ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.391.01

СИГНАЛЬНЫЕ КОНСТРУКЦИИ НА ОСНОВЕ OFDM-СИГНАЛОВ, УСТОЙЧИВЫЕ К ВЛИЯНИЮ СОСРЕДОТОЧЕННЫХ ПО СПЕКТРУ ПОМЕХ

© 2019 г. Л. Е. Назаров*

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Российская Федерация, 141190, Фрязино, Московской обл., пл. Введенского, 1

> **E-mail: levnaz2018@mail.ru* Поступила в редакцию 04.05.2018 г. После доработки 04.05.2018 г. Принята к публикации 21.05.2018 г.

Приведено описание класса устойчивых к влиянию узкополосных помех сигнальных конструкций на основе OFDM-сигналов и помехоустойчивого кодирования. Даны алгоритмы приема этих сигнальных конструкций с использованием весовой обработки входных реализаций при наличии рассматриваемых канальных помех и дан критерий оптимальности весовых окон. Показано, что весовые окна Кайзера и Дольфа—Чебышева относятся к классу практически оптимальных окон. Приведены вероятностные характеристики для ряда рассматриваемых сигнальных конструкций, формируемых с использованием сверточного кода с кодовой скоростью 1/2.

DOI: 10.1134/S003384941907012X

ВВЕДЕНИЕ

С использованием сигналов с ортогональным частотным мультиплексированием, известных в литературе как OFDM-сигналы (orthogonal frequency division multiplexing), возможна организация связи с многолучевым распространением, обусловливающим частотно-селективные замирания сигналов, межсимвольную интерференцию и нестационарность каналов передачи [1-3]. Полезным свойством OFDM-сигналов является их высокая спектральная эффективность, а также возможность формирования спектров оконного типа с вариацией их ширины и расположения в рабочем частотном диапазоне. При формировании и приеме этих сигналов используется алгоритм быстрого спектрального преобразования в базисе Фурье (БПФ) [4].

Эти сигналы являются базовыми для стандартов IEEE 802.12.11 (WiFi, пакетная передача по каналам беспроводных локальных сетей WLAN), IEEE 802.16 (WiMax, пакетная передача по каналам беспроводных городских сетей WMAN) и для ряда принятых протоколов: DAB, DVB-T, DVB-T2 (цифровое радиовещание и телевидение), DVB-SH (цифровое спутниковое телевидение), 3GPP LTE (мобильная связь 4G) [1–3]. Перспективно использование OFDM-сигналов в оптических системах связи, каналы передачи которых определяют искажения сигналов за счет нелинейностей, дисперсии и многолучевого распространения [5].

Исследованию свойств OFDM-сигналов, в частности оцениванию мощности интермодуляционных помех за счет нелинейности передающих устройств, посвящен ряд работ [6–9].

OFDM-сигналы представляют сумму парциальных гармонических сигналов, ортогональных на интервале времени определения с фазовой или амплитудно-фазовой манипуляцией. Сосредоточенные по спектру помехи подобны по структуре парциальным составляющим в составе OFDMсигналов. Это обусловливает эффективность влияния помех данного типа на помехоустойчивость передачи информации с использованием OFDMсигналов. Актуальной является проблема повышения помехоустойчивости систем передачи информации с использованием OFDM-сигналов при наличии класса данных помех [3]. С целью решения этой проблемы в работах [10-13] предложены сигнальные конструкции на основе OFDM-сигналов, помехоустойчивого кодирования и перемежения, при приеме которых используются алгоритмы компенсации помех в частотной области. В статье приводятся результаты исследования вероятностных характеристик алгоритмов обработки при приеме рассматриваемых сигнальных конструкций при наличии сосредоточенных по спектру помех.

Рис. 1. Спектр сосредоточенных помех в области видеочастот с полосой ±50 кГц, полученный в результате обработки сигналов спутниковой информационной системы в *P*-частотном диапазоне.

1. ПОСТАНОВКА ЗАДАЧИ

Комплексные огибающие OFDM-сигналов $\dot{s}(t)$ представляют сумму N парциальных гармонических сигналов, ортогональных в усиленном смысле на интервале определения T[1]

$$\dot{s}(t) = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} \dot{\alpha}_m \exp(j2\pi f_m t).$$
 (1)

Здесь комплексные символы $\dot{\alpha}_m$ в блоке ($\dot{\alpha}_0, \dot{\alpha}_1, ..., \dot{\alpha}_{N-1}$) объемом J^N (J – объем алфавита символов $\dot{\alpha}_m$) задаются используемым сигнальным "созвездием" на основе входной информационной последовательности длительностью $G = N \log_2 J$. Для "созвездия" с двухфазовой манипуляцией (Φ M2) J = 2 и G = N.

