ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.391.2

КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ НАВИГАЦИОННЫХ cosGBOC-СИГНАЛОВ КАК ОБРАТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ

© 2020 г. М. С. Ярлыков^{а, *}, С. М. Ярлыкова^{b, **}

^а Редакция журнала "Радиотехника и электроника", ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация ^bИнститут кибернетики Российского технологического университета МИРЭА, просп. Вернадского, 78, Москва, 119454 Российская Федерация *E-mail: red@cplire.ru

***E-mail: yarlykova@mirea.ru* Поступила в редакцию 27.03.2019 г. После доработки 27.03.2019 г. Принята к публикации 08.04.2019 г.

Рассмотрены модулирующие функции (МФ) соsGBOC-сигналов (косинусных обобщенных ВОСсигналов) для нового поколения спутниковых радионавигационных систем, таких как Galileo (ЕС), GPS (США), ГЛОНАСС (Россия) и BeiDou (Китай). На основе обратного преобразования Фурье (ПФ) энергетических спектров получены аналитические выражения и построены графики корреляционных функций (КФ) одиночных элементов МФ соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 2$ и 4 для различных значений коэффициента заполнения ρ , где $\rho \in [0, 1]$. При вычислении КФ в основу методики положено представление энергетического спектра в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками косинусного символа МФ (точками излома КФ) соsGBOC-сигналов. В ряде случаев вычисление КФ соsGBOC-сигналов путем обратного ПФ энергетических спектров оказывается более предпочтительным (в частности, по трудоемкости) при сравнении со способом получения КФ на основе ее общего определения.

DOI: 10.31857/S0033849420010088

ВВЕДЕНИЕ

Рост числа потребителей спутниковых радионавигационных систем (СРНС), таких как Galileo (ЕС), GPS (США), ГЛОНАСС (Россия) и ВеiDou (Китай) при одновременном ужесточении требований, предъявляемых к многорежимности и качеству их функционирования, обусловливают возрастающую потребность в разработке и применении различных разновидностей и обобщений ВОС-сигналов (binary offset carrier modulated signals) [1–4].

В связи с этим применительно к перспективным глобальным СРНС следует отметить исследование и разработку обобщенных (Generalized) ВОС-сигналов (GBOC) [5–10].

Основное отличие GBOC-сигналов от ВОСсигналов заключается в том, что у обобщенных ВОС-сигналов поднесущее колебание (ПК) представляет собой прямоугольный сигнал, т.е. периодическую биполярную последовательность прямоугольных видеоимпульсов, с произвольным значением коэффициента заполнения ρ , где $\rho \in [0, 1]$. Такое ПК навигационных GBOC-сигналов называется прямоугольным ПК (ППК) [7–9]. Иначе говоря, GBOC-сигналы – это шумоподобные сигналы с ППК, а BOC-сигналы – это шумоподобные сигналы с меандровым ПК (МПК).

Когда у ППК коэффициент заполнения $\rho = 0.5$, то в этом важном частном случае оно представляет собой МПК, а сами GBOC-сигналы при этом являются традиционными BOC-сигналами [1–4]. В другом частном случае, когда $\rho = 0$ или $\rho = 1$, GBOC-сигналы вырождаются в двоичные фазоманипулированные сигналы (binary phase shift keying signals – BPSK-сигналы) [11]. Этот случай является вырожденным, поскольку при этом утрачивается зависимость сигналов от значения коэффициента кратности импульсов прямоугольного ПК N_{Π} [7]. Возможность изменять у GBOC-сигналов значение коэффициента заполнения ρ в пределах от 0 до 1, позволяет варьировать в широких пределах форму и параметры корреляционных функций (КФ) и энергетических спектров таких сигналов. Это обстоятельство обусловливает преимущества (в частности, по электромагнитной совместимости) применения GBOC-сигналов по сравнению с ВОС-сигналами или BPSK-сигналами в перспективных СРНС.

Использование GBOC-сигналов, как вариант, обсуждается в китайской СРНС ВеіDou на третьей фазе ее развития. При этом рассматриваются следующие значения параметров таких GBOC-сигналов: несущая частота GBOC-сигнала $f_{\rm H}$ = 1561.098 МГц, тип модуляции GBOC(2, 2, ρ), коэффициент заполнения ρ = 0.3, частота следования символов псевдослучайной последовательности (ПСП) дальномерного кода $f_{\rm C}$ = 2.046 МГц, частота ППК $f_{\rm II}$ = 2.046 МГц, базовая (опорная) частота $f_{\rm OII}$ = 1.023 МГц [5, 6].

