП) в радиопоглощающих структурах позволяет улучшить их характеристики. В работах [9, 10], с помощью приближенных моделей, рассмотрены искусственные диэлектрики на основе решеток резистивных квадратов, разделенных диэлектрическими слоями. Эффективная диэлектрическая проницаемость (ЭДП) такой системы вычислена в [9] в квазистатическом приближении с применением формулы для эффективного поверхностного сопротивления РЕП из полос с малыми зазорами между ними, полученной в работе [6]. В [10] приближенные вычисления ЭДП проведены методами теории электрических цепей и длинных линий. Также в [10] показано, что такие системы обладают характером дисперсии ЭДП релаксационного типа. Возможность варьировать в широких пределах ЭДП материалов на основе РЕП путем изменения параметров

структуры делает их перспективными для применения в поглотителях электромагнитных волн.

Целью данной работы является расчет ЭДП слоистой структуры на основе резистивных квадратов дифракционным методом, ранее примененным для расчета ЭДП структур на основе решеток проводящих диполей [11]. Метод позволяет не только получить точные значения ЭДП, но и оценить применимость процедуры сопоставления рассматриваемой структуре однородного слоя, не ограничиваясь предположением о малости характерных размеров по сравнению с длиной волны без соответствующих оценок.

1. ЗАДАЧА ДИФРАКЦИИ

На рис. 1 изображена плоская решетка из предельно тонких резистивных квадратов со стороной *s* и поверхностным сопротивлением (ПС) ρ . Полупериоды решетки по осям *x*, *y* равны b_x и b_y . Зазоры τ_x и τ_y между соседними квадратами в "лентах" *L*1 и *L*2 равны соответственно $2(b_x - s)$ и $2(b_y - s)$. Исследуемая структура состоит из *K* таких решеток, расположенных одна над другой в слое недиспергирующего диэлектрика толщиной *d* с относительной диэлектрической проницаемостью ε . Рассматриваются случаи расположения структуры на металлическом и магнитном зеркале, а также на полупространстве из диэлектрика с проницаемостью ε . Плоская электромагнитная волна, поляризованная вдоль оси *y*, нормально

Рис. 1. Плоская решетка из резистивных квадратов.

Рис. 2. К задаче рассеяния в эквивалентном волноводе.

падает на структуру из области свободного пространства. Ввиду симметрии и периодичности структуры задача дифракции сводится к задаче рассеяния *TEM*-волны в эквивалентном волноводе – канале Флоке [12], изображенном на рис. 2, содержащем четверти резистивных квадратов и имеющем электрические стенки $y = 0, b_y$ и магнитные стенки $x = 0, b_y$.

Решение задачи рассеяния в эквивалентном волноводе основывается на разделении "больших" резистивных квадратов со стороной *s* на малые "элементарные" прямоугольники (ЭП) и решении задачи возбуждения волновода токами [13] с поверхностной плотностью I_{nx} , I_{ny} , текущими по ЭП вдоль осей *x*, *y*

$$I_{nx} = \frac{E_{nx}}{\rho}, \quad I_{ny} = \frac{E_{ny}}{\rho}, \quad n = 1, 2, \dots, N_A N_B.$$
 (1)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 64 № 5 2019

Здесь *E_{nx}*, *E_{ny}* – тангенциальные компоненты электрического поля на поверхности ЭП с номером *n* в его центре, *N*_A, *N*_B – числа разбиений стороны s соответственно вдоль осей x, y. Решение по существу не отличается от такового для решеток из проводящих волокон и диполей [11, 14] и сводится к решению системы линейных алгебраических уравнений (СЛАУ) относительно токов $\{I_{nx}\}, \{I_{ny}\}, \text{ по значениям которых определяются}$ амплитуды волноводных мод и коэффициент отражения (КО). Вместо используемого в [11, 14] условия связи между полем и током в проводе, имеют место соотношения (1). В представлении полей участвуют *TEM* -моды канала Флоке *H*_{mn} и E_{mn} , где m, n – номера гармоник по осям x, y [12]. Соотношения между прямыми и обратными модами в области $d > z > z_k$ выражаются через КО

N⁰	λ, м	K	ρ _{<i>L</i>2} , Ом	$ ho_{L2}^{ m o\phi},$ Ом	τ_x , MM	R		R_{L2}	
						R'	<i>R</i> "	R'_{L2}	$R_{L2}^{"}$
1	0.02	1	400	381	0.5	-0.381	0.765	-0.381	0.766
2	0.2	5	800	696	1.5	-0.691	-0.496	-0.692	-0.496
3	2	5	400	333	2	-0.995	-0.006	-0.995	-0.007

Таблица 1. Коэффициент отражения от структур из лент $L2(R_{L2})$ и сплошных пленок (R)

по электрическому полю в плоскости z = d, который равен нулю, если за структурой находится полупространство диэлектрика с проницаемостью ε ; -1, если в этой плоскости расположено электрическое зеркало; +1, если зеркало магнитное. Порядок СЛАУ, из которой определяются токи, равен $2KN_AN_B$. Числа N_A и N_B , как и числа учитываемых гармоник MM, NN, определялись путем наращивания до значений, выше которых КО по амплитуде переставал меняться в пределах абсолютной погрешности 0.002.