Сосредоточенные по спектру помехи подобны по структуре парциальным сигналам в составе OFDM-сигналов (1). В этот класс входят однотональные и многотональные помехи, эквивалентные гармоническим сигналам в полосе OFDM-сигналов. Это обусловливает более высокую эффективность данного типа помех относительно снижения помехоустойчивости OFDM-сигналов по сравнению с базовой моделью помехи в виде аддитивного белого гауссовского шума (АБГШ) [10]. Количественной мерой помехоустойчивости является вероятность ошибки на информационный бит P_6 при приеме сигналов, при котором реализуется правило максимального правдоподобия для канала АБГШ [14].

На рис. 1 приведен вид сосредоточенных по спектру помех в области видеочастот с полосой $\pm 50 \ \kappa \Gamma \mu$, полученный в результате обработки сигналов спутниковой информационной системы в *P*-частотном диапазоне. Видно наличие до пяти

помех рассматриваемого типа, отношение мощности информационных сигналов к общей мощности сосредоточенных по спектру помех может достигать –20...–25 дБ и менее [13].

Известные методы снижения эффективности сосредоточенных по спектру помех основаны на увеличении базы используемых сигналов или применении методов компенсации данных помех [14].

При использовании сигналов с базой *B*, определяемой отношением полосы сигналов к скорости передачи информации, вероятность P_6 зависит от отношения $\sqrt{B P_c/P_n}$ (P_c – мощность сигналов, P_n – мощность сосредоточенных по спектру помех), т.е. при приеме сигналов происходит снижение эффективности сосредоточенных по спектру помех в *B* раз [14].

При превышении мощности помех P_{Π} более чем в *B* раз мощности сигналов P_c существенно снижается помехоустойчивость передачи информации. В этом случае при приеме сигналов применяются методы обработки, осуществляющие компенсацию помех.

Повысить надежность передачи информации при наличии в канале рассматриваемых сосредоточенных по спектру помех можно с помощью сигнальных конструкций на основе OFDM-сигналов. Это выполняется путем совместного увеличения их базы и компенсации помеховых сигналов в частотной области, а также использования помехоустойчивого кодирования и перемежения кодовых символов [10–12].

В работе [10] приведены результаты исследования помехоустойчивости для рассматриваемых сигнальных конструкций на основе OFDM-сигналов, показывающие, что при наличии однотональной помехи более эффективным является алгоритм

Рис. 2. Блок-схема формирования сигнальных конструкций на основе OFDM-сигналов, помехоустойчивого кодирования и перемежения кодовых символов.

Рис. 3. Блок-схема обработки при приеме сигнальных конструкций на основе OFDM-сигналов, помехоустойчивого кодирования и перемежения кодовых символов.

адаптивной компенсации помех во временной области [10]. Однако при наличии группы сосредоточенных по спектру помех более эффективными являются рассматриваемые сигнальные конструкции и алгоритмы их обработки при приеме.

Цель данной работы — проанализировать помехоустойчивость рассматриваемых сигнальных конструкций, формируемых на основе OFDM-сигналов и помехоустойчивого кодирования в сочетании с алгоритмами компенсации сосредоточенных по спектру помех, представляет суть задачи.

2. СИГНАЛЬНЫЕ КОНСТРУКЦИИ НА ОСНОВЕ OFDM-СИГНАЛОВ

На рис. 2 приведена схема формирования рассматриваемых сигнальных конструкций [10-12]. На вход кодера помехоустойчивого кода подается последовательность информационных символов $(\dot{\alpha})$ длительностью K. C выхода кодера последовательность кодовых символов (ά') длительностью K/R (R < 1 -кодовая скорость помехоустойчивого кода) поступает на вход перемежителя, и далее каждый кодовый символ с выхода перемежителя ($\dot{\alpha}_{n}$) отображается действием умножителя и генератора удлиняющей последовательности в последовательность ($\dot{\alpha}_{\Pi,i}\dot{p}_0(i),...,\dot{\alpha}_{\Pi,i}\dot{p}_{l-1}(i)$) длительностью l. Здесь $\dot{p}_i(i)$, (j = 1, 2, ..., l) — последовательность символов удлиняющей последовательности с двоичными компонентами ±1. Последовательность символов с выхода умножителя длительностью *Kl/R* поступает на вход модулятора OFDMсигналов, реализующего обратное спектральное преобразование в базисе Φ урье размерностью N и формирующего последовательность L = Kl/RN OFDM-сигналов (1) с использованием манипуляции ФМ2 парциальных сигналов.