Свойства и возможности GBOC-сигналов во многом определяются их корреляционными характеристиками. Знание аналитических выражений и графиков КФ позволяет в принципе количественно рассчитать для приемников СРНС потенциальные характеристики точности слежения за ПСП дальномерного кода и оценить разрешающую способность сигналов в условиях многолучевости и при действии помех. Располагая формулами КФ GBOC-сигналов, удается разрабатывать дискриминаторы приемников, близкие к оптимальным, которые обеспечивали бы, по возможности, однозначное слежение за основным пиком КФ и минимизировали бы вероятность захвата ее боковых (ложных) пиков.

Получение явных формул КФ GBOC-сигналов (особенно при больших значениях коэффициента кратности импульсов N_{Π}) представляет собой довольно трудоемкую задачу [8, 10].

В ряде случаев аналитические выражения КФ GBOC-сигналов (аналогично BOC-сигналам [12]) предпочтительнее получать как обратное преобразование Фурье (ПФ) их энергетических спектров. Кроме того, вычисление КФ GBOC-сигналов другим методом (на основе энергетических спектров, а не прямым методом, используя общее определение КФ) позволяет дополнительно подтвердить правильность полученных формул КФ.

Как известно, GBOC-сигналы (аналогично BOC-сигналам) в зависимости от относительного сдвига по времени между ПСП дальномерного кода и ППК делятся на sinGBOC-сигналы (синусные обобщенные BOC-сигналы) и соsGBOC-сигналы (косинусные обобщенные BOC-сигналы) [5–10].

Аналитические выражения КФ sinGBOC-сигналов как обратное ПФ энергетических спектров получены в [13], где предложена методика расчета КФ одиночных элементов МФ таких сигналов. В основе методики лежит представление энергетического спектра sinGBOC-сигналов в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками синусного символа $M\Phi \ \mu_{sinGBOC}(t) \ sinGBOC-сигнала$ (т.е.

точками излома КФ $R_{sin GBOC}(\tau, \rho)$).

В данной статье рассматриваются cosGBOCсигналы.

Цель работы — на основе обратного ПФ энергетических спектров в соответствии с методикой [13] получить аналитические выражения КФ одиночных элементов МФ соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 2$ и 4 при различных значениях коэффициента заполнения ρ , где $\rho \in [0, 1]$.

Рассматриваемые ПСП дальномерного кода и косинусные ППК имеют единичные амплитуды, поэтому полученные выражения характеризуют нормированные КФ.

Термин типа "одиночный элемент МФ cosGBOC-сигнала" означает, что рассматривается математическое выражение, описывающее один элемент МФ cosGBOC-сигнала.

1. СТРУКТУРА И ХАРАКТЕРИСТИКИ ИЗЛУЧАЕМЫХ cosGBOC-СИГНАЛОВ

Навигационный cosGBOC-сигнал *s*(*t*), излучаемый бортовым передатчиком какого-либо одного спутника из состава орбитальной группировки СРНС, имеет известный вид [2, 4, 7, 10]:

$$s(t - t_0) = A d_{\cos G BOC}(t - t_0) \cos[\omega_{\rm H}(t - t_0) + \varphi(t)], (1)$$

где $A = \sqrt{2P_{\rm cp}}$ – амплитуда cosGBOC-сигнала на выходе передатчика; $P_{\rm cp}$ – средняя мощность cosGBOC-сигнала на выходе передатчика; $d_{\cos GBOC}(t)$ – МФ cosGBOC-сигнала, $\omega_{\rm H} = 2\pi f_{\rm H}$ – круговая несущая частота радиосигнала; $f_{\rm H}$ – несущая частота cosGBOC-сигнала; $\varphi(t)$ – фаза радиосигнала; t_0 – начало отсчета.

Вся сложность и специфика cosGBOC-сигналов s(t), как видно из (1), полностью определяется структурой и характеристиками МФ $d_{\cos GBOC}(t)$. Свойства и структура МФ $d_{\cos GBOC}(t)$, а также ее статистические характеристики в случаях cosGBOC-сигналов достаточно детально обсуждаются в [9, 10].

