ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УЛК 621.391.2

КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ НАВИГАЦИОННЫХ cosGBOC-СИГНАЛОВ КАК ОБРАТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ

© 2020 г. М. С. Ярлыков^{а, *}, С. М. Ярлыкова^{b, **}

^а Редакция журнала "Радиотехника и электроника", ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация ^b Институт кибернетики Российского технологического университета МИРЭА, просп. Вернадского, 78, Москва, 119454 Российская Федерация *E-mail: red@cplire.ru **E-mail: yarlykova@mirea.ru Поступила в редакцию 27.03.2019 г.

Поступила в редакцию 27.03.2019 г. После доработки 27.03.2019 г. Принята к публикации 08.04.2019 г.

Рассмотрены модулирующие функции (МФ) соsGBOC-сигналов (косинусных обобщенных ВОС-сигналов) для нового поколения спутниковых радионавигационных систем, таких как Galileo (ЕС), GPS (США), ГЛОНАСС (Россия) и BeiDou (Китай). На основе обратного преобразования Фурье (ПФ) энергетических спектров получены аналитические выражения и построены графики корреляционных функций (КФ) одиночных элементов МФ соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=2$ и 4 для различных значений коэффициента заполнения ρ , где $\rho \in [0,1]$. При вычислении КФ в основу методики положено представление энергетического спектра в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками косинусного символа МФ (точками излома КФ) соsGBOC-сигналов. В ряде случаев вычисление КФ соsGBOC-сигналов путем обратного ПФ энергетических спектров оказывается более предпочтительным (в частности, по трудоемкости) при сравнении со способом получения КФ на основе ее общего определения.

DOI: 10.31857/S0033849420010088

ВВЕДЕНИЕ

Рост числа потребителей спутниковых радионавигационных систем (СРНС), таких как Galileo (ЕС), GPS (США), ГЛОНАСС (Россия) и BeiDou (Китай) при одновременном ужесточении требований, предъявляемых к многорежимности и качеству их функционирования, обусловливают возрастающую потребность в разработке и применении различных разновидностей и обобщений ВОС-сигналов (binary offset carrier modulated signals) [1—4].

В связи с этим применительно к перспективным глобальным СРНС следует отметить исследование и разработку обобщенных (Generalized) ВОС-сигналов (GBOC) [5-10].

Основное отличие GBOC-сигналов от BOCсигналов заключается в том, что у обобщенных BOC-сигналов поднесущее колебание (ПК) представляет собой прямоугольный сигнал, т.е. периодическую биполярную последовательность прямоугольных видеоимпульсов, с произвольным значением коэффициента заполнения ρ , где $\rho \in [0, 1]$. Такое ПК навигационных GBOC-сигналов называется прямоугольным ПК (ППК) [7–9]. Иначе говоря, GBOC-сигналы — это шумоподобные сигналы с ППК, а BOC-сигналы — это шумоподобные сигналы с меандровым ПК (МПК).

Когда у ППК коэффициент заполнения $\rho=0.5$, то в этом важном частном случае оно представляет собой МПК, а сами GBOC-сигналы при этом являются традиционными BOC-сигналами [1—4]. В другом частном случае, когда $\rho=0$ или $\rho=1$, GBOC-сигналы вырождаются в двоичные фазоманипулированные сигналы (binary phase shift keying signals — BPSK-сигналы) [11]. Этот случай является вырожденным, поскольку при этом утрачивается зависимость сигналов от значения коэффициента кратности импульсов прямоугольного ПК N_{Π} [7]. Возможность изменять у GBOC-сигналов значение коэффициента заполнения ρ в пределах от 0 до 1, позволяет варьировать в широких пределах форму и параметры кор-

реляционных функций (КФ) и энергетических спектров таких сигналов. Это обстоятельство обусловливает преимущества (в частности, по электромагнитной совместимости) применения GBOC-сигналов по сравнению с BOC-сигналами или BPSK-сигналами в перспективных СРНС.

Использование GBOC-сигналов, как вариант, обсуждается в китайской СРНС BeiDou на третьей фазе ее развития. При этом рассматриваются следующие значения параметров таких GBOC-сигналов: несущая частота GBOC-сигнала $f_{\rm H}=1561.098$ МГц, тип модуляции GBOC(2, 2, ρ), коэффициент заполнения $\rho=0.3$, частота следования символов псевдослучайной последовательности (ПСП) дальномерного кода $f_{\rm C}=2.046$ МГц, частота ППК $f_{\rm H}=2.046$ МГц, базовая (опорная) частота $f_{\rm OH}=1.023$ МГц [5, 6].

Свойства и возможности GBOC-сигналов во многом определяются их корреляционными характеристиками. Знание аналитических выражений и графиков КФ позволяет в принципе количественно рассчитать для приемников СРНС потенциальные характеристики точности слежения за ПСП дальномерного кода и оценить разрешающую способность сигналов в условиях многолучевости и при действии помех. Располагая формулами КФ GBOC-сигналов, удается разрабатывать дискриминаторы приемников, близкие к оптимальным, которые обеспечивали бы, по возможности, однозначное слежение за основным пиком КФ и минимизировали бы вероятность захвата ее боковых (ложных) пиков.

Получение явных формул КФ GBOC-сигналов (особенно при больших значениях коэффициента кратности импульсов N_{Π}) представляет собой довольно трудоемкую задачу [8, 10].

В ряде случаев аналитические выражения КФ GBOC-сигналов (аналогично BOC-сигналам [12]) предпочтительнее получать как обратное преобразование Фурье (ПФ) их энергетических спектров. Кроме того, вычисление КФ GBOC-сигналов другим методом (на основе энергетических спектров, а не прямым методом, используя общее определение КФ) позволяет дополнительно подтвердить правильность полученных формул КФ.

Как известно, GBOC-сигналы (аналогично BOC-сигналам) в зависимости от относительного сдвига по времени между ПСП дальномерного кода и ППК делятся на sinGBOC-сигналы (синусные обобщенные BOC-сигналы) и соsGBOC-сигналы (косинусные обобщенные BOC-сигналы) [5—10].

Аналитические выражения $K\Phi$ sinGBOC-сигналов как обратное $\Pi\Phi$ энергетических спектров получены в [13], где предложена методика расчета $K\Phi$ одиночных элементов $M\Phi$ таких сигналов. В

основе методики лежит представление энергетического спектра \sin GBOC-сигналов в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками синусного символа МФ μ_{\sin} GBOC(t) \sin GBOC-сигнала (т.е. точками излома КФ R_{\sin} GBOC(t, ρ)).

В данной статье рассматриваются сов GBOC-сигналы.

Цель работы — на основе обратного ПФ энергетических спектров в соответствии с методикой [13] получить аналитические выражения КФ одиночных элементов МФ соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=2$ и 4 при различных значениях коэффициента заполнения ρ , где $\rho \in [0, 1]$.

Рассматриваемые ПСП дальномерного кода и косинусные ППК имеют единичные амплитуды, поэтому полученные выражения характеризуют нормированные $K\Phi$.

Термин типа "одиночный элемент $M\Phi$ $\cos GBOC$ -сигнала" означает, что рассматривается математическое выражение, описывающее один элемент $M\Phi$ $\cos GBOC$ -сигнала.

1. СТРУКТУРА И ХАРАКТЕРИСТИКИ ИЗЛУЧАЕМЫХ cosGBOC-СИГНАЛОВ

Навигационный \cos GBOC-сигнал s(t), излучаемый бортовым передатчиком какого-либо одного спутника из состава орбитальной группировки СРНС, имеет известный вид [2, 4, 7, 10]:

$$s(t - t_0) = A d_{\cos GBOC}(t - t_0) \cos[\omega_H(t - t_0) + \varphi(t)], (1)$$

где $A=\sqrt{2P_{\rm cp}}$ — амплитуда cosGBOC-сигнала на выходе передатчика; $P_{\rm cp}$ — средняя мощность cosGBOC-сигнала на выходе передатчика; $d_{\cos{\rm GBOC}}(t)$ — МФ cosGBOC-сигнала, $\omega_{\rm H}=2\pi f_{\rm H}$ — круговая несущая частота радиосигнала; $f_{\rm H}$ — несущая частота cosGBOC-сигнала; $\phi(t)$ — фаза радиосигнала; t_0 — начало отсчета.

Вся сложность и специфика \cos GBOC-сигналов s(t), как видно из (1), полностью определяется структурой и характеристиками МФ $d_{\cos GBOC}(t)$. Свойства и структура МФ $d_{\cos GBOC}(t)$, а также ее статистические характеристики в случаях \cos GBOC-сигналов достаточно детально обсуждаются в [9, 10].