При $b_x = s$ решетка рис. 1 переходит в однородную вдоль оси *x* решетку из лент *L*1, поэтому, с учетом *y*-поляризации падающей на структуру *TEM*-волны, при решении задачи рассеяния в представлениях полей достаточно оставить *TEM*и E_{0n} -моды [15]. При вычислениях следует разделить ленту на полоски шириной s/N_B . Выбор периода b_x при этом произволен, а из СЛАУ исключается система токов $\{I_{nx}\}$. Порядок СЛАУ относительно токов $\{I_{ny}\}$ составляет KN_B . По аналогии с волноводными диафрагмами, решетку из лент *L*1 можно охарактеризовать как емкостную.

При $b_y = s$ решетка рис. 1 переходит в однородную вдоль оси *у* (решетку индуктивного типа из лент *L*2, и в представлениях полей участвуют лишь *TEM* - и H_{m0} -моды [15]. При вычислениях ленту делят на полоски шириной s/N_A . Вследствие равенства нулю токов $\{I_{nx}\}$ порядок СЛАУ равен KN_A .

При $b_x = b_y = s$ решетка рис. 1 переходит в сплошную пленку. В этом случае КО не зависит от выбора чисел $N_A \ge 1$, $N_B \ge 1$, а также от числа учитываемых гармоник E- и H-типов. Значения КО при этом, как показали расчеты, практически точно совпадают со значениями, получаемыми из решения задачи отражения от многослойной плоской структуры, если рассматривать пленки как слои предельно малой толщины $\tilde{d} \ll d$, обладающие относительной диэлектрической проницаемостью $\tilde{\varepsilon}$ [3, 5]:

$$\tilde{\varepsilon} = i / (\omega \tilde{d} \varepsilon_0 \rho), \qquad (2)$$

где ω — циклическая частота, ε_0 — диэлектрическая проницаемость вакуума, i — мнимая единица.

Численные расчеты проводили при значениях d = 10 мм и $\varepsilon = 3$ в диапазоне длин волн $\lambda = 0.02...2$ м.

Расчет при $\tau/s < 0.4$ КО $R_{L2} = R'_{L2} + iR''_{L2}$ структур из лент L2 и расчет КО R = R' + iR'' от структур со сплошными пленками показали, что R_{L2} и R оказываются практически равными, если рассматривать плоскую решетку из лент L2 с ПС ρ_{L2} как сплошную пленку с эффективным ПС:

$$\rho_{L2}^{\mathrm{sop}} = \rho_{L2} S / b_x. \tag{3}$$

В табл. 1 значения R_{L2} и R приведены при различных параметрах структуры на крайних и геометрически средней длинах волн. Расчеты проводили при $N_A = 10$, MM = 20, s = 5 мм.

Расчет КО $R_{L1} = R'_{L1} + iR''_{L1}$ от структуры из лент L1 с ПС ρ_{L1} и расчет КО R = R' + iR'' от структуры из квадратов с ПС ρ при $\tau_x = \tau_y = \tau$, $\tau/s \le 0.4$, показали, что R_{L1} и R оказываются практически равными, если выполняется соотношение:

$$\rho = \rho_{L1} \frac{s}{s+\tau}.$$
 (4)

В табл. 2 приведены значения R_{L1} и R при различных параметрах структуры. Расчет R_{L1} проводили при $N_B = 25$ и NN = 40, а расчет R -при $N_A = 10$, $N_B = 25$, MM = 20, NN = 40.

Отметим, что приведенное выше расчетное обоснование использования в дифракционной задаче формулы (3), являющейся точной в теории цепей и примененной в [10], объясняет причину высокой точности соотношения (4) при зазорах $\tau/s \le 0.4$.

Результаты, приведенные в табл. 1, 2, относятся к структурам, расположенным на металлическом зеркале. Аналогичные результаты имеют место при расположении структур на магнитном зеркале и на диэлектрическом полупространстве.