Для фиксированной частотной полосы и фиксированного числа парциальных сигналов N в (1) действие умножителя и генератора удлиняющей последовательности определяет увеличение длительности и базы рассматриваемой сигнальной конструкции по отношению к длительности исходных OFDM-сигналов в l раз.

На рис. 3 приведена схема алгоритма обработки реализации \vec{z} с выхода канала передачи при приеме рассматриваемых сигнальных конструкций \vec{s} [10–12]. Отсчеты \dot{z}_i реализации \vec{z} задаются соотношением

$$\dot{z}_i = \dot{s}_i + \dot{n}_i + \dot{N}_i, \tag{2}$$

где \dot{s}_i , \dot{n}_i — комплексные отсчеты, соответствующие сигнальной составляющей и АБГШ со спектральной односторонней плотностью N_0 ; \dot{N}_i — комплексные отсчеты, соответствующие рассматриваемым сосредоточенным по спектру помехам.

Реализация \vec{z} с выхода канала поступает на вход приемного устройства, содержащее весовое окно с коэффициентами w(k), k = 0, 1, 2, ..., N - 1. На вход модуля компенсации сосредоточенных по спектру помех поступают нормированные спектральные отсчеты

$$\frac{\dot{S}_j(k)}{\frac{1}{N}\sum_{k=0}^{N-1} \left| \dot{S}_j(k) \right|}$$

(k = 0, 1, 2, ..., N - 1, j = 1, 2, ..., L), вычисленные с использованием БПФ размерностью N для по-

следовательности взвешенных входных отсчетов во временной области $\dot{z}_i(k)w(k)$.

Демодулятор OFDM-сигналов осуществляет вычисление решений \vec{y} для декодера помехоустойчивого кода с использованием последовательности спектральных отсчетов \vec{S} с выхода модуля компенсации помеховых сигналов

$$\dot{y}_i = \sum_{j=1}^{l} \dot{S}'_j(i) \dot{p}^*_j(i), \tag{3}$$

где (·)* — операция комплексного сопряжения символов с выхода генератора удлиняющей последовательности.

Приемное устройство помехоустойчивого кода на основе символов деперемеженной последовательности решений $\vec{y}_{дn}$ выдает решения относительно символов информационной последовательности ($\vec{\alpha}$).

При компенсации помех осуществляется "мягкое" ограничение значений реальной части спектральных отсчетов $\dot{S}_i(k)$

$$\operatorname{Re}(\dot{S}_{j}(k)) =$$

$$= \begin{cases} \operatorname{Re}(\dot{S}_{j}(k)), \text{ если } |(\dot{S}_{j}(k))| < P, \\ \operatorname{sign}(\operatorname{Re}(\dot{S}_{j}(k)))P, \text{ если } |(\dot{S}_{j}(k))| > P. \end{cases}$$
(4)

Подобная операция (4) осуществляется над мнимой частью $\text{Im}(\dot{S}_i(k))$ при формировании $\text{Im}(\dot{S}'_i(k))$. Здесь sign(x) — знак аргумента x; P — порог.

В более простом варианте рассматриваемого алгоритма компенсации используется "жесткое" ограничение со значениями ±1 при формирова-

нии отсчетов $\operatorname{Re}(\dot{S}'_{j}(k))$, $\operatorname{Im}(\dot{S}'_{j}(k))$ (двухуровневое квантование) [12].

Рассматриваемые эффективность компенсации помех и помехоустойчивость сигнальных конструкций в сочетании с алгоритмами приема определяются выбором весовых окон [11-13]. Использование весовых окон при обработке входных реализаций обусловливает уменьшение значений боковых лепестков относительно значения главного лепестка в частотной области. Это снижает искажающее влияние рассматриваемых помех для парциальных сигналов в составе OFDM-сигналов по отношению к обработке входных реализаций с использованием прямоугольного окна. Вследствие этого общее свойство оптимальности основывается на критерии обеспечения минимальных значений боковых лепестков частотной характеристики окна и достижении минимума энергии спектра частотной характеристики окна за пределами задаваемой полосы спектра.