Далее для краткости, когда это не влияет на суть изложения, полагаем, что МФ $d_{\cos GBOC}(t)$ $\cos GBOC$ -сигнала s(t) обусловлена собственно ПСП дальномерного кода и косинусным ППК. В

Рис. 1. Формирование модулирующей функции \cos GBOC-сигнала при $\rho=0.25$ и $N_\Pi=4$.

таком случае МФ $d_{\cos GBOC}(t)$ cosGBOC-сигнала s(t) записывается в виде [9, 10]

$$d_{\cos GBOC}(t - t_0) = g(t - t_0) r_{\cos}(t - t_0), \qquad (2)$$

где $g(t-t_0)$ — собственно ПСП дальномерного кода; $r_{\cos}(t-t_0)$ — косинусное ППК, отражающее специфику $\cos GBOC$ -сигналов s(t).

Входящие в соотношение (2) ПСП g(t) (для произвольно заданной реализации) и косинусное ППК $r_{\cos}(t)$ представлены на рис. 1, где введены следующие обозначения: $\tau_{\rm C}$ — длительность элемента ПСП g(t); $T_{\rm II}$ — длительность периода коси-

нусного ППК $r_{\cos}(t)$; τ_1 и τ_2 — длительности положительного и отрицательного импульсов косинусного ППК $r_{\cos}(t)$ соответственно.

Длительность периода T_{Π} косинусного ППК $r_{\cos}(t)$ (см. рис. 1) равна

$$T_{\Pi} = 0.5\tau_1 + \tau_2 + 0.5\tau_1 = \tau_1 + \tau_2. \tag{3}$$

Частота косинусного ППК $r_{\cos}(t)$ с учетом (3) характеризуется выражением

$$f_{\Pi} = \frac{1}{T_{\Pi}} = \frac{1}{\tau_{1} + \tau_{2}},\tag{4}$$

где f_{Π} — частота косинусного ППК $r_{\cos}(t)$.

Важный параметр косинусного ППК $r_{\cos}(t)$ (и, соответственно, \cos GBOC-сигналов s(t)), каким является коэффициент заполнения прямоугольного сигнала ρ , определяется как [6, 9, 10]

$$\rho \triangleq \frac{\tau_1}{T_{\Pi}},\tag{5}$$

где $\rho \in [0, 1]$.

На рис. 1 коэффициент заполнения косинусного ППК $r_{cos}(t)$ в качестве примера принят равным $\rho = 0.25$, а начало отсчета $t_0 = 0$.

Согласно (3) и (5) имеем, что для коэффициента заполнения ρ выполняются следующие соотношения (см. рис. 1):

$$\tau_1 = \rho T_{\Pi}, \quad \tau_2 = (1 - \rho)T_{\Pi}.$$
 (6)

Частным случаем косинусного ППК $r_{\cos}(t)$, когда коэффициент заполнения $\rho = 0.5$, является меандровый сигнал, у которого длительности положительного и отрицательного импульсов равны, т.е.

$$\tau_1 = \tau_2 \triangleq \tau_M,\tag{7}$$

где $\tau_{\rm M}$ — длительность меандрового импульса. При этом длительность периода ПК равна $T_{\rm \Pi} \triangleq T_{\rm M} = 2\tau_{\rm M}$, где $T_{\rm M}$ — период МПК [4].

Таким образом, если коэффициент заполнения $\rho = 0.5$, то косинусное ППК $r_{\cos}(t)$ представляет собой косинусное МПК, а cosGBOC-сигнал s(t) является традиционным cosBOC-сигналом.

Соотношение для ПСП дальномерного кода g(t), описывающее ее один период, имеет известный вид [4, 9, 11]:

$$g(t - t_0) = \sum_{k=0}^{L-1} v_k \operatorname{rect}_{\tau_C} [t - k\tau_C - t_0],$$
 (8)

где L — коэффициент расширения спектра, т.е. число элементов на периоде $\Pi C\Pi \ g(t); \tau_C$ — длительность элемента $\Pi C\Pi \ g(t); k=0,1,2,\ldots,(L-1)$ — номер элемента $\Pi C\Pi$ на периоде; t_0 — начало отсчета.

Функция $\operatorname{rect}_{\tau_{C}}[\cdot]$ в (8) представляет собой импульс единичной амплитуды длительностью τ_{C} :

$$\operatorname{rect}_{\tau_{C}}[t - k\tau_{C}] = \begin{cases} 1 & \text{при } k\tau_{C} \le t < (k+1)\tau_{C}, \\ 0 & \text{при } k\tau_{C} > t \ge (k+1)\tau_{C}, \end{cases}$$
(9)

где $k = 0, 1, 2, \dots, (L-1)$.

Кодовые коэффициенты $v_k = v(t_k)$, где $t_k = k \tau_C$ — дискретное время, формируют ПСП дальномерного кода g(t) (8). Они принимают на каждом элементе ПСП длительностью τ_C значения +1 или -1 согласно определяемому кодом закону чередова-

ния элементов на периоде. Длительность периода $\Pi C\Pi g(t)$ (8) равна

$$T_L = L\tau_C. (10)$$

Например, в СРНС типа ГЛОНАСС дальномерный код стандартной точности представляет собой периодическую последовательность максимальной длины (М-последовательность, или последовательность Хаффмена) с периодом $T_L=1$ мс и частотой следования символов $f_C=511$ к Γ ц.

В СРНС типа GPS дальномерный С/А код является периодической последовательностью Голда с периодом $T_L = 1$ мс и частотой следования символов $f_C = 1.023$ МГц [14, 15].

Для сравнения различных типов модуляции \cos GBOC-сигналов (по аналогии с \cos BOC-сигналами) используется следующее обозначение: \cos GBOC(f_Π , f_C , ρ) [4–7]. Поскольку у СРНС частоты f_Π и f_C , как правило, кратны базовой (опорной) частоте $f_{O\Pi}$ (в частности, для систем GPS и Galileo $f_{O\Pi} = 1.023$ МГц), то обычно применяется несколько иная форма записи для обозначения типа модуляции \cos GBOC-сигналов: \cos GBOC(α , β , ρ), где $\alpha = f_\Pi/f_{O\Pi}$ и $\beta = f_C/f_{O\Pi}$.

В качестве еще одного показателя cosGBOC-сигналов s(t) используется либо коэффициент кратности импульсов N_{Π} косинусного $\Pi\Pi K$ $r_{cos}(t)$, либо эквивалентный ему параметр Q_{Π} — коэффициент кратности периодов косинусного $\Pi\Pi K$ $r_{cos}(t)$ [7—10].

Коэффициент кратности импульсов N_{Π} представляет собой число прямоугольных импульсов (положительных длительностью τ_1 и отрицательных длительностью τ_2) косинусного $\Pi\Pi K \ r_{\cos}(t)$, которые укладываются на длительности τ_C одного элемента $\Pi C\Pi \ g(t)$ (см. рис. 1):

$$N_{\Pi} = \frac{2\tau_{\rm C}}{T_{\Pi}} = \frac{2f_{\Pi}}{f_{\rm C}} = \frac{2\alpha}{\beta},$$
 (11)

где N_{Π} — положительное четное число (N_{Π} = 2, 4, 6, ...).

Следует отметить, что в случае соsGBOC-сигналов при определении коэффициента кратности импульсов N_{Π} первый и последний импульсы длительностью $0.5\tau_1$ каждый, укладывающиеся на длительности τ_{C} одного элемента ПСП g(t) (см. (3) и рис. 1), рассматриваются как половины одного импульса и при подсчете учитываются как один импульс длительностью τ_{1} . На рис. 1 график МФ $d_{\cos GBOC}(t)$ в качестве примера характеризует $\cos GBOC$ -сигналы с коэффициентом кратности импульсов $N_{\Pi}=4$.

Коэффициент кратности периодов Q_{Π} представляет собой число периодов длительностью T_{Π} косинусного $\Pi\Pi K \ r_{\cos}(t)$, которые укладываются на длительности τ_{C} одного элемента $\Pi C\Pi \ g(t)$ (см. рис. 1):

$$Q_{\Pi} = \frac{1}{2} N_{\Pi} = \frac{\tau_{\text{C}}}{T_{\Pi}} = \frac{f_{\Pi}}{f_{\text{C}}} = \frac{\alpha}{\beta},$$

где $Q_{\Pi} = 1, 2, 3,$

В частном случае косинусного ППК $r_{\cos}(t)$, когда коэффициент заполнения $\rho=0.5$, т.е. в случае cosBOC-сигналов, коэффициент кратности импульсов N_{Π} представляет собой используемый при рассмотрении cosBOC-сигналов параметр $N_{\rm M}$ — коэффициент кратности меандровых импульсов:

$$N_{\rm M} = \frac{\tau_{\rm C}}{\tau_{\rm M}} = \frac{2f_{\rm M}}{f_{\rm C}} = \frac{2\alpha}{\beta},$$

где τ_{M} — длительность меандрового импульса МПК, характеризуемая (7).

