__ НОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ И ЭЛЕМЕНТЫ

УДК 534.2

УПРАВЛЕНИЕ ЭНЕРГЕТИЧЕСКИМИ ПОТОКАМИ АКУСТИЧЕСКИХ ВОЛН В ПЬЕЗОЭЛЕКТРИЧЕСКИХ КРИСТАЛЛАХ

© 2020 г. В. И. Анисимкин^{а,} *, Н. В. Воронова^b

^аИнститут радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация ^bНИИ Элпа, Панфиловский просп., 10, Москва, Зеленоград, 124460 Российская Федерация *E-mail: anis@cplire.ru Поступила в редакцию 22.04.2019 г.

После доработки 22.04.2019 г. Принята к публикации 28.05.2019 г.

Исследована возможность управления энергетическими потоками поверхностных (ПАВ) и нормальных (НАВ) акустических волн в пьезоэлектрических кристаллах без изменения ориентации кристаллов. Показано, что угол Ψ между направлением потока энергии и волновой нормалью ПАВ скачкообразно меняется при металлизации поверхности, а величина скачка зависит от значения коэффициента электромеханической связи волны и его анизотропии в плоскости распространения. Для НАВ угол Ψ дополнительно зависит от номера моды, толщины пластины и длины акустической волны. Благодаря этому излучение мод разных номеров периодическим встречно-штыревым преобразователем (ВШП) на разных частотах осуществляется веерообразно.

DOI: 10.31857/S0033849420010015

введение

Направление потока энергии акустических волн имеет важное практическое значение, так как определяет положение приемного преобразователя, принимающего излученный пучок, и вносимые потери акустоэлектронного устройства [1]. Угол Ψ между направлением потока и волновой нормалью зависит от ориентации кристалла и направления распространения волны [2]:

$$\Psi = (1/V)(dV/d\Theta),\tag{1}$$

где V – скорость волны, а Θ – угол, задающий направление волновой нормали относительно кристаллографической оси в плоскости кристалла. Знак и величина угла Ψ определяются наклоном $dV/d\Theta$ кривой $V(\Theta)$ в выбранном направлении распространения (угле Θ). Большим Ψ соответствуют быстрые изменение $V c \Theta$ (большие наклоны $dV/d\Theta$), а нулевым Ψ – экстремумы кривой $V(\Theta)$ ($dV/d\Theta = 0$).

При создании практических устройств наряду с направлением потока энергии учитываются и другие характеристики волн — коэффициент электромеханической связи K^2 , определяющий эффективность возбуждения, температурный коэффициент задержки, отвечающий за чувствительность волн к температуре, и т.д. Поскольку при этом оптимальные значения разных акустических характеристик достигаются в разных на-

правлениях распространения и для разных ориентаций кристаллов, возникает вопрос о возможности управления этими характеристиками без изменения направления распространения и ориентации.

Цель данной работы — исследовать возможность управления потоками энергии поверхностных и нормальных акустических волн в пьезо-электрических кристаллах.

1. УПРАВЛЕНИЕ ЭНЕРГЕТИЧЕСКИМИ ПОТОКАМИ ПАВ

Металлизация поверхности зануляет электрические поля на поверхности пьезокристаллов и уменьшает фазовую скорость волны *V*. Различие скоростей для свободной V_0 и металлизированной $V_{\rm M}$ поверхностей определяет коэффициент электромеханической связи $K^2 = 2(V_0 - V_{\rm M})/V_0$ и его анизотропию в плоскости распространения (угла Θ). Поэтому можно ожидать изменения направления переноса энергии ПАВ при металлизации поверхности.

Для вывода аналитического выражения, описывающего это изменение, запишем значения углов отклонения потока энергии Ψ для свободной (0) и металлизированной (м) поверхностей как $\Psi_0 = (1/V_0)(dV_0/d\Theta)$ и $\Psi_{\rm M} = (1/V_{\rm M})(dV_{\rm M}/d\Theta)$. Учтем, что V_0 , $V_{\rm M}$ и K^2 зависят от Θ и что $K^2 = 2(V_0 - V_{\rm M})/V_0$.

Рис. 1. Профили ПАВ, измеренные в пьезокристалле *ZX*-LiNbO₃ со свободной (*1*) и металлизированной (*2*) поверхностями.