Далее для краткости, когда это не влияет на суть изложения, полагаем, что МФ $d_{\cos GBOC}(t)$ соsGBOC-сигнала *s*(*t*) обусловлена собственно ПСП дальномерного кода и косинусным ППК. В

Рис. 1. Формирование модулирующей функции cosGBOC-сигнала при $\rho = 0.25$ и $N_{\Pi} = 4$.

таком случае МФ $d_{\cos GBOC}(t)$ cosGBOC-сигнала s(t) записывается в виде [9, 10]

$$d_{\cos GBOC}(t - t_0) = g(t - t_0) r_{\cos}(t - t_0), \qquad (2)$$

где $g(t - t_0)$ – собственно ПСП дальномерного кода; $r_{cos}(t - t_0)$ – косинусное ППК, отражающее специфику cosGBOC-сигналов s(t).

Входящие в соотношение (2) ПСП g(t) (для произвольно заданной реализации) и косинусное ППК $r_{cos}(t)$ представлены на рис. 1, где введены следующие обозначения: τ_{C} – длительность элемента ПСП g(t); T_{Π} – длительность периода коси-

нусного ППК $r_{cos}(t)$; τ_1 и τ_2 – длительности положительного и отрицательного импульсов косинусного ППК $r_{cos}(t)$ соответственно.

Длительность периода T_{Π} косинусного ППК $r_{\cos}(t)$ (см. рис. 1) равна

$$T_{\Pi} = 0.5\tau_1 + \tau_2 + 0.5\tau_1 = \tau_1 + \tau_2. \tag{3}$$

Частота косинусного ППК $r_{cos}(t)$ с учетом (3) характеризуется выражением

$$f_{\Pi} = \frac{1}{T_{\Pi}} = \frac{1}{\tau_1 + \tau_2},$$
 (4)

где f_{Π} – частота косинусного ППК $r_{\cos}(t)$.

Важный параметр косинусного ППК $r_{cos}(t)$ (и, соответственно, cosGBOC-сигналов s(t)), каким является коэффициент заполнения прямоугольного сигнала ρ , определяется как [6, 9, 10]

$$\rho \triangleq \frac{\tau_1}{T_{\Pi}},\tag{5}$$

где р ∈ [0, 1].

На рис. 1 коэффициент заполнения косинусного ППК $r_{cos}(t)$ в качестве примера принят равным $\rho = 0.25$, а начало отсчета $t_0 = 0$.

Согласно (3) и (5) имеем, что для коэффициента заполнения р выполняются следующие соотношения (см. рис. 1):

$$\tau_1 = \rho T_{\Pi}, \ \ \tau_2 = (1 - \rho) T_{\Pi}.$$
 (6)

Частным случаем косинусного ППК $r_{cos}(t)$, когда коэффициент заполнения $\rho = 0.5$, является меандровый сигнал, у которого длительности положительного и отрицательного импульсов равны, т.е.

$$\tau_1 = \tau_2 \triangleq \tau_M, \tag{7}$$

где $\tau_{\rm M}$ – длительность меандрового импульса. При этом длительность периода ПК равна $T_{\rm \Pi} \triangleq T_{\rm M} = 2\tau_{\rm M}$, где $T_{\rm M}$ – период МПК [4].

Таким образом, если коэффициент заполнения $\rho = 0.5$, то косинусное ППК $r_{cos}(t)$ представляет собой косинусное МПК, а cosGBOC-сигнал s(t) является традиционным cosBOC-сигналом.

Соотношение для ПСП дальномерного кода g(t), описывающее ее один период, имеет известный вид [4, 9, 11]:

$$g(t - t_0) = \sum_{k=0}^{L-1} v_k \operatorname{rect}_{\tau_{\rm C}}[t - k\tau_{\rm C} - t_0], \qquad (8)$$

где L – коэффициент расширения спектра, т.е. число элементов на периоде ПСП g(t); $\tau_{\rm C}$ – длительность элемента ПСП g(t); k = 0, 1, 2, ..., (L-1) – номер элемента ПСП на периоде; t_0 – начало отсчета.