2. ОДИНОЧНЫЕ ЭЛЕМЕНТЫ МОДУЛИРУЮЩЕЙ ФУНКЦИИ cosGBOC-СИГНАЛОВ

При сравнительной оценке свойств и возможностей cosBOC-сигналов c cosBOC-сигналами и BPSK-сигналами многое определяется $K\Phi$ и энергетическими спектрами одиночных элементов $M\Phi$ этих сигналов.

Согласно (2) и (8) произвольный k-й элемент МФ $d_{\cos GBOC}(t)$ cosGBOC-сигналов (по аналогии с cosBOC-сигналами) имеет вид [4, 9, 10]

$$d_{\tau_{\text{c-cos}GBOC}}(t) = v_k \mu_{\text{cosGBOC}}(t), \tag{12}$$

где $d_{\tau_{C}\text{-}\cos GBOC}(t)$ — одиночный элемент МФ $d_{\cos GBOC}(t)$ соsGBOC-сигнала; $\mu_{\cos GBOC}(t)$ — одиночный косинусный символ МФ $d_{\cos GBOC}(t)$ соsGBOC-сигнала; $v_k = v(t_k)$ — кодовый коэффициент k-го элемента ПСП дальномерного кода g(t), характеризуемой (8); $t_k = k \tau_{C}$ — дискретное время ($k = 0, 1, 2, \cdots$).

В формуле (12) и далее для простоты принято, что начало отсчета $t_0=0$. Индекс $\tau_{\rm C}$ у обозначения $d_{\tau_{\rm C}\text{-}{\rm cos}\,{\rm GBOC}}(t)$ отражает тот факт, что рассматривается одиночный элемент МФ $d_{\rm cos}\,{\rm GBOC}(t)$ длительностью $\tau_{\rm C}$. (Далее в выражениях типа "одиночный элемент" или "одиночный символ" слово "одиночный", где это не вызывает сомнений, для краткости опускаем.)

В соответствии с (12) элемент МФ $d_{\tau_{\text{C}\text{-}\text{cos}\,\text{GBOC}}}(t)$ соsGBOC-сигнала s(t) (1) представляет собой символ $\mu_{\text{сosGBOC}}(t)$, взятый со знаком "+" или "—" в зависимости от значения кодового коэффициента ν_k k-го элемента ПСП g(t).

Косинусный символ $\mu_{\cos GBOC-N_{\Pi}}(t)$, учитывая (2), (8) и (11), при различных значениях коэффициента кратности импульсов N_{Π} может быть записан в следующем виде [9, 10]:

$$\mu_{\cos GBOC-N_{\Pi}}(t) = \sum_{m=0}^{0.5N_{\Pi}-1} \left\{ \operatorname{rect}_{0.5\tau_{1}} \left[t - mT_{\Pi} \right] - \operatorname{rect}_{\tau_{2}} \left[t - mT_{\Pi} - 0.5\tau_{1} \right] + \operatorname{rect}_{0.5\tau_{1}} \left[t - mT_{\Pi} - 0.5\tau_{1} - \tau_{2} \right] \right\},$$
(13)

где $N_{\Pi} = 2, 4, 6,$

В формуле (13) и далее индекс N_{Π} в обозначениях типа $\mu_{\cos GBOC-N_{\Pi}}(t)$ указывает значение коэффициента кратности импульсов N_{Π} .

Как видно из (13) и рис. 1, косинусный символ МФ $\mu_{\cos GBOC-N_\Pi}(t)$ представляет собой отрезок длительностью τ_C косинусного ППК $r_{\cos}(t)$ при определенном значении коэффициента заполнения ρ . Длительность τ_C косинусного символа $\mu_{\cos GBOC-N_\Pi}(t)$ в соответствии с (11) равна

$$\tau_C = 0.5 N_{\Pi} T_{\Pi}. \tag{14}$$

Косинусный символ МФ $\mu_{cosGBOC-4}(t)$ на рис. 1 заштрихован.

В частном случае \cos GBOC-сигналов, когда коэффициент заполнения $\rho=0.5$, т.е. рассматриваются \cos BOC-сигналы, формула (13) с учетом того, что $\tau_1=\tau_2=\tau_{\rm M}$ и $N_{\rm \Pi}=N_{\rm M}$, может быть представлена в следующем виде:

$$\mu_{\cos BOC - N_{M}}(t) = \operatorname{rect}_{0.5\tau_{M}}[t] + \sum_{m=1}^{N_{M}-1} (-1)^{m} \operatorname{rect}_{\tau_{M}}[t - (m - 0.5)\tau_{M}] + \operatorname{rect}_{0.5\tau_{M}}[t - (N_{M} - 0.5)\tau_{M}],$$
(15)

где $N_{\rm M} = 2, 4, 6,...$

Видно, что формула (15) совпадает, например, с выражением из работы [4, (2.2)] (при четном $N_{\rm M}$).

На рис. 2 в соответствии с формулой (13) представлены графики косинусных символов МФ $\mu_{\cos GBOC-N_{\Pi}}(t)$ при $\rho=0.25$ применительно к двум типам МФ $\cos GBOC$ -сигналов с коэффициентом кратности импульсов $N_{\Pi}=2$ и 4 для одной и той же длительности τ_{C} элемента ПСП g(t).

Рис. 2. Косинусные символы модулирующей функции \cos GBOC-сигналов при $\rho = 0.25$, $N_{\Pi} = 2$ (a) и $N_{\Pi} = 4$ (б).

График на рис. 2а соответствует случаю $N_{\Pi} = 2$ и представляет косинусный символ $\mu_{\cos GBOC-2}(t)$, который согласно (13) определяется соотношением

$$\mu_{\cos GBOC-2}(t) = \text{rect}_{0.5\tau_1}[t] - \text{rect}_{\tau_2}[t - 0.5\tau_1] + \\ + \text{rect}_{0.5\tau_1}[t - 0.5\tau_1 - \tau_2].$$
 (16)

Косинусный символ $\mu_{\cos GBOC-2}(t)$ характеризует $\cos GBOC$ -сигналы с модуляцией, например, типа $\cos GBOC(1, 1, \rho)$ или $\cos GBOC(2, 2, \rho)$.

График на рис. 2б соответствует случаю $N_{\Pi}=4$ и представляет косинусный символ $\mu_{\cos GBOC-4}(t)$, который в соответствии с (13)) характеризуется формулой

$$\mu_{\cos GBOC-4}(t) = \operatorname{rect}_{0.5\tau_{1}}[t] - \operatorname{rect}_{\tau_{2}}[t - 0.5\tau_{1}] + \operatorname{rect}_{\tau_{1}}[t - 0.5\tau_{1} - \tau_{2}] - \operatorname{rect}_{\tau_{2}}[t - T_{\Pi} - 0.5\tau_{1}] + (17) + \operatorname{rect}_{0.5\tau_{1}}[t - T_{\Pi} - 0.5\tau_{1} - \tau_{2}].$$

Косинусный символ $\mu_{\cos GBOC-4}(t)$ определяет $\cos GBOC$ -сигналы с модуляцией, например, типа $\cos GBOC(10, 5, \rho)$.

Из рассмотрения формулы (13) и рис. 2б видно, что в формировании косинусных символов $\mu_{\cos GBOC-N_{\Pi}}(t)$ при $N_{\Pi} \ge 4$ используются импульсы (в зависимости от их длительности) трех видов:

- положительные импульсы длительностью $0.5 \tau_1,$
 - положительные импульсы длительностью τ_1 ,
 - отрицательные импульсы длительностью τ_2 .

Отметим, что при $N_{\Pi} = 2$ структура косинусного символа $\mu_{\cos GBOC-2}(t)$ по сравнению с общим

случаем упрощается и в ней положительные импульсы длительностью τ_1 не используются.

Если у cosGBOC-сигналов коэффициент заполнения ρ варьировать в пределах от 0 до 1, то тогда при определенных значениях ρ соотношения между длительностями этих трех видов импульсов косинусных символов $\mu_{\text{cosGBOC}-N_{\Pi}}(t)$ изменяются на противоположные (см. (3) и (6)).