Известен ряд взвешивающих окон, представляющих приближенное решение рассматриваемой задачи синтеза окна с минимизацией энергии спектра вне главного лепестка, например, окно Кайзера, Кравченко–Кайзера, окно Дольфа–Чебышева [4, 15, 16]. Основные характеристики этих окон (ширина главного лепестка, значения амплитуд боковых лепестков) задаются через параметры, варьирование значений которых дает возможность конструирования рассматриваемых весовых окон со свойствами лепестков, близкими к оптимальным свойствам.

Рассмотрим окна Кайзера и Дольфа–Чебышева, используемые в алгоритмах приема исследуемых сигнальных конструкций.

Весовые коэффициенты *w*(*k*) окна Кайзера длительностью *N* имеют вид

$$w(k) = I_0 \left(\beta \sqrt{1 - \left(\frac{2k}{N} - 1\right)^2}\right) / I_0(\beta).$$
 (5)

Здесь $0 \le k < N$; $I_0(x)$ — модифицированная функция Бесселя первого рода нулевого порядка, β — параметр, определяющий соотношения между шириной главного лепестка и амплитудой *A* боковых лепестков частотной характеристики окна — при расширении главного лепестка происходит уменьшение значений боковых лепестков [4, 15].

На рис. 4 приведен спектр суммы OFDM-сигнала, АБГШ и сосредоточенной по спектру помехи $(P_c/P_n = -40 \text{ дБ})$. В случае использования прямоугольного весового окна (кривая *I*) видно существенное превышение боковых лепестков помехи относительно частотных отсчетов информационного OFDM-сигнала, что обусловливает высокую вероятность ошибки P_6 при приеме. В случае весового окна Кайзера (кривая *2*) с оптимальным параметром $\beta = 6.0$ [11] наблюдается существенное уменьшение значений боковых лепестков (практически до -70 дБ по отношению к главному лепестку), обусловливающее повышение помехоустойчивости по отношению к прямоугольному окну.

Весовые коэффициенты w(k) окна Дольфа-Чебышева длительностью N задаются как обратное БПФ над функцией f(m), m = 0, 1, 2, ..., N - 1 [15]

$$f(m) = \begin{cases} f(m) = \frac{\left(\cos\left(N \arccos\left(\alpha \cos\left(\frac{\pi m}{N}\right)\right)\right)}{\operatorname{arch}(N \operatorname{arch}(\alpha))}, \left|\alpha \cos\left(\frac{\pi m}{N}\right)\right| \le 1, \\ \frac{\operatorname{ch}\left(N \operatorname{arch}\left(\alpha \cos\left(\frac{\pi m}{N}\right)\right)\right)}{\operatorname{arch}(N \operatorname{arch}(\alpha))}, \left|\alpha \cos\left(\frac{\pi m}{N}\right)\right| > 1. \end{cases}$$
(6)

Здесь $\alpha = ch \left(arsh \left(10^{\gamma} \right) / N \right), \gamma$ – параметр окна.

Рис. 4. Спектр суммы OFDM-сигнала, АБГШ и сосредоточенной по спектру помехи ($P_c/P_{II} = -40 \text{ дБ}$): кривая 1 -прямоугольное весовое окно; кривая 2 -окно Кайзера ($\beta = 6.0$).

Окно Дольфа—Чебышева обеспечивает минимальную ширину главного лепестка частотной характеристики при фиксированном уровне боковых лепестков A (дБ) по отношению к уровню главного лепестка, определяемому соотношением $A = -20\gamma$ [15].

При обработке взвешенных входных отсчетов во временной области $\dot{z}_i(k)w(k)$ уменьшаются значения сигнал/помеха на выходе сигнального демодулятора по отношению к согласованной фильтрации с использованием прямоугольного весового окна [3], а также нарушается ортогональность парциальных гармонических сигналов OFDM-сигналов (1), в результате возникают межканальные помехи (МКИ) в дополнение к АБГШ [1]. Поэтому при анализе вероятностных характеристик алгоритмов приема рассматриваемых сигнальных конструкций необходимо учитывать эти эффекты.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК СИГНАЛЬНЫХ КОНСТРУКЦИЙ

Были исследованы вероятностные характеристики при приеме сигнальных конструкций на основе OFDM-сигналов и помехоустойчивого кодирования для сверточного кода с кодовой скоростью 1/2.