Выразим $V_{\rm M}$ через V_0 и K^2 , подставим в выражение для $\Psi_{\rm M}$ и после несложных алгебраических преобразований получим

$$\Psi_{\rm M} = \Psi_0 - \left\{ dK^2 / d\Theta \right\} / \left\{ 2 - K^2 \right\}.$$
 (2)

Выражение (2) показывает, что отличие углов отклонения потока энергии на металлизированной $\Psi_{\rm M}$ и свободной Ψ_0 поверхностях пьезокристаллов зависит от коэффициента электромеханической связи волны K^2 и его анизотропии в плоскости распространения. Оно тем сильнее, чем больше величина K^2 и сильнее градиент кривой $K^2(\Theta)$ в выбранном направлении Θ . Так как K^2 для всех известных кристаллов и волн не превышает нескольких десятков процентов, то знаменатель выражения (2) всегда положителен, и поэтому $\Psi_{\rm M} < \Psi_0$ при $dK^2/d\Theta > 0$, $\Psi_{\rm M} > \Psi_0$ при $dK^2/d\Theta < 0$ и $\Psi_{\rm M} = \Psi_0$ (отсутствие эффекта металлизации) при $dK^2/d\Theta = 0$ (экстремумы кривой $K^2(\Theta)$).

Численные расчеты подтвердили наличие эффекта металлизации. При этом для слабых пьезоэлектриков (кварц) величина эффекта была мала и составила всего $|\Psi_{\rm M} - \Psi_0| \sim 0.1^\circ$, тогда как для сильных пьезоэлектриков (ниобат лития) — эффект становился более заметным и достигал нескольких градусов. Примечательно, что для срезов с $\Psi_0 \approx 0^\circ$ эффект металлизации мог приводить к изменению не только величины, но и знака угла Ψ , т.е. к "перебрасыванию" вектора потока энергии с одной стороны волновой нормали на другую (это имеет место, например, для $YX + 68^\circ$ -LiNbO₃, $YX + 35^\circ$ -LiTaO₃ и $YX + 55.5^\circ$ -LiTaO₃).

Экспериментальную проверку эффекта металлизации проводили с использованием пьезокри-

Рис. 2. Схематичное представление "веерообразного" излучения энергетических потоков нормальных волн разных порядков *n*: $n = 0, f = 12.4 \text{ МГц}(1); n = 1, f = 12.7 \text{ МГц}(2); n = 3, f = 14.2 \text{ МГц}(3); n = 5, f = 16.2 \text{ МГц}(4); n = 7, f = 18.5 \text{ МГц}(5); k - волновой вектор, <math>\Psi_n$ – угол отклонения потока энергии, отсчитываемый от *k*.

сталла *XZ*-LiNbO₃, выбор которого был продиктован большой величиной пьезоэффекта, а также отсутствием отклонения потока энергии на свободной поверхности ($\Psi_0 = 0^\circ$) и его возникновением на металлизированной поверхности ($\Psi_{\rm M} \neq 0^\circ$). Именно такая постановка эксперимента, по нашему мнению, представлялась наиболее корректной, так как противоположная ситуация не увеличения, а уменьшения угла Ψ при металлизации могла быть отнесена за счет воздействия замедляющего упруго-изотропного материала металлического покрытия, для которого $\Psi = 0^\circ$.

Измерения проводили с помощью вольфрамового зонда с диаметром острия 100 мкм, на частоте 5 МГц. Протяженность металлической пленки поликристаллического Ті вдоль направления распространения ПАВ составляла 13.6 мм, ее толщина 1000 Å. Точность измерений угла Ψ была равна $\pm 0.1^{\circ}$. В соответствии с выражением (2) профили ПАВ в отсутствие и присутствии металлического покрытия (рис. 1), измеренные непосредственно после металлической пленки, демонстрируют смещение звукового пучка при металлизации. Величина смещения согласуется с расчетом и соответствует отклонению потока энергии на угол $\Psi_{MÅ} \approx -2.2^{\circ}$.

2. УПРАВЛЕНИЕ ЭНЕРГЕТИЧЕСКИМИ ПОТОКАМИ НАВ

Подобно акустическим волнам других типов, потоки энергии нормальных волн в анизотропных кристаллах в общем случае также не совпадают с волновой нормалью [3]. Кроме того, как показали исследования данной работы, они зависят не только от направления распространения (угла Θ), но и от номера моды *n* (рис. 2, 3, таблица 1). Поэтому обычный встречно-штыревой преобразо-

 $Ψ_n$ и коэффициента электромеханической связи K_n^2 нормальных акустических волн разных номеров от направления распространения (угла Θ) в пластине 128° *Y*,*X* + 30°-LiNbO₃ (углы Эйлера 0°, 37.86°, Θ) толщиной *H*/λ = 1.67: *n* = 0 (*1*), 1 (*2*), 2 (*3*), 3 (*4*)