По этой причине, согласно (13), с учетом (3) и (6) в зависимости от значения коэффициента заполнения ρ , где $\rho \in [0, 1]$, при $N_{\Pi} = 4, 6, 8,...$ возможен один из следующих трех вариантов формирования косинусного ППК $r_{\cos}(t)$ cosGBOC-сигналов [9, 10]:

1-й вариант:
$$\tau_1 \le \tau_2$$
, т.е. $\rho \in \left[0, \frac{1}{2}\right]$; (18)

2-й вариант:
$$0.5\tau_1 \le \tau_2 \le \tau_1$$
, т.е. $\rho \in \left[\frac{1}{2}, \frac{2}{3}\right]$; (19)

3-й вариант:
$$0.5\tau_1 \ge \tau_2$$
, т.е. $\rho \in \left[\frac{2}{3}, 1\right]$. (20)

Как отмечали [9, 10], для \cos GBOC-сигналов при $N_{\Pi} = 2$ в структуре косинусного символа μ_{\cos GBOC-2</sub>(t) положительные импульсы длительностью τ_1 не используются, поэтому в таком случае имеют место лишь два варианта формирования косинусного $\Pi\Pi$ К $r_{\cos}(t)$ при $\rho \in [0, 1]$:

1-й вариант:
$$0.5\tau_1 \le \tau_2$$
, т.е. $\rho \in \left[0, \frac{2}{3}\right]$; (21)

2-й вариант:
$$0.5\tau_1 \ge \tau_2$$
, т.е. $\rho \in \left[\frac{2}{3}, 1\right]$. (22)

Каждому варианту формирования косинусного ППК $r_{\cos}(t)$ соsGBOC-сигналов соответствует свое аналитическое выражение КФ $R_{\cos GBOC-N_{\Pi}}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{C}-\cos GBOC}(t)$ cosGBOC-сигналов [10].

3. ОСНОВНЫЕ СООТНОШЕНИЯ ПО РАСЧЕТУ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ОДИНОЧНЫХ ЭЛЕМЕНТОВ МОДУЛИРУЮЩЕЙ ФУНКЦИИ cosGBOC-СИГНАЛОВ

При вычислении КФ cosGBOC-сигналов на основе обратного преобразования Фурье энергетического спектра основные соотношения по расчету статистических характеристик (корреляционных и спектральных) по существу во многом подобны случаю sinGBOC-сигналов [13].

Спектральная плотность (спектральная функция) $G_{\cos GBOC}(\omega, \rho)$ одиночного элемента МФ $d_{\tau_{C}-\cos GBOC}(t)\cos GBOC$ -сигнала представляет собой прямое ПФ от этого элемента МФ [9, 13, 16, 17]:

$$G_{\cos GBOC}(\omega, \rho) \triangleq FT \left\{ d_{\tau_{C}-\cos GBOC}(t) \right\} =$$

$$= \int_{-\infty}^{\infty} d_{\tau_{C}-\cos GBOC}(t) \exp \left\{ -i\omega t \right\} dt, \quad t_{0} = 0,$$
(23)

где $\mathsf{FT}\!\left\{\cdot\right\}$ — символ прямого $\mathsf{\Pi}\Phi.$

Энергетический спектр (спектральная плотность мощности) $S_{\cos GBOC}(\omega, \rho)$ одиночного элемента МФ $d_{\tau_{\text{C}}\text{-}\cos GBOC}(t)$ cosGBOC-сигнала характеризуется соотношением [9, 13, 16, 17]

$$S_{\cos GBOC}(\omega, \rho) \triangleq \frac{1}{\tau_{C}} \times \times \left[G_{\cos GBOC}(\omega, \rho) G_{\cos GBOC}^{*}(\omega, \rho) \right],$$
(24)

где $G^*_{\rm cosGBOC}(\omega, \rho)$ — комплексно-сопряженная спектральная плотность от $G_{\rm GBOC}(\omega, \rho)$.

В соответствии с определением КФ для одиночного элемента МФ $d_{\tau_{\text{C}}\text{-}\text{cosGBOC}}(t)$ соsGBOC-сигнала, характеризуемого (12) и (13), можно записать [16, 17]

$$R_{\cos GBOC}(\tau, \rho) \triangleq \frac{1}{\tau_C} \times \times \int_0^{\tau_C} d_{\tau_C - \cos GBOC}(t) d_{\tau_C - \cos GBOC}(t - \tau) dt,$$
(25)

где $R_{\rm cosGBOC}(\tau, \rho)$ — КФ одиночного элемента МФ $d_{\tau_{\rm C}{\text{-}cosGBOC}}(t)$ соsGBOC-сигнала; $\tau_{\rm C}=1/f_{\rm C}$ — длительность элемента ПСП g(t); $|\tau| \leq \tau_{\rm C}$.

Согласно общему положению статистической радиотехники, КФ $R_{\rm cosGBOC}(\tau,\rho)$ и соответствующий энергетический спектр $S_{\rm cosGBOC}(\omega,\rho)$ одиночного элемента МФ $d_{\tau_{\rm C}\text{-}{\rm cosGBOC}}(t)$ соsGBOC-сигнала представляют собой пару ПФ (оригиналы и изображения) [16, 17].

В соответствии с этим выполняются следующие соотношения:

$$R_{\cos GBOC}(\tau, \rho) = FT^{-1} \{ S_{\cos GBOC}(\omega, \rho) \} =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{\cos GBOC}(\omega, \rho) \exp\{i\omega\tau\} d\omega.$$
(26)

$$S_{\cos GBOC}(\omega, \rho) = FT \{ R_{\cos GBOC}(\tau, \rho) \} =$$

$$= \int_{-\infty}^{\infty} R_{\cos GBOC}(\tau, \rho) \exp\{-i\omega\tau\} d\tau,$$
(27)

где $\mbox{FT}^{-1}\{\cdot\}$ — символ обратного $\mbox{П}\Phi$.

Учитывая, что КФ $R_{\rm cosGBOC}(\tau, \rho)$ и энергетический спектр $S_{\rm cosGBOC}(\omega, \rho)$ представляют собой четные функции своих аргументов, формулы (26) и (27) принимают вид

$$R_{\cos GBOC}(\tau, \rho) = FT^{-1} \{ S_{\cos GBOC}(\omega, \rho) \} =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{\cos GBOC}(\omega, \rho) \cos \omega \tau d\omega,$$
(28)

$$S_{\cos GBOC}(\omega, \rho) = FT \left\{ R_{\cos GBOC}(\tau, \rho) \right\} =$$

$$= 2 \int_{0}^{\infty} R_{\cos GBOC}(\tau, \rho) \cos \omega \tau d\tau.$$
(29)

В статье [13] предложена методика расчета КФ $R_{\rm sinGBOC}(\tau, \rho)$ одиночных элементов МФ $d_{\tau_{\rm c}{\rm -sinGBOC}}(t)$ sinGBOC-сигналов на основе обратного ПФ их энергетического спектра $S_{\rm sinGBOC}(\omega, \rho)$. Распространим эту методику на cosGBOC-сигналы.

Суть методики, позволяющей получить аналитические выражения КФ $R_{\rm cosGBOC}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{\rm C}\text{-}{\rm cosGBOC}}(t)$ соsGBOC-сигналов как обратное ПФ энергетического спектра $S_{\rm cosGBOC}(\omega,\rho)$, состоит в том, что он представляется в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками (точками излома КФ $R_{\rm cosGBOC}(\tau,\rho)$) косинусного символа МФ $\mu_{\rm cosGBOC}-N_{\rm II}(t)$ (13). При таком представлении энергетического спектра $S_{\rm cosGBOC}(\omega,\rho)$ последующее вычисление оригиналов по изображениям затруднений не вызывает. Пары ПФ (оригиналы и изображения), которые необходимы для получения аналитических выражений КФ $R_{\rm cosGBOC}(\tau,\rho)$, представлены в табл. 1 [4, 12, 17].

Таблица 1. Пары преобразований Фурье

Оригинал	Изображение
$R(\tau) = \mathrm{FT}^{-1} \left\{ S(\omega) \right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) \exp\left\{ i\omega\tau \right\} d\omega$	$S(\omega) = \operatorname{FT}\left\{R(\tau)\right\} = \int_{-\infty}^{\infty} R(\tau) \exp\left\{-i\omega\tau\right\} d\tau$
$\frac{1}{2}[\delta(\tau+T)+\delta(\tau-T)]$	$\cos \omega T$
$sign(\tau)$	$\frac{2}{i\omega}$
$ au^n$	$i^n 2\pi \delta^{(n)}(\omega)$
τ	$i2\pi\delta^{(1)}(\omega)$
$\tau \operatorname{sign}(\tau)$	$-\frac{2}{\omega^2}$
$-\frac{1}{2}\tau\operatorname{sign}(\tau)$	$\frac{1}{\omega^2}$
$-\frac{1}{4}(\tau + bT)\operatorname{sign}(\tau + bT) - \frac{1}{4}(\tau - bT)\operatorname{sign}(\tau - bT)$	$\frac{1}{\omega^2}\cos b\omega T$

Примечание: $\delta^{(n)}(\omega) - n$ -я производная дельта-функции Дирака $\delta(\omega)$, $\delta^{(1)}(\omega) - 1$ -я производная дельта-функции Дирака $\delta(\omega)$, $\sin z = \begin{cases} 1 & \text{при } z > 0; \\ 0 & \text{при } z = 0; - \text{функция "сигнум"}. \\ -1 & \text{при } z < 0. \end{cases}$

Далее получим аналитические выражения КФ $R_{\rm cosGBOC}(\tau, \rho)$ одиночных элементов МФ $d_{\tau_{\rm C}{\rm -cosGBOC}}(t)$ соsGBOC-сигналов на основе формулы (28) как обратное ПФ энергетических спектров $S_{\rm cosGBOC}(\omega, \rho)$ при коэффициенте кратности импульсов $N_{\rm II}=2$ и 4 для различных значений коэффициента заполнения ρ , где $\rho \in [0, 1]$.

4. КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ ОДИНОЧНЫХ ЭЛЕМЕНТОВ МОДУЛИРУЮЩЕЙ ФУНКЦИИ cosGBOC-СИГНАЛОВ

Применительно к \cos GBOC-сигналам энергетический спектр S_{\cos GBOC}(f, ρ) одиночного элемента МФ $d_{\tau_{\text{C}}\text{-}\cos\text{GBOC}}(t)$, характеризуемого (12) и (13), при произвольном значении коэффициента кратности импульсов N_{Π} определяется следующей формулой [9]:

$$S_{\cos GBOC-N_{\Pi}}(f,\rho) = \frac{1}{f_{C}} \frac{\sin^{2}\left(\frac{\pi f}{f_{C}}\right)}{\left(\frac{\pi f}{f_{C}}\right)^{2} \sin^{2}\left(\frac{2\pi f}{N_{\Pi}f_{C}}\right)} \times \left[2\sin\left(\rho\frac{\pi f}{N_{\Pi}f_{C}}\right)\cos\left((2-\rho)\frac{\pi f}{N_{\Pi}f_{C}}\right) - \sin\left((1-\rho)\frac{2\pi f}{N_{\Pi}f_{C}}\right)\right]^{2},$$
(30)

где $f_{\rm C}$ — частота следования символов ПСП g(t) (8); $N_{\rm \Pi}=2,4,6,...$ — коэффициент кратности импульсов, характеризуемый (11); $\rho \in [0,1]$ — коэффициент заполнения (5).

Методика вычисления аналитических выражений КФ $R_{\rm cosGBOC}(\tau,\rho)$ одиночных элементов МФ $d_{\tau_{\rm c}\text{-}{\rm cosGBOC}}(t)$ на основе обратного ПФ (28) энергетических спектров $S_{\rm cosGBOC}(f,\rho)$ (30) применительно к cosGBOC-сигналам в случаях $N_{\Pi}=2$ и 4 по существу одинакова.

4.1. Корреляционная функция $R_{\rm cosGBOC-2}(\tau, \rho)$ одиночного элемента модулирующей функции ${\rm cosGBOC}$ -сигнала с коэффициентом кратности импульсов $N_{\Pi}=2$

При коэффициенте кратности импульсов $N_{\Pi}=2$ энергетический спектр $S_{\cos GBOC-2}(f,\rho)$ одиночного элемента МФ $d_{\tau_{\text{C}}\text{-}\cos GBOC-2}(t)$ $\cos GBOC$ -сигналов, согласно (30), описывается следующим выражением:

$$\begin{split} S_{\cos GBOC-2}(f,\rho) &= \frac{1}{f_{\rm C}} \frac{1}{\left(\frac{\pi f}{f_{\rm C}}\right)^2} \times \\ &\times \left[2 {\rm sin} \rho \frac{\pi f}{2f_{\rm C}} \cos(2-\rho) \frac{\pi f}{2f_{\rm C}} - \sin(1-\rho) \frac{\pi f}{f_{\rm C}} \right]^2, \end{split}$$
 где $\rho \in [0,1], \ N_{\Pi} = 2, \ \tau_{\rm C} = T_{\Pi}. \end{split}$

В соответствии с предложенной методикой (по аналогии с sinGBOC-сигналами [13]) представим энергетический спектр $S_{\rm cosGBOC-2}(f,\rho)$ (31) при $N_{\rm \Pi}=2$ в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками косинусного символа МФ $\mu_{\rm cosGBOC-2}(t)$ (16) cosGBOC-сигналов (т.е. точками излома КФ $R_{\rm cosGBOC-2}(\tau,\rho)$).

В таком случае формула (31) принимает следующий вил:

$$S_{\cos GBOC-2}(\omega, \rho) = \frac{2}{\omega^2 \tau_C} \sum_{i=0}^4 h_i \cos g_i \omega \tau_C, \qquad (32)$$

где $\rho \in [0, 1]$, $N_{\Pi} = 2$, $\tau_C = T_{\Pi}$, $\omega = 2\pi f$, а коэффициенты h_i и g_i $(i = \overline{0,4})$ представлены в табл. 2.

Видно, что формула (32) совпадает с соответствующим выражением для энергетического спектра $S_{\cos GBOC-2}(\omega, \rho)$ из работы [10, ф-ла (38)].

Найдем КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ (25) одиночного элемента МФ $d_{\tau_{\rm C}-{\rm cosGBOC-2}}(t)$ (см. (12) и (16)) ${\rm cosGBOC}$ — сигналов с коэффициентом кратности импульсов $N_{\Pi}=2$ как обратное $\Pi\Phi$ (28) энергетического спектра $S_{\rm cosGBOC-2}(\omega,\rho)$ (32).

Подставив (32) в (28), получим

$$R_{\cos GBOC-2}(\tau, \rho) = FT^{-1} \{ S_{\cos GBOC-2}(\omega, \rho) \} =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{\cos GBOC-2}(\omega, \rho) \cos \omega \tau d\omega =$$

$$= FT^{-1} \left\{ \frac{2}{\omega^{2} \tau_{C}} \sum_{i=0}^{4} h_{i} \cos g_{i} \omega \tau_{C} \right\} =$$

$$= \frac{2}{\tau_{C}} \sum_{i=0}^{4} h_{i} FT^{-1} \left\{ \frac{1}{\omega^{2}} \cos g_{i} \omega \tau_{C} \right\}.$$
(33)

Оригиналы ${
m FT}^{-1} \Big\{ \frac{1}{\omega^2} {
m cos} g_i \omega {
m au}_{
m C} \Big\}$, где $i=\overline{0,4}$, приведены в табл. 1 и имеют вид

$$FT^{-1}\left\{\frac{1}{\omega^{2}}\cos g_{i}\omega\tau_{C}\right\} = -\frac{1}{4}(\tau + g_{i}\tau_{C})\operatorname{sign}(\tau + g_{i}\tau_{C}) - \frac{1}{4}(\tau - g_{i}\tau_{C})\operatorname{sign}(\tau - g_{i}\tau_{C}),$$
(34)

коэффициенты g_i ($i = \overline{0,4}$) приведены в табл. 2.

Входящая в формулу (34) функция "сигнум" z (см. табл. 1) имеет вид

$$sign z = \begin{cases} 1 & \text{при } z > 0; \\ 0 & \text{при } z = 0; \\ -1 & \text{при } z < 0. \end{cases}$$
 (35)

Таблица 2. Коэффициенты формулы энергетического спектра $S_{\cos GBOC-2}(\omega, \rho)$

i	h_i	g_i
0	5	0
1	– 1	1
2	-4	0.5ρ
3	-4	$1 - \rho$
4	4	0.5ρ 1 — ρ 1 — 0.5ρ

Подставив (34) в (33), находим, что К Φ $R_{{\rm cosGBOC-2}}(au,
ho)$ равна

$$R_{\cos GBOC-2}(\tau, \rho) = -\frac{1}{2} \times$$

$$\times \sum_{i=0}^{4} h_{i} \left\{ \frac{\tau}{\tau_{C}} \left[sign(\tau + g_{i}\tau_{C}) + sign(\tau - g_{i}\tau_{C}) \right] + \right.$$

$$\left. + g_{i} \left[sign(\tau + g_{i}\tau_{C}) - sign(\tau - g_{i}\tau_{C}) \right] \right\},$$
(36)

где $\rho \in [0, 1]$, $N_{\Pi} = 2$, $\tau_{C} = T_{\Pi}$, а коэффициенты h_{i} и g_{i} $(i = \overline{0,4})$ приведены в табл. 2.

Для \cos GBOC-сигналов при $N_{\Pi}=2$ в зависимости от значения коэффициента заполнения ρ , где $\rho \in [0, 1]$, возможен, как отмечали (см. (21) и (22)), один из двух вариантов формирования косинусного $\Pi\Pi K r_{\cos}(t)$.

Так, 1-й вариант формирования косинусного ППК $r_{\cos}(t)$ соsGBOC-сигналов при $N_{\Pi}=2$ (21) соответствует условию, что $0.5\tau_1 \leq \tau_2$, т.е. $\rho \in \left[0,\frac{2}{3}\right]$, и 2-й вариант формирования косинусного ППК $r_{\cos}(t)$ соsGBOC-сигналов при $N_{\Pi}=2$ (22) соответствует условию, что $0.5\tau_1 \geq \tau_2$, т.е. $\rho \in \left[\frac{2}{3},1\right]$.