Кодер сверточного кода представляет собой решетчатую диаграмму и задается порождающими многочленами. Оптимальный прием сигналов, соответствующих сверточному коду, выполняется с использованием алгоритма Витерби — осуществляется динамический перебор возможных путей по кодовой решетке с выбором наиболее правдоподобного пути. Используемый при исследовании сверточный код задается порождающими многочленами в восьмеричном представлении (133, 171). Этот код включен в состав помехоустойчивых кодов, рекомендуемых для спутниковых систем связи [17]. При его использовании вероятность ошибки на информационный бит $P_6 = 10^{-5}$ обеспечивается при отношении сигнал/шум $E_6/N_0 = 4.0$ дБ, где E_6 — энергия на информационный бит, N_0 — спектральная плотность (односторонняя) АБГШ.

Эффективность алгоритмов приема рассматриваемых сигнальных конструкций проанализирована путем их компьютерного моделирования для комплекса помех — суммы АБГШ и до пяти помеховых сигналов с вариацией количества и произвольным размещением в полосе OFDM-сигналов, размерность БПФ N = 1024, сигнальное "созвездие" ФМ2. Испытания при моделировании проводили до тех пор, пока число ошибок становилось не менее 500.

Отношение общей мощности помеховых сигналов $P_{\rm n}$ к мощности OFDM-сигналов $P_{\rm c}$ при моделировании равно $\chi = P_{\rm c}/P_{\rm n} = -40$ дБ. В этом случае, в соответствии с рассмотренными выше методами снижения эффективности сосредоточенных по спектру помех, надежная связь возможна с использованием сигналов с базой, превышающей 40 дБ.

На рис. 5а и 5б приведены зависимости вероятности ошибки на информационный бит P_6 от значения порога ограничения P нормированных спектральных составляющих в алгоритме компенсации сосредоточенных по спектру помех с

Рис. 5. Зависимости вероятности ошибки P_6 от порога *Р* для сигнальной конструкции (*l* = 16) на основе OFDM-сигналов и сверточного кода с кодовой скоростью 1/2 при наличии АБГШ и до пяти помеховых гармонических сигналов, $\chi = -40 \ \text{д}\text{Б}, E_6/N_0 = 4.5 \ \text{д}\text{Б}$: а) окно Кайзера при $\beta = 2$ (*I*), 6 (*2*) и 9 (*3*), 6) окно Дольфа–Чебышева при $\gamma = 1.5$ (*I*), 2.75 (*2*) и 3.75 (*3*).

использованием окна Кайзера и окна Дольфа–Чебышева. Вероятностные кривые получены путем моделирования приведенных алгоритмов приема сигнальных конструкций с параметром *l* = 16 (база

Рис. 6. Вероятностные кривые для сигнальных конструкций на основе OFDM-сигналов и сверточного кода с кодовой скоростью 1/2 при наличии АБГШ и до пяти помеховых сигналов (окно Кайзера) ($\chi = -40$ дБ): при отсутствии помеховых сигналов (*1*) и при $\beta_{O\PiT} = 6.0$, l = 16 (кривая 2); $\beta_{O\PiT} = 6.0$, l = 8 (кривая 3); $\beta_{O\PiT} = 7.0$, l = 4 (кривая 4); $\beta_{O\PiT} = 6.0$, l = 2 (кривая 5).

сигнальных конструкций с учетом избыточности помехоустойчивого кода равна B = 15 дБ), отношение сигнал/помеха АБГШ равно $E_6/N_0 = 4.5 \text{ дБ}$.

Из анализа рис. 5 видно, что существуют оптимальные значения параметров окон $\beta_{\text{опт}}$, $\gamma_{\text{опт}}$ и порогов ограничения $P_{\text{опт}}$, определяющие минимальные вероятности ошибки P_6 . В таблице 1 приведены полученные оптимальные значения параметров взвешивающих окон $\beta_{\text{опт}}$, $\gamma_{\text{опт}}$ и порогов ограничения $P_{\text{опт}}$ для используемых сигнальных конструкций при различных l = 16, 8, 4, 2.

На рис. 6 и 7 приведены вероятностные кривые для сигнальных конструкций на основе OFDM-сигналов и сверточного кода при наличии рассматриваемого комплекса помех. Варьируемым параметром является сигнал/помеха E_6/N_0 для АБГШ при постоянном отношении общей мощности сосредоточенных по спектру помех к мощности OFDM-сигналов $\chi = -40$ дБ.