ватель (ВШП), период которого равен длине акустической волны λ, излучает моды разных номеров "веерообразно", под разными углами Ψ_n к волновому вектору k (см. рис. 2). Более того, частоты мод также отличаются друг от друга из-за различия скоростей мод ($f_n = V_n/\lambda$), типы излученных мод не совпадают друг с другом из-за зависимости их поляризации от их номера *n*, а эффективность возбуждения различна из-за отличия коэффициентов электромеханической связи у мод разных номеров *n* даже в одном направлении распространения (см. рис. 3) [3]. Так, для пластины LiNbO₄ толщиной $H/\lambda = 1.67$ энергетические потоки разных мод образуют "веер" с углами Ψ_n от -13.1° до +5.6°, частоты мод меняются от 12.4 до 34.1 МГц, а типы волн соответствуют как обобщенным волнам Лэмба, так и квазипродольным

волнам *QL*-поляризации (см. рис. 3 и таблицу). При этом плавное изменение толщины пластины H и длины волны λ приводит к постепенному изменению направлений потоков каждой моды [3].

Экспериментальная проверка зависимости угла отклонения потока энергии Ψ_n от номера моды *п* проводилась путем возбуждения волн разных порядков вдоль ($\Theta = 0^{\circ}$) и под углом ($\Theta = 30^{\circ}$) к оси X в пластине $128^{\circ}Y$ -LiNbO₄ толщиной $H/\lambda =$ = 1.67. В соответствии с расчетами в первом случае отклонение потоков энергии всех мод отсутствовало ($\Psi_n = 0^\circ$), а во втором — максимальные акустические сигналы детектировались разными приемными ВШП, расположенными по дуге вокруг излучающего ВШП, подтверждая зависимость Ψ_n от *n* и неравенство нулю углов Ψ_n . Так, мода нулевого порядка n = 0 наиболее эффективно фиксировалась приемным ВШП, ось которого образовывала угол $\Theta = -45^{\circ}$ с осью *X*, что при направлении распространения $\Theta = 30^{\circ}$ к этой оси давало угол отклонения потока энергии, равный

Таблица 1. Характеристики нормальных акустических волн разных номеров *n* в пластине $128^{\circ}Y,X+30^{\circ}-\text{LiNbO}_4$ толщиной $H/\lambda = 1.67$ (углы Эйлера 0°, 37.86°, 30°)

n	<i>V_n</i> , м/с	Ψ_n , град	Тип НАВ
0	3720.69	-13.1	Лэмб
1	3804.95	-8.9	Лэмб
2	4013.36	-0.1	Лэмб
3	4272.11	2.7	Лэмб
4	4678.26	-6.8	Лэмб
5	4858.73	5.3	Лэмб
6	5418.39	-2.8	Лэмб
7	5558.37	5.6	Лэмб
8	6184.44	-1.0	Лэмб
9	6438.84	2.2	Лэмб
10	6620.86	1.6	Лэмб
11	7084.55	-4.1	QL
12	7166.33	1.2	QL
13	7405.95	1.6	Лэмб
14	8049.2	-5.4	Лэмб
15	8162.85	-1.0	Лэмб
16	8411.3	0.8	Лэмб
17	9146.75	-5.5	Лэмб
18	9282.84	-1.7	Лэмб
19	9457.99	0.7	Лэмб
20	10230.8	-5	Лэмб

 $\Psi_n = -15^\circ$ в хорошем согласии с расчетом (см. таблицу 1).

ЗАКЛЮЧЕНИЕ

Направления потоков энергии поверхностных и нормальных акустических волн могут меняться как за счет металлизации поверхности пьезоэлектрических кристаллов, так и при изменении номера моды, толщины пластины и длины нормальной волны. При этом в первом случае это изменение носит скачкообразный характер и даже в сильных пьезоэлектриках не превышает нескольких градусов, тогда как во втором — оно может происходить плавно и достигать десятка градусов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания и при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-07-00074-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Зайцев В.В., Кузнецова И.Е. Акустические волны в тонких пьезоэлектрических пластинах. М.: Радиотехника, 2018.
- 2. Козловский К.Н., Ананских А.В., Лавут А.П. // Вопросы радиоэлектроники. Сер. Общетехническая. 1968. Т. 10. № 10. С. 70.
- 3. *Anisimkin V.I.* // IEEE Trans. 2014. V. UFFC-61. № 1. P. 120.