Каждому варианту формирования косинусного ППК $r_{\cos}(t)$ присуща своя последовательность чередования характерных точек КФ $R_{\cos GBOC-2}(\tau,\rho)$ на оси времени смещения τ (т.е. точек излома КФ $R_{\cos GBOC-2}(\tau,\rho)$) и соответственно свое аналитическое выражение КФ $R_{\cos GBOC-2}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{C}-\cos GBOC-2}(t)$ cosGBOC-сигналов [10].

Согласно предложенной методике с учетом значений функции "сигнум" (35) произведем вычисления в формуле (36) отдельно для 1-го и 2-го вариантов формирования косинусного ППК $r_{\cos}(t)$.

В результате находим, что КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{\rm C}{\rm -}{\rm cosGBOC-2}}(t)$ соsGBOC-сигналов с коэффициентом кратности импульсов

Рис. 3. Корреляционные функции $R_{\cos GBOC-2}(\tau, \rho)$ одиночного элемента модулирующей функции $\cos GBOC$ -сигнала с коэффициентом кратности импульсов $N_{\Pi}=2$ при $\rho \in \left[0,\frac{2}{3}\right]$ (а) и $\rho \in \left[\frac{2}{3},1\right]$ (б).

 $N_{\Pi} = 2$ характеризуется следующими соотношениями:

$$R_{\cos GBOC-2}(\tau, \rho) = \begin{cases} R_{\cos GBOC-2-1}(\tau, \rho) & \text{при } 0 \le \rho \le \frac{2}{3}, \\ R_{\cos GBOC-2-1}(\tau, \rho) & \text{при } \frac{2}{3} \le \rho \le 1. \end{cases}$$
(37)

Входящие в формулу (37) КФ $R_{\rm cosGBOC-2-l}(\tau, \rho)$ и $R_{\rm cosGBOC-2-2}(\tau, \rho)$ равны соответственно

$$R_{\cos GBOC-2-1}(\tau,\rho) = \\ \begin{cases} 1 - 5\frac{|\tau|}{\tau_{\rm C}} & \text{при } 0 \leq |\tau| \leq 0.5 \rho \tau_{\rm C}, \\ 1 - 2\rho - \frac{|\tau|}{\tau_{\rm C}} & \text{при } 0.5 \rho \tau_{\rm C} \leq |\tau| \leq (1-\rho)\tau_{\rm C}, \\ -3 + 2\rho + 3\frac{|\tau|}{\tau_{\rm C}} & \text{при } (1-\rho)\tau_{\rm C} \leq |\tau| \leq (1-0.5\rho)\tau_{\rm C}, \\ 1 - \frac{|\tau|}{\tau_{\rm C}} & \text{при } (1-0.5\rho)\tau_{\rm C}|\tau| \leq \tau_{\rm C}, \\ 0 & \text{при } |\tau| \geq \tau_{\rm C}, \end{cases}$$
 где $\rho \in \left[0, \frac{2}{3}\right], N_{\Pi} = 2, \tau_{\rm C} = T_{\Pi};$
$$R_{\cos GBOC-2-2}(\tau,\rho) =$$

$$\begin{aligned} R_{\cos GBOC-2-2}(t, \rho) &= \\ 1 - 5 \frac{|\tau|}{\tau_C} & \text{при } 0 \leq |\tau| \leq (1 - \rho)\tau_C, \\ -3 + 4\rho - \frac{|\tau|}{\tau_C} & \text{при } (1 - \rho)\tau_C \leq |\tau| \leq 0.5\rho\tau_C, \\ -3 + 2\rho + 3 \frac{|\tau|}{\tau_C} & \text{при } 0.5\rho\tau_C \leq |\tau| \leq (1 - 0.5\rho)\tau_C, \\ 1 - \frac{|\tau|}{\tau_C} & \text{при } (1 - 0.5\rho)\tau_C \leq |\tau| \leq \tau_C, \\ 0 & \text{при } |\tau| \geq \tau_C, \end{aligned}$$

В формулах (37)—(39) и далее, характеризующих КФ $R_{\rm cosGBOC-2-1}(\tau,\rho)$ и $R_{\rm cosGBOC-2-2}(\tau,\rho)$, последние цифры в индексах означают, что рассматривается 1-й или 2-й вариант формирования косинусного ППК $r_{\rm cos}(t)$ cosGBOC-сигналов.

где $\rho \in \left[\frac{2}{3}, 1\right], N_{\Pi} = 2, \tau_{C} = T_{\Pi}.$

Формулы (37)—(39), как и следовало ожидать, совпадают с соответствующими выражениями для КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ из [10] (см. (30)—(32)), которые получены другим методом (на основе общего определения КФ и без использования энергетического спектра).

На рис. За и Зб представлены графики КФ $R_{\text{cosGBOC}-2}(\tau, \rho)$, построенные согласно (37)—(39), для одиночного элемента МФ $d_{\tau_{\text{C}}\text{-cosGBOC}-2}(t)$ соѕGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=2$ при различных значениях коэффициента заполнения ρ : а) при $\rho \in \left[0,\frac{2}{3}\right]$, б) при $\rho \in \left[\frac{2}{3},1\right]$. На этих же рисунках изображены графики КФ $R_{\text{cosBOC}-2}(\tau)$ и $R_{\text{BPSK}}(\tau)$ соответствую-

щих cosBOC-сигналов (штриховые линии) и BPSK-сигналов (штрихпунктирные линии).

Графики на рис. За характеризуют КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ соsGBOC-сигналов при $\rho=0.3$ (сплошная линия) и 0.45 (пунктирная линия), на рис. Зб — при $\rho=2/3$ (сплошная линия) и 0.9 (пунктирная линия). Все КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ на рис. За и Зб являются нормированными. Особенности КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ обсуждаются в [10].

4.2. Корреляционная функция $R_{\rm cosGBOC-4}(\tau, \rho)$ одиночного элемента модулирующей функции ${\rm cosGBOC}$ -сигнала с коэффициентом кратности импульсов $N_{\Pi}=4$

Энергетический спектр $S_{\rm cosGBOC-4}(f,\rho)$ (24) одиночного элемента МФ $d_{\tau_{\rm C}\text{-}{\rm cosGBOC-4}}(t)$, характеризуемого (12) и (17), соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=4$, в соответствии с (30), имеет вид

$$S_{\cos GBOC-4}(f,\rho) = \frac{1}{f_C} \frac{\cos^2 \frac{\pi f}{2f_C}}{\left(\frac{\pi f}{2f_C}\right)^2} \times$$
(40)

$$\times \left[2\sin\rho \frac{\pi f}{4f_{\rm C}}\cos(2-\rho)\frac{\pi f}{4f_{\rm C}} - \sin(1-\rho)\frac{\pi f}{2f_{\rm C}} \right]^2,$$

где $\rho \in [0, 1], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi}.$

Согласно предложенной методике, чтобы получить аналитическое выражение КФ $R_{\rm cosGBOC-4}(\tau,\rho)$ (25) одиночного элемента МФ $d_{\tau_{\rm C}\text{-}{\rm cos}GBOC-4}(t)$ соsGBOC-сигналов, представим энергетический спектр $S_{\rm cosGBOC-4}(f,\rho)$ (40) при $N_{\rm \Pi}=4$ (по аналогии с sinGBOC-сигналами [13]) в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками косинусного символа МФ $\mu_{\rm cosGBOC-4}(t)$ (17) (т.е. точками излома КФ $R_{\rm cosGBOC-4}(\tau,\rho)$). В таком случае находим, что формула энергетического спектра $S_{\rm cosGBOC-4}(f,\rho)$ (40) может быть записана в следующем виде:

$$S_{\cos GBOC-4}(\omega, \rho) = \frac{1}{\omega^2 T_{\Pi}} \sum_{i=0}^{9} h_i \cos g_i \omega T_{\Pi}, \qquad (41)$$

где $\rho \in [0, 1]$, $N_{\Pi} = 4$, $\tau_{C} = 2T_{\Pi}$, $\omega = 2\pi f$, а коэффициенты h_{i} и g_{i} $(i = \overline{0,9})$ представлены в табл. 3.

Видно, что формула (41) совпадает с соответствующим выражением для энергетического спектра $S_{\cos GBOC-4}(\omega, \rho)$ из [10] (см. ф-ла (54)).