При числе решеток K = 5, принятом ниже при расчете ЭДП, время счета КО структур из лент L1

N⁰	λ, м	K	р, Ом	2 <i>s</i> , мм	τ, мм	R		R_{L1}	
						R'	<i>R</i> "	R'_{L1}	$R_{L1}^{"}$
1	0.02	5	1500	9	1	-0.293	0.481	-0.293	0.480
2	0.2	3	800	10	1.5	-0.719	-0.592	-0.719	-0.591
3	2	2	500	10	1	-0.997	-0.006	-0.998	-0.007

Таблица 2. Коэффициент отражения от структур из лент $L1(R_{L1})$ и квадратов (R)

и L2 на одной длине волны приблизительно в 1500 раз меньше времени счета для структуры из квадратов, которое занимает более 2 ч на компьютере со скоростью выполнения операций 36 гигафлопсов при двойной точности представления чисел в ФОРТРАН-программе. Это обусловлено тем, что в случае квадратов размерность комплексной СЛАУ при $N_A = 10, N_B = 25$ равна 2500, а матричные элементы нужно вычислять суммированием двойных рядов [11]. В связи с этим, учитывая практическую тождественность в плане взаимодействия с первичной электромагнитной волной структуры из лент L1 и структуры из квадратов при $\tau/s \le 0.4$ и выполнении соотношения (4), приведенные ниже расчеты КО и ЭДП структуры из квадратов были выполнены также как для структуры из лент L1 с использованием связи (4).

Отметим, что применение к численному решению СЛАУ специальных программ с факторизацией матриц не приводит к результатам, отличным от полученных методом Гаусса. Это объясняется достаточной обусловленностью матриц [16], не требующей предварительных преобразований для повышения точности решения СЛАУ.

2. ДИСПЕРСИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ

Аналогично [11], сопоставление многослойной структуре однородного слоя с ЭДП $\varepsilon_{_{эф}}$ выполняется на основе соотношения

$$\varepsilon_{9\Phi} = \frac{(R_e - 1)(R_m - 1)}{(R_e + 1)(R_m + 1)},$$
(5)

где R_e , R_m — коэффициенты отражения в плоскости z = 0 по электрическому полю нормально падающей волны от немагнитного слоя с диэлектрической проницаемостью $\varepsilon_{эф}$, занимающему область $d \ge z \ge 0$ и расположенному соответственно на металлической или магнитной плоскости. Из формулы (5) находим:

$$R_{e} = \frac{A + (\varepsilon_{\ni \phi})^{1/2}}{A - (\varepsilon_{\ni \phi})^{1/2}}, \quad R_{m} = \frac{A (\varepsilon_{\ni \phi})^{1/2} + 1}{1 - A (\varepsilon_{\ni \phi})^{1/2}},$$

$$A = i \operatorname{tg} \frac{2\pi d}{\lambda} (\varepsilon_{\ni \phi})^{1/2}.$$
(6)

Подставляя в (5) вместо R_e , R_m значения коэффициентов отражения от исследуемой структуры при расположении на металлическом и магнитном зеркале, получим ее ЭДП.

При расчете ЭДП полагали K = 5, поскольку при меньшем числе решеток процедура сопоставления рассматриваемой структуре однородного слоя имеет более низкую точность.

В табл. 3 приведены результаты расчетов ЭДП структуры из сплошных пленок с поверхностным сопротивлением 500 Ом. Через $\varepsilon_{3\phi} = \varepsilon'_{3\phi} + i\varepsilon''_{3\phi}$ обозначена "точная" ЭДП, полученная из расчета коэффициента отражения от многослойной структуры (5), формуле по а через $\langle \varepsilon_{\mathbf{a}\phi} \rangle = \langle \varepsilon'_{\mathbf{a}\phi} \rangle + i \langle \varepsilon''_{\mathbf{a}\phi} \rangle$ – значение, полученное усреднением проницаемостей диэлектрических слоев и резистивных пленок с учетом их толщин. Видно, что ε_{ab} и $\langle \varepsilon_{ab} \rangle$ мало отличаются, причем отличие уменьшается с увеличением длины волны. На промежуточных длинах волн как действительная, так и мнимая части ЭДП меняются почти линейно.