Таблица 1. Оптимальные значения параметров β_{опт}, γ_{опт} и порогов P_{опт} для весовых окон Кайзера и Дольфа–Чебышева

I	Окно Кайзера		Окно Дольфа–Чебышева	
	$\beta_{ m ont}$	Ропт	$\gamma_{ m ont}$	Ропт
16	6.0	0.65	2.75	1.1
8	6.0	0.40	3.20	0.70
4	7.0	0.35	3.3	0.90
2	6.0	0.25	4.0	0.50

Рис. 7. Вероятностные кривые для сигнальных конструкций на основе OFDM-сигналов и сверточного кода с кодовой скоростью 1/2 при наличии АБГШ и до пяти помеховых сигналов (окно Дольфа–Чебышева, $\chi = -40$ дБ): при отсутствии помеховых сигналов (кривая *I*) и при $\gamma_{\text{опт}} = 2.75$, l = 16 (кривая *2*); $\gamma_{\text{опт}} = 3.20$, l = 8 (кривая *3*); $\gamma_{\text{опт}} = 3.3$, l = 4 (кривая *4*); $\gamma_{\text{опт}} = 4.0$, l = 2 (кривая *5*).

При отсутствии помеховых сигналов, вероятность $P_6 = 10^{-5}$ достигается при $E_6/N_0 = 4.0$ дБ (кривые 1). Кривые 2–5 соответствуют сигнальным конструкциям с параметрами l = 16, 8, 4 и 2 с использованием оптимальных значений параметров $\beta_{\text{опт}}$, $\gamma_{\text{опт}}$, $P_{\text{опт}}$, приведенных в таблице для весовых окон Кайзера (см. рис. 6) и Дольфа–Чебышева (см. рис. 7).

Видно, что использование окон Кайзера и Дольфа–Чебышева с параметрами $\beta_{\text{опт}}$, $\gamma_{\text{опт}}$ обусловливает практически совпадающие вероятностные характеристики, например, для l = 16 (кривые 2) и $E_6/N_0 = 5.25$ дБ вероятность ошибки равна соответственно $P_6 = 0.00001$ и 0.000014. Отличия кривых 2 от кривых *l*, соответствующих наличию лишь АБГШ, не превышают 1 дБ. Видно также, что при уменьшении значения параметра *l* отличия соответствующих вероятностных кривых по отношению к кривой *l* увеличиваются и при l = 4 достигают 3 дБ для $P_6 = 0.00001$.

Для сигнальной конструкции с параметром l = 2 (кривые 5) наблюдается выраженный эффект выравнивания вероятностей ошибки P_6 – при увеличении значений E_6/N_0 скорость уменьшения P_5 снижается, приближаясь практически к постоянному значению 0.00003 для окна Кайзера и 0.00004 для окна Дольфа-Чебышева. Наблюдаемый эффект выравнивания обусловлен совокупным влиянием сосредоточенных по спектру помех и помех МКИ за счет нарушения ортогональности парциальных сигналов OFDM-сигналов при использовании оконной обработки.

Рис. 8. Зависимость отношения мощности сигналов к мощности взаимных помех *P*_c/*P*_{MKU} от параметра β окна Кайзера.

На рис. 8 приведена вычисленная зависимость отношений мощности сигналов Р_с к мощности помех МКИ *Р*_{МКИ} от параметра β окна Кайзера для сигнальных конструкций при l = 1. При оценивании отношения $P_{\rm c}/P_{\rm MKH}$ вычисляли мощность $P_{\rm c}$ на основе корреляции исходного парциального сигнала и этого же сигнала со взвешенными отсчетами. Мощность *Р*_{МКИ} оценивали также на основе корреляции парциального сигнала и OFDM-сигналов без данного парциального сигнала с учетом влияния весового окна. Для окна Кайзера при $\beta_{ont} = 6.0$ имеем $P_{\rm c}/P_{\rm MKH} = 6.0$ дБ, для окна Дольфа-Чебышева при $\gamma_{\text{опт}} = 4.0$ имеем $P_{\text{c}}/P_{\text{МКИ}} = 5.0$ дБ. Таким образом, окно Кайзера является более эффективным по сравнению с окном Дольфа–Чебышева относительно рассматриваемого параметра $P_{\rm c}/P_{\rm MKH}$. При увеличении *l* отношения *P*_c/*P*_{МКИ} пропорционально увеличиваются, например, для l = 2 на 3 дБ.