Таблица 3. Коэффициенты формулы энергетического спектра $S_{\cos GBOC-4}(\omega, \rho)$

clickipa S _{cosGBOC-4} (w,p)		
i	h_i	g_i
0	9	0
1	-4	0.5ρ
2	-4	ρ
3	-8	1 — ρ
4	8	1
5	4	$1 - 0.5\rho$
6	-4	1 + 0.5p
7	-4	$2-\rho$
8	4	$2 - 0.5\rho$
9	- 1	2

Далее получим КФ $R_{\rm cosGBOC-4}(\tau,\rho)$ (25) при $N_{\rm \Pi}=4$ как обратное ПФ энергетического спектра $S_{\rm cosGBOC-4}(\omega,\rho)$ (41). Подставив (41) в (28), получим

$$R_{\cos GBOC-4}(\tau, \rho) = FT^{-1} \{ S_{\cos GBOC-4}(\omega, \rho) \} =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{\cos GBOC-4}(\omega, \rho) \cos \omega \tau d\omega =$$

$$= FT^{-1} \left\{ \frac{1}{\omega^{2} T_{\Pi}} \sum_{i=0}^{9} h_{i} \cos g_{i} \omega T_{\Pi} \right\} =$$

$$= \frac{1}{T_{\Pi}} \sum_{i=0}^{9} h_{i} FT^{-1} \left\{ \frac{1}{\omega^{2}} \cos g_{i} \omega T_{\Pi} \right\}.$$

$$(42)$$

Оригиналы ${
m FT}^{-1} \Big\{ \frac{1}{\omega^2} {
m cos} g_i \omega T_\Pi \Big\}$, где $i=\overline{0,9}$, входящие в (42), приведены в табл. 1 и имеют вид

$$FT^{-1}\left\{\frac{1}{\omega^{2}}\cos g_{i}\omega T_{\Pi}\right\} = -\frac{1}{4}(\tau + g_{i}T_{\Pi})\operatorname{sign}(\tau + g_{i}T_{\Pi}) - \frac{1}{4}(\tau - g_{i}T_{\Pi})\operatorname{sign}(\tau - g_{i}T_{\Pi}), \tag{43}$$

коэффициенты g_i (i = 0,9) приведены в табл. 3.

Подставив (43) в (42), после вычислений находим, что КФ $R_{\rm cosGBOC-4}(\tau, \rho)$ равна

$$R_{\cos GBOC-4}(\tau, \rho) =$$

$$= -\frac{1}{4} \sum_{i=0}^{9} h_i \left\{ \frac{\tau}{T_{\Pi}} \left[\operatorname{sign}(\tau + g_i T_{\Pi}) + \operatorname{sign}(\tau - g_i T_{\Pi}) \right] + g_i \left[\operatorname{sign}(\tau + g_i T_{\Pi}) - \operatorname{sign}(\tau - g_i T_{\Pi}) \right] \right\},$$
(44)

где $\rho \in [0, 1], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi},$ а коэффициенты h_{i} и g_{i} $(i = \overline{0,9})$ приведены в табл. 3.

Для соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=4$ в зависимости от значения коэффициента заполнения ρ , где $\rho\in[0,1]$, возможен, как отмечали (см. (18)—(20)), один из трех вариантов формирования косинусного ППК $r_{\cos}(t)$ [10]. Так, 1-й вариант (18) соответствует условию, что $\tau_1 \leq \tau_2$, т.е. $\rho\in\left[0,\frac{1}{2}\right]$; 2-й вариант (19) соответствует условию, что $0.5\tau_1 \leq \tau_2 \leq \tau_1$, т.е. $\rho\in\left[\frac{1}{2},\frac{2}{3}\right]$; 3-й вариант (20) соответствует условию, что $\tau_2 \leq 0.5\tau_1$, т.е. $\rho\in\left[\frac{2}{3},1\right]$.

Каждому варианту формирования косинусного ППК $r_{\cos}(t)$ присуща своя последовательность чередования характерных точек КФ $R_{\cos GBOC-4}(\tau, \rho)$

на оси времени смещения τ (т.е. точек излома $K\Phi$) и, соответственно, свое аналитическое выражение $K\Phi$ $R_{\cos GBOC-4}(\tau,\rho)$ [10].

В соответствии с используемой методикой (аналогично случаю при $N_{\Pi}=2$) произведем с учетом (35) вычисления в формуле (44) отдельно для каждого варианта формирования косинусного ППК $r_{\cos}(t)$.

В результате находим, что КФ $R_{\rm cosGBOC-4}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{\rm C}\text{-}{\rm cosGBOC-4}}(t)$ сов GBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=4$ характеризуется следующими соотношениями:

$$R_{\cos GBOC-4}(\tau, \rho) = \begin{cases} R_{\cos GBOC-4-1}(\tau, \rho) & \text{при } 0 \le \rho \le \frac{1}{2}, \\ R_{\cos GBOC-4-1}(\tau, \rho) & \text{при } \frac{1}{2} \le \rho \le \frac{2}{3}, \\ R_{\cos GBOC-4-3}(\tau, \rho) & \text{при } \frac{2}{3} \le \rho \le 1. \end{cases}$$
(45)

Входящие в формулу (45) КФ $R_{\text{cosGBOC-4-1}}(\tau, \rho)$, $R_{\text{cosGBOC-4-2}}(\tau, \rho)$ и $R_{\text{cosGBOC-4-3}}(\tau, \rho)$ равны соответственно:

$$R_{\text{cosGBOC}-4-1}(\tau, \rho) = \begin{cases} 1 - 4.5 \frac{|\tau|}{T_{\Pi}} & \text{при } 0 \leq |\tau| \leq 0.5 \rho T_{\Pi}, \\ 1 - \rho - 2.5 \frac{|\tau|}{T_{\Pi}} & \text{при } 0.5 \rho T_{\Pi} \leq |\tau| \leq \rho T_{\Pi}, \\ 1 - 3\rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при } \rho T_{\Pi} \leq |\tau| \leq (1 - \rho) T_{\Pi}, \\ -3 + \rho + 3.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (1 - \rho) T_{\Pi} \leq |\tau| \leq (1 - 0.5 \rho) T_{\Pi}, \\ -1 + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (1 - 0.5 \rho) T_{\Pi} \leq |\tau| \leq T_{\Pi}, \\ 3 - 2.5 \frac{|\tau|}{T_{\Pi}} & \text{при } T_{\Pi} \leq |\tau| \leq (1 + 0.5 \rho) T_{\Pi}, \\ 1 - \rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (1 + 0.5 \rho) T_{\Pi} \leq |\tau| \leq (2 - \rho) T_{\Pi}, \\ -3 + \rho + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (2 - \rho) T_{\Pi} \leq |\tau| \leq 2T_{\Pi} = \tau_{C}, \\ 0 & \text{при } |\tau| \geq 2T_{\Pi} = \tau_{C}, \end{cases}$$

где $\rho \in \left[0, \frac{1}{2}\right], \, N_{\Pi} = 4 \; , \tau_{\text{C}} = 2T_{\Pi};$

$$R_{\text{cosGBOC}-4-2}(\tau, \rho) = \begin{cases} 1 - 4.5 \frac{|\tau|}{T_{\Pi}} & \text{при } 0 \leq |\tau| \leq 0.5 \rho T_{\Pi}, \\ 1 - \rho - 2.5 \frac{|\tau|}{T_{\Pi}} & \text{при } 0.5 \rho T_{\Pi} \leq |\tau| \leq (1 - \rho) T_{\Pi}, \\ -3 + 3\rho + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (1 - \rho) T_{\Pi} \leq |\tau| \leq \rho T_{\Pi}, \\ -3 + \rho + 3.5 \frac{|\tau|}{T_{\Pi}} & \text{при } \rho T_{\Pi} \leq |\tau| \leq (1 - 0.5 \rho) T_{\Pi}, \\ -1 + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (1 - 0.5 \rho) T_{\Pi} \leq |\tau| \leq T_{\Pi}, \\ 3 - 2.5 \frac{|\tau|}{T_{\Pi}} & \text{при } T_{\Pi} \leq |\tau| \leq (1 + 0.5 \rho) T_{\Pi}, \\ 1 - \rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (1 + 0.5 \rho) T_{\Pi} \leq |\tau| \leq (2 - \rho) T_{\Pi}, \\ -3 + \rho + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (2 - \rho) T_{\Pi} \leq |\tau| \leq (2 - 0.5 \rho) T_{\Pi}, \\ 1 - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при } (2 - 0.5 \rho) T_{\Pi} \leq |\tau| \leq 2 T_{\Pi} = \tau_{C}, \\ 0 & \text{при } |\tau| \geq 2 T_{\Pi} = \tau_{C}, \end{cases}$$