Таблица 3. Точная $\varepsilon_{9\phi}$ и усредненная $\langle \varepsilon_{9\phi} \rangle$ эффективные диэлектрические проницаемости структур из сплошных пленок

№	λ, м	ε' _{эф}	$\left< \epsilon'_{\mathrm{s} \mathrm{\varphi}} \right>$	ε " _{эφ}	$\left< \epsilon_{a\phi}^{"} \right>$
1	0.02	2.81	3.00	1.45	1.20
2	0.2	2.86	3.00	12.01	12.0
3	2	2.86	3.00	119.7	119.7

Рис. 3. Влияние периода структуры из квадратов на действительную $\varepsilon'_{9\Phi}$ (кривые *1*, *3*) и мнимую $\varepsilon''_{9\Phi}$ (кривые *2*, *4*) части ЭДП. Кривые *1*, *2* соответствуют *s* = 8 мм, $\tau = 1$ мм; кривые *3*, *4* – *s* = 4 мм, $\tau = 0.5$ мм.

Рис. 5. Влияние размера квадрата на действительную $\varepsilon'_{9\Phi}$ (кривые *1*, *3*) и мнимую $\varepsilon''_{9\Phi}$ (кривые *2*, *4*) части ЭДП. Кривые *1*, *2* соответствуют *s* = 8 мм, кривые *3*, 4 - s = 4 мм.

На рис. 3–7 представлены результаты расчета дисперсии ЭДП структур из резистивных квадратов.

На рис. 3 показано влияние периода $2s + \tau$ структуры из квадратов с ПС равным 500 Ом на дисперсию ЭДП. Видно, что при уменьшении периода резонансная длина волны (РДВ), на которой максимальна мнимая часть ЭДП, несколько сместилась в сторону коротких длин волн, при этом максимальные значения компонент ЭДП уменьшились.

Рис. 4. Влияние поверхностного сопротивления квадратов на действительную $\varepsilon'_{9\Phi}$ (кривые *1*, *3*) и мнимую $\varepsilon''_{9\Phi}$ (кривые *2*, *4*) части ЭДП. Кривые *1*, *2* соответствуют $\rho = 1000$ Ом; кривые *3*, $4 - \rho = 250$ Ом.

Рис. 6. Влияние зазора между квадратами на действительную $\varepsilon'_{3\phi}$ (кривые *1*, *3*) и мнимую $\varepsilon''_{3\phi}$ (кривые *2*, *4*) части ЭДП. Кривые *1*, *2* соответствуют $\tau = 0.5$ мм; кривые *3*, $4 - \tau = 1$ мм.

На рис. 4 показано влияние ПС квадратов на дисперсию ЭДП при s = 4 мм, $\tau = 0.5$ мм. Видно, что при уменьшении сопротивления РДВ существенно сместилась в сторону коротких длин волн, при этом максимальные значения компонент ЭДП увеличились.

На рис. 5 показано влияние размера квадратов на дисперсию ЭДП при $\rho = 1000$ Ом, $\tau = 1$ мм. Видно, что при уменьшении размера РДВ сместилась в сторону коротких длин волн, при этом максимальные значения компонент ЭДП уменьшились.

Рис. 7. Влияние диэлектрической проницаемости матрицы на действительную $\varepsilon'_{3\phi}$ (кривые *1*, *3*) и мнимую $\varepsilon''_{3\phi}$ (кривые *2*, *4*) части ЭДП. Кривые *1*, *2* соответствуют $\varepsilon = 3$; кривые *3*, $4 - \varepsilon = 4.5$.

На рис. 6 показано влияние зазора между квадратами на дисперсию ЭДП при s = 4 мм, $\rho = 750$ Ом. Видно, что при увеличении зазора РДВ несколько сместилась в сторону коротких длин волн, при этом максимальные значения компонент ЭДП уменьшились.

Выше во всех расчетах ЭДП полагали $\varepsilon = 3$. На рис. 7 показано влияние диэлектрической проницаемости матрицы на дисперсию ЭДП при s = 4 мм, $\tau = 1$ мм, $\rho = 500$ Ом. Видно, что при увеличении ε РДВ сместилась в длинноволновую область, при этом максимальные значения компонент ЭДП увеличились.

Процедура сопоставления неоднородной структуре однородного слоя имеет практическую ценность, если по эффективной проницаемости можно рассчитывать с приемлемой точностью характеристики взаимодействия структуры с полем, например, КО, при помещении структуры в различные условия и изменении ее толщины. На рис. 8 показана ошибка вычисления КО в результате замены структуры из квадратов толщиной d = 10 мм при s = 4 мм, $\tau = 0.5$ мм, $\rho = 250$ Ом, $\varepsilon = 3$ однородным слоем. Здесь |R| - KO, полученный из решения задачи рассеяния, $|\tilde{R}| - \text{KO}$ однородного слоя с диэлектрической проницаемостью, равной вычисленной ЭДП структуры. Рассмотрено расположение структуры на металлическом и магнитном зеркалах. В обоих случаях расхождение между R и \tilde{R} достигает нескольких процентов на длинах волн $\lambda \le 0.05$ м, что составляет около пяти периодов структуры. Если принять допустимую абсолютную ошибку вычисления КО по амплитуде

Рис. 8. Точные значения КО по амплитуде |R| от структуры из квадратов (кривые *1*, *3*), и значения $|\tilde{R}|$, соответствующие однородному слою (кривые *2*, *4*) при расположении структуры на металлическом зер-кале (кривые *1*, *2*) и на магнитном (кривые *3*, *4*).