На рис. 9 приведены вероятностные кривые для сигнальных конструкций на основе OFDMсигналов и сверточного кода с кодовой скоростью 1/2 при наличии АБГШ с использованием различных весовых окон. При приеме не ограничиваются значения спектральных отсчетов $\dot{S}_i(k)$ (4). В этом случае вероятности ошибки P_6 определяются совместным влиянием АБГШ и типом весового окна, обусловливающим помехи МКИ (см. рис. 8) и энергетические потери по отношению к согласованной фильтрации (прямоугольное окно). При использовании прямоугольного окна (см. рис. 9, кривая *I*) осуществляется оптимальная обработка при приеме без нарушения ортогональности парциальных сигналов. Видно, что для

 $P_6 = 10^{-5}$ энергетические потери при использовании окна Дольфа—Чебышева (кривая 3) по отношению к кривой 1 достигают 1.5 дБ, окно Кайзера (кривая 2) является более эффективным — энер-

Рис. 9. Вероятностные кривые для сигнальных конструкций на основе OFDM сигналов и сверточного кода с кодовой скоростью 1/2 при наличии АБГШ: кривая 1 – прямоугольное окно; кривые 2, 3 - l = 2, окно Кайзера ($\beta_{OHT} = 6.0$) и окно Дольфа–Чебышева ($\gamma_{OHT} = 4.0$) соответственно; кривая 4 - l = 8, окно Кайзера ($\beta_{OHT} = 6.0$) и окно Дольфа–Чебышева ($\gamma_{OHT} = 3.20$).

гетические потери не превышают 1 дБ. Это поясняет различие в поведении вероятностных кривых 5 на рис. 5а (l = 2, окно Кайзера) и рис. 5б (l = 2, окно Дольфа-Чебышева) – окно Кайзера является более эффективным по сравнению с окном Дольфа-Чебышева относительно их помехоустойчивости при наличии рассматриваемого комплекса помех, определяющих отмеченный эффект выравнивания вероятностей ошибки P_6 .

Кривая 4 на рис. 9 соответствует вероятности ошибки для сигнальной конструкции с параметром l = 8 для окна Кайзера и окна Чебышева, в этом случае окно Кайзера и окно Дольфа—Чебышева практически эквивалентны — для $P_6 = 10^{-5}$ энергетические потери при использовании этих окон по отношению к кривой l не превышают 0.3 дБ.

На рис. 10 приведены вероятностные кривые для сигнальных конструкций на основе OFDMсигналов и сверточного кода при наличии АБГШ и сосредоточенных по спектру помех. При приеме используется весовое окно Дольфа–Чебышева в сочетании с "мягким" ограничением (4) и более простым при реализации "жестким" ограничением. Видно, что энергетические потери в сигнальной конструкции с параметром l = 16 при использовании "жесткого" ограничения по отношению к использованию пороговой обработке с "мягким" ограничением не превышают 0.5 дБ, а при уменьшении параметра сигнальной конструкции l = 4 энергетические потери увеличиваются и достигают 1.5 дБ.

Рис. 10. Вероятностные кривые для сигнальных конструкций на основе OFDM-сигналов и сверточного кода с кодовой скоростью 1/2 при наличии АБГШ и до пяти помеховых сигналов (окно Дольфа–Чебышева с параметром γ , $\chi = -40$ дБ): пороговая обработка с "мягким" (*1*, *3*) и "жестким" (*2*, *4*) ограничением при l = 16, $\gamma_{\text{опт}} = 2.75$ (кривые *1*, *2*) и l = 4, $\gamma_{\text{опт}} = 3.3$ (кривые *3*, *4*).

Моделирование показало, что энергетические потери при использовании окна Кайзера при приеме сигнальных конструкций с эквивалентными параметрами / практически совпадают с приведенными значениями энергетических потерь для окна Дольфа—Чебышева.

ЗАКЛЮЧЕНИЕ

Таким образом, рассмотрены сигнальные конструкции на основе OFDM-сигналов и помехоустойчивого кодирования, устойчивые к влиянию сосредоточенных по спектру помех. Разработанные алгоритмы их приема основаны на компенсации помех в частотной области и на увеличении базы этих сигналов по отношению к базе исходных OFDM-сигналов. Алгоритмы приема включают БПФ с весовым окном, пороговое ограничение значений спектральных составляющих и вычисление решений на их основе, используемых при приеме помехоустойчивых кодов. Даны рекомендации по выбору оптимальных весовых окон, примерами которых являются окно Кайзера и окно Дольфа-Чебышева с соответствующим заданием их параметров.