где $\rho \in \left[\frac{1}{2}, \frac{2}{3}\right], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi};$

$$R_{\text{cosGBOC-4-3}}(\tau, \rho) = \begin{cases} 1 - 4.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ 0 \le |\tau| \le (1 - \rho)T_{\Pi}, \\ -3 + 4\rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ (1 - \rho)T_{\Pi} \le |\tau| \le 0.5\rho T_{\Pi} \\ -3 + 3\rho + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ 0.5\rho T_{\Pi} \le |\tau| \le (1 - 0.5\rho)T_{\Pi}, \\ -1 + 2\rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ (1 - 0.5\rho)T_{\Pi} \le |\tau| \le \rho T_{\Pi}, \\ -1 + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ \rho T_{\Pi} \le |\tau| \le T_{\Pi}, \\ 3 - 2.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ T_{\Pi} \le |\tau| \le (2 - \rho)T_{\Pi}, \\ -1 + 2\rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ (2 - \rho)T_{\Pi} \le |\tau| \le (1 + 0.5\rho)T_{\Pi}, \\ -3 + \rho + 1.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ (1 + 0.5\rho)T_{\Pi} \le |\tau| \le (2 - 0.5\rho)T_{\Pi}, \\ 1 - 0.5 \frac{|\tau|}{T_{\Pi}} & \text{при} \ (2 - 0.5\rho)T_{\Pi} \le |\tau| \le 2T_{\Pi} = \tau_{C}, \\ 0 & \text{при} \ |\tau| \ge 2T_{\Pi} = \tau_{C}, \end{cases}$$

$$N_{\Pi} = 4.\tau_{C} = 2T_{\Pi}.$$

где $\rho \in \left[\frac{2}{3}, 1\right] N_{\Pi} = 4, \tau_{C} = 2T_{\Pi}.$

Рис. 4. Корреляционные функции $R_{\text{cosGBOC}-4}(\tau, \rho)$ одиночного элемента модулирующей функции \cos GBOC-сигнала с коэффициентом кратности импульсов $N_{\Pi}=4$ при $\rho\in\left[0,\frac{1}{2}\right]$ (а), $\rho\in\left[\frac{1}{2},\frac{2}{3}\right]$ (б) и $\rho\in\left[\frac{2}{3},1\right]$ (в).

Как и следовало ожидать, формулы (45)—(48), совпадают с соответствующими выражениями для $K\Phi\ R_{\rm cosGBOC-4}(\tau,\rho)$ из [10], которые получены другим методом (на основе общего определения $K\Phi$ и без использования энергетического спектра).

На рис. 4а—4в согласно (45)—(48) представлены графики КФ $R_{\rm cosGBOC-4}(\tau,\rho)$ для одиночного элемента МФ $d_{\tau_{\rm C}\text{-}{\rm cosGBOC-4}}(t)$ cosGBOC-сигналов с

коэффициентом кратности импульсов $N_\Pi=4$ при различных значениях коэффициента заполнения ρ , где $\rho\in[0,1]$ (при $\rho\in\left[0,\frac{1}{2}\right]$ — рис. 4а, при $\rho\in\left[\frac{1}{2},\frac{2}{3}\right]$ — рис. 4б и при $\rho\in\left[\frac{2}{3},1\right]$ — рис. 4в). На этих же рисунках изображены графики КФ $R_{\rm BPSK}(\tau)$ ВРЅК-сигналов (штрихпунктирные).

На рис. 4а—4в представлены графики КФ $R_{\rm cosGBOC-4}(\tau, \rho)$ cosGBOC-сигналов при различных ρ :

- а) $\rho = 0.45$ (сплошная кривая), $\rho = 0.3$ (штриховая) и $\rho = 0.5$ (пунктирная) (случай соответствующих cosBOC-сигналов);
 - б) $\rho = 2/3$ (сплошная) и $\rho = 0.55$ (штриховая);
- в) $\rho = 0.9$ (сплошная), $\rho = 0.75$ (штриховая) и при $\rho = 2/3$ (пунктирная).

Все КФ $R_{\rm cosGBOC-4}(\tau,\rho)$ на рис. 4а—4в являются нормированными.

Особенности КФ $R_{\text{cosGBOC-4}}(\tau, \rho)$ cosGBOC-сигналов рассматриваются в [10].

ЗАКЛЮЧЕНИЕ

Шумоподобные cosGBOC-сигналы, являющиеся обобщением cosBOC-сигналов, предназначены для применения в перспективных глобальных СРНС) таких, как GPS (США), Galileo (ЕС), ГЛОНАСС (Россия) и BeiDou (Китай).

Основной научный результат работы состоит в том, что предложенная в [13] методика вычисления КФ одиночных элементов МФ sinGBOC-сигналов на основе обратного ПФ энергетических спектров распространена на cosGBOC-сигналы, и этим способом получены аналитические выражения КФ $R_{\cos GBOC-N_{\Pi}}(\tau,\rho)$ одиночных элементов МФ $d_{\tau_{C}\text{-}\cos GBOC}(t)$ cosGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi}=2$ и 4 для различных значений коэффициента заполнения ρ , где $\rho \in [0,1]$.

В основе методики лежит представление энергетического спектра GBOC-сигналов в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками синусного символа $M\Phi \mu_{GBOC}(t)$ (т.е. точками излома $K\Phi$).

Полученные аналитические выражения КФ $R_{\rm cosGBOC-2}(\tau,\rho)$ и $R_{\rm cosGBOC-4}(\tau,\rho)$, как и следовало ожидать, совпадают с соответствующими формулами из [10], найденными другим методом (на основе общего определения КФ и без использования энергетических спектров).

Вычисление КФ $R_{\rm cosGBOC-N_{II}}(\tau,\rho)$ путем обратного ПФ энергетических спектров $S_{\rm cosGBOC-N_{II}}(\omega,\rho)$ в ряде случаев оказывается более предпочтительным при сравнении со способом получения КФ на основе их общего определения.

По изложенной методике аналогичным образом можно получить аналитические выражения КФ $R_{\rm cosGBOC-N_\Pi}(\tau,\rho)$ одиночных элементов МФ ${\rm cosGBOC}$ -сигналов при любом другом значении коэффициента кратности импульсов N_Π , где $N_\Pi=2,4,6,....$

Располагая аналитическими выражениями КФ $R_{\rm cosGBOC-N_{\rm II}}(\tau,\rho)$ одиночных элементов МФ ${\rm cosGBOC-cuг}$ налов, удается осознанно преодолевать трудности при разработке навигационной аппаратуры потребителей (в частности, дискриминаторов) с целью обеспечения, по возможности, однозначного слежения за основным пиком КФ и минимизации вероятности захвата ее боковых (ложных) пиков. Для СРНС грядущего поколения на этой же основе можно в принципе количественно рассчитать потенциальные характеристики точности слежения за ПСП дальномерного кода и оценить разрешающую способность сигналов в условиях многолучевости и при действии помех различного рода.

СПИСОК ЛИТЕРАТУРЫ

- Betz J.W. // Proc. National Technical Meeting of the Institute of Navigation (ION – NTM'99), January 1999, P. 639.
- 2. *Betz J.W.* // Navigation, J. ION. 2001. V. 48. № 4. P. 227.
- 3. Hein G.W., Godet J., Issler J.-L. et al. // Proc. Institute of Navigation Global Positioning System Meeting (ION GPS 2002). Portland. USA. 24–27 Sep. 2002. Fairfax: ION, 2002. P. 266.
- 4. *Ярлыков М.С.* Меандровые шумоподобные сигналы (ВОС-сигналы) и их разновидности в спутниковых радионавигационных системах. М.: Радиотехника, 2017.
- 5. *Liu W.*, *Hu Y.*, *Zhan X.Q.* // Electronics Lett. 2012. V. 48. № 5. P. 284.
- 6. Liu W., Hu Y. // J. Communications Technology and Electronics. 2014. V. 59. № 11. P. 1206.
- 7. Ярлыков М.С. // РЭ. 2017. Т. 62. № 10. С. 964.
- 8. Ярлыков М.С., Ярлыкова С.М. // РЭ. 2018. Т. 63. № 2. С. 157.
- 9. Ярлыков М.С. // РЭ. 2018. Т. 63. № 8. С. 808.
- 10. *Ярлыков М.С.*, *Ярлыкова С.М.* // РЭ. 2019. Т. 64. № 7. С. 694.
- 11. Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985.
- 12. Ярлыков М.С. // РЭ. 2016. Т. 61. № 8. С. 725.
- 13. Ярлыков М.С. // РЭ. 2019. Т. 64. № 8. С. 775.
- 14. Global Positioning Systems Directorate. Systems Engineering and Integration. Interface Specification IS GPS 200. Navstar GPS Space Segment/Navigation User Interfaces, IS GPS –200G, 05 September 2012.
- Шебшаевич В.С., Дмитриев П.П., Иванцевич Н.В. и др. Сетевые спутниковые радионавигационные системы. 2-е изд. М.: Радио и связь, 1993.
- Тихонов В.И. Статистическая радиотехника. 2-е изд. М.: Сов. радио, 1982.
- 17. *Стеценко О.А.* Радиотехнические цепи и сигналы. М.: Высшая школа, 2007.