Функция rect_{τ_c}[·] в (8) представляет собой импульс единичной амплитуды длительностью τ_c :

$$\operatorname{rect}_{\tau_{\rm C}}[t - k\tau_{\rm C}] = \begin{cases} 1 & \text{при } k\tau_{\rm C} \le t < (k+1)\tau_{\rm C}, \\ 0 & \text{при } k\tau_{\rm C} > t \ge (k+1)\tau_{\rm C}, \end{cases}$$
(9)

где $k = 0, 1, 2, \cdots, (L - 1).$

Кодовые коэффициенты $v_k = v(t_k)$, где $t_k = k \tau_C -$ дискретное время, формируют ПСП дальномерного кода g(t) (8). Они принимают на каждом элементе ПСП длительностью τ_C значения +1 или -1 согласно определяемому кодом закону чередова-

ния элементов на периоде. Длительность периода $\Pi C\Pi g(t)$ (8) равна

$$T_L = L\tau_{\rm C}.$$
 (10)

Например, в СРНС типа ГЛОНАСС дальномерный код стандартной точности представляет собой периодическую последовательность максимальной длины (М-последовательность, или последовательность Хаффмена) с периодом $T_L = 1$ мс и частотой следования символов $f_C = 511$ кГц.

В СРНС типа GPS дальномерный С/А код является периодической последовательностью Голда с периодом $T_L = 1$ мс и частотой следования символов $f_C = 1.023$ МГц [14, 15].

Для сравнения различных типов модуляции соsGBOC-сигналов (по аналогии с cosBOC-сигналами) используется следующее обозначение: соsGBOC(f_{Π} , f_{C} , ρ) [4–7]. Поскольку у СРНС частоты f_{Π} и f_{C} , как правило, кратны базовой (опорной) частоте $f_{O\Pi}$ (в частности, для систем GPS и Galileo $f_{O\Pi} = 1.023$ МГц), то обычно применяется несколько иная форма записи для обозначения типа модуляции соsGBOC-сигналов: соsGBOC(α,β,ρ), где $\alpha = f_{\Pi}/f_{O\Pi}$ и $\beta = f_C/f_{O\Pi}$.

В качестве еще одного показателя cosGBOCсигналов s(t) используется либо коэффициент кратности импульсов N_{Π} косинусного ППК $r_{\cos}(t)$, либо эквивалентный ему параметр Q_{Π} – коэффициент кратности периодов косинусного ППК $r_{\cos}(t)$ [7–10].

Коэффициент кратности импульсов N_{Π} представляет собой число прямоугольных импульсов (положительных длительностью τ_1 и отрицательных длительностью τ_2) косинусного ППК $r_{cos}(t)$, которые укладываются на длительности τ_C одного элемента ПСП g(t) (см. рис. 1):

$$N_{\Pi} = \frac{2\tau_{\rm C}}{T_{\Pi}} = \frac{2f_{\Pi}}{f_{\rm C}} = \frac{2\alpha}{\beta},\tag{11}$$

где N_{Π} – положительное четное число ($N_{\Pi} = 2, 4, 6, ...$).

Следует отметить, что в случае соsGBOC-сигналов при определении коэффициента кратности импульсов N_{Π} первый и последний импульсы длительностью $0.5\tau_1$ каждый, укладывающиеся на длительности τ_C одного элемента ПСП g(t) (см. (3) и рис. 1), рассматриваются как половины одного импульса и при подсчете учитываются как один импульс длительностью τ_1 . На рис. 1 график МФ $d_{\cos GBOC}(t)$ в качестве примера характеризует соsGBOC-сигналы с коэффициентом кратности импульсов $N_{\Pi} = 4$. КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ НАВИГАЦИОННЫХ соsGBOC-СИГНАЛОВ

Коэффициент кратности периодов Q_{Π} представляет собой число периодов длительностью T_{Π} косинусного ППК $r_{cos}(t)$, которые укладываются на длительности τ_{C} одного элемента ПСП g(t) (см. рис. 1):

$$Q_{\Pi} = \frac{1}{2} N_{\Pi} = \frac{\tau_{\rm C}}{T_{\Pi}} = \frac{f_{\Pi}}{f_{\rm C}} = \frac{\alpha}{\beta},$$

где *Q*_П = 1, 2, 3,

В частном случае косинусного ППК $r_{cos}(t)$, когда коэффициент заполнения $\rho = 0.5$, т.е. в случае соsBOC-сигналов, коэффициент кратности импульсов N_{Π} представляет собой используемый при рассмотрении cosBOC-сигналов параметр $N_{\rm M}$ — коэффициент кратности меандровых импульсов:

$$N_{\rm M} = \frac{\tau_{\rm C}}{\tau_{\rm M}} = \frac{2f_{\rm M}}{f_{\rm C}} = \frac{2\alpha}{\beta}$$

где τ_{M} — длительность меандрового импульса МПК, характеризуемая (7).