Произведен анализ помехоустойчивости для сигнальной конструкции, формируемой с использованием сверточного кода с кодовой скоростью 1/2, путем моделирования разработанных алгоритмов приема с использованием весовых окон Кайзера и Дольфа—Чебышева. Моделирование произведено при наличии в канале АБГШ и до пяти сосредоточенных по спектру помех с отношением сигнал/помеха –40 дБ. Результаты моделирования показывают, что для рассматриваемого вида сосредоточенных по спектру помех и с использованием анализируемых весовых окон различие вероятностных кривых для $P_6 = 10^{-5}$ не превышает 0.5...1.0 дБ по отношению к случаю их отсутствия при увеличении базы сигнальных конструкций в 8...16 раз (база сигнальных конструкций с учетом избыточности помехоустойчивого кода равна 12...15 дБ). Для сигнальных конструкций с базой, равной 6, наряду с сосредоточенными по спектру помехами важными также являются дополнительные помехи, включая помехи МКИ за счет нарушения ортогональности парциальных сигналов OFDM-сигналов при использовании окон. что обусловливает эффект выравнивания вероятностных характеристик.

Для алгоритма компенсации помех в частотной области сложной является процедура вычисления оптимального порога. При использовании более простой обработки с "жестким" ограничением с выхода сигнального демодулятора дополнительные энергетические потери составляют 0.4...2.0 дБ.

Исследование вероятностных характеристик рассматриваемых сигнальных конструкций, формируемых с использованием эффективных помехоустойчивых кодов (коды с итеративными алгоритмами приема, блоковые коды, использующими мягкие решения при приеме), поиск и анализ более широкого класса весовых окон со свойствами оптимальности представляет предмет перспективных исследований.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке поддержке Российского фонда фундаментальных исследований (проект № 16-07-00746).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бакулин М.Г., Крейнделин В.Б., Шлома А.М., Шумов А.П. Технология OFDM. М.: Горячая линия-Телеком, 2016.
- Бакулин М.Г., Крейнделин В.Б., Панкратов Д.Ю. Технологии в системах радиосвязи на пути к 5G. М.: Горячая линия-Телеком, 2018.
- 3. *Liu H., Li G.* OFDM-Based Broadband Wireless Networks. A John Wiley & Sons. New Jersey. 2005. P. 251.
- 4. Оппенгейм А., Шафер Р. Цифровая обработка сигналов / пер. с англ. М.: Техносфера, 2006.
- 5. *Shieh W., Djordjevic I.* OFDM for Optical Communication. 2010. Elsevier Inc. 440 p.
- 6. Шинаков Ю.С. // РЭ. 2013. Т. 58. № 10. С. 1053.
- 7. Шинаков Ю.С. // Радиотехника. 2016. № 2. С. 66.
- 8. *Назаров Л.Е., Зудилин А.С. //* РЭ. 2015. Т. 60. № 5. С. 522.
- 9. *Назаров Л.Е., Зудилин А.С. //* РЭ. 2014. Т. 59. № 2. С. 173.
- 10. *Назаров Л.Е., Зудилин А.С. //* Изв. вузов. Электроника. 2013. № 6. С. 45.
- 11. *Зудилин А.А., Назаров Л.Е.* // Журн. радиоэлектроники. 2017. № 11. http//jre.cplire.ru/jre/nov17/ 4/text.pdf.
- Назаров Л.Е., Зудилин А.С. // Журн. радиоэлектроники. 2017. № 12. http//jre.cplire.ru/jre/ dec17/6/text.pdf.
- Назаров Л.Е., Зудилин А.С. // Журн. радиоэлектроники. 2018. № 3. http//jre.cplire.ru/jre/mar18/ 4/text.pdf.
- 14. Борисов В.И., Зинчук В.М., Лимарев А.Е., Шестопалов В.И. Помехозащищенность систем радиосвязи с расширением спектра прямой модуляцией псевдослучайной последовательностью. 2-е изд. М.: Радиософт, 2011.
- 15. *Лайонс Р.* Цифровая обработка сигналов. М.: Бином, 2006.
- 16. Кравченко В.Ф., Пустовойт В.И., Чуриков Д.В. // ДАН. 2014. Т. 456. № 3. С. 295.
- 17. TM synchronization and channel coding summary of concept and rationale. Information report CCSDS 130.1-G-1. Green Book, 2006.