равной 0.02, то на таких длинах волн сопоставление структуре однородного слоя некорректно. Приблизительно такая же оценка ошибки имеет место при сравнении КО от структуры из квадратов и однородного слоя при помещении их на диэлектрическое полупространство, а так же при удвоении толщины структуры с числом решеток K = 10 и сравнении КО от нее с КО однородного слоя двойной толщины с диэлектрической проницаемостью, равной ЭДП одинарного слоя.

ЗАКЛЮЧЕНИЕ

Предложенное в работах [11, 14] решение задачи дифракции нормально падающей электромагнитной волны на решетках из резистивных элементов применено к многослойным решеткам из резистивных лент и квадратов в диэлектрическом слое, расположенном на отражающей плоскости или диэлектрическом полупространстве. Численными расчетами показано, что при достаточно малых зазорах между элементами решеток индуктивная структура с высокой точностью отражает так же, как решетка из сплошных резистивных пленок с измененным поверхностным сопротивлением, а решетка из квадратов отражает так же, как емкостная решетка с аналогично измененным поверхностным сопротивлением. Предложено вычислять ЭДП структуры по значениям комплексного КО от нее при расположении структуры на электрическом и магнитном идеальных отражателях. Точными расчетами показан релаксационный характер дисперсии ЭДП решетки из квадратов, что согласуется с результатами, полученными ранее путем приближенных оценок. Рассмотрено влияние параметров решетки на ЭДП и показана возможность варьирования ЭДП в широких пределах. Показано, что при использовавшихся расчетных параметрах сопоставление решетке из квадратов однородного слоя с эффективной диэлектрической проницаемостью дает абсолютную ошибку вычисления коэффициента отражения по амплитуде менее 0.02, если длина волны приблизительно в пять раз превосходит период структуры. Результаты расчетов применимы к другим диапазонам длин волн при соответствующем масштабировании геометрических размеров рассмотренных структур.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алимин Б.Ф.* // Зарубежная радиоэлектроника. 1989. № 2. С. 75.
- Liu H.T., Cheng H.F., Chu Z.Y., Zhang D.Y. // Mater. Design. 2007. V. 28. № 7. P. 2166.
- 3. *Слуцкая В.В.* Тонкие пленки в технике СВЧ. М.: Госэнергоиздат, 1962.
- Казанцев Ю.Н., Крафтмахер Г.А. // Письма в ЖТФ. 1987. Т. 13. № 11. С. 649.
- Пономаренко В.И., Куприянов И.К., Журавлев С.И. // РЭ. 1992. Т. 37. № 2. С. 346.

- 6. *Пономаренко В.И.* // Изв. вузов. Электромеханика. 1982. № 5. С. 518.
- Пономаренко В.И., Мировицкий Д.И., Будагян И.Ф. // Радиотехника. 1984. Т. 39. № 11. С. 68.
- 8. Пономаренко В.И., Журавлев С.И. // РЭ. 1992. Т. 37. № 5. С. 812.
- 9. *Пономаренко В.И.* // Радиотехника. 1990. Т. 45. № 5. С. 82.
- 10. Казанцев Ю.Н., Бабаян В.А., Казанцева Н.Е. и др. // РЭ. 2013. Т. 58. № 3. С. 264.
- Пономаренко В.И., Лагунов И.М. Композиционные материалы: разработка и применение. Новосибирск: Изд. АНС "СибАК", 2017. С. 112.
- Ильинский А.С., Свешников А.Г. Численные методы в задачах дифракции на неоднородных периодических структурах. М.: Высш. шк., 1977.
- 13. Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: Наука, 1989.
- 14. Пономаренко В.И., Лагунов И.М. // РЭ. 2017. Т. 62. № 7. С. 657.
- Шестопалов В.П., Литвиненко Л.Н., Масалов С.А., Сологуб В.Г. Дифракция волн на решетках. Харьков: Изд-во Харьков. гос. ун-та, 1973.
- 16. Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999.