2. ОДИНОЧНЫЕ ЭЛЕМЕНТЫ МОДУЛИРУЮЩЕЙ ФУНКЦИИ cosGBOC-СИГНАЛОВ

При сравнительной оценке свойств и возможностей cosGBOC-сигналов с cosBOC-сигналами и BPSK-сигналами многое определяется КФ и энергетическими спектрами одиночных элементов МФ этих сигналов.

Согласно (2) и (8) произвольный k-й элемент МФ $d_{\cos GBOC}(t) \cos GBOC$ -сигналов (по аналогии с cosBOC-сигналами) имеет вид [4, 9, 10]

$$d_{\tau_{\rm c}-\cos GBOC}(t) = v_k \mu_{\cos GBOC}(t), \qquad (12)$$

где $d_{\tau_{C}-\cos GBOC}(t)$ — одиночный элемент МФ $d_{\cos GBOC}(t) \cos GBOC$ -сигнала; $\mu_{\cos GBOC}(t)$ — одиночный косинусный символ МФ $d_{\cos GBOC}(t)$ $\cos GBOC$ -сигнала; $v_k = v(t_k)$ — кодовый коэффициент *k*-го элемента ПСП дальномерного кода g(t), характеризуемой (8); $t_k = k \tau_C$ — дискретное время ($k = 0, 1, 2, \cdots$).

В формуле (12) и далее для простоты принято, что начало отсчета $t_0 = 0$. Индекс τ_C у обозначения $d_{\tau_C-\cos GBOC}(t)$ отражает тот факт, что рассматривается одиночный элемент МФ $d_{\cos GBOC}(t)$ длительностью τ_C . (Далее в выражениях типа "одиночный элемент" или "одиночный символ" слово "одиночный", где это не вызывает сомнений, для краткости опускаем.) В соответствии с (12) элемент МФ $d_{\tau_c - \cos GBOC}(t)$ cosGBOC-сигнала s(t) (1) представляет собой символ $\mu_{\cos GBOC}(t)$, взятый со знаком "+" или "–" в зависимости от значения кодового коэффициента v_k k-го элемента ПСП g(t).

Косинусный символ $\mu_{cosGBOC-N_{\Pi}}(t)$, учитывая (2), (8) и (11), при различных значениях коэффициента кратности импульсов N_{Π} может быть записан в следующем виде [9, 10]:

$$\mu_{\cos GBOC-N_{\Pi}}(t) = \sum_{m=0}^{0.5N_{\Pi}-1} \left\{ \operatorname{rect}_{0.5\tau_{1}} \left[t - m T_{\Pi} \right] - \operatorname{rect}_{\tau_{2}} \left[t - m T_{\Pi} - 0.5\tau_{1} \right] + \operatorname{rect}_{0.5\tau_{1}} \left[t - m T_{\Pi} - 0.5\tau_{1} - \tau_{2} \right] \right\},$$
(13)

где N_П = 2, 4, 6,

В формуле (13) и далее индекс N_{Π} в обозначениях типа $\mu_{\cos GBOC-N_{\Pi}}(t)$ указывает значение коэффициента кратности импульсов N_{Π} .

Как видно из (13) и рис. 1, косинусный символ МФ $\mu_{cosGBOC-N_{\Pi}}(t)$ представляет собой отрезок длительностью τ_C косинусного ППК $r_{cos}(t)$ при определенном значении коэффициента заполнения р. Длительность τ_C косинусного символа $\mu_{cosGBOC-N_{\Pi}}(t)$ в соответствии с (11) равна

$$\tau_{\rm C} = 0.5 N_{\Pi} T_{\Pi}.\tag{14}$$

Косинусный символ МФ $\mu_{cosGBOC-4}(t)$ на рис. 1 заштрихован.

В частном случае соsGBOC-сигналов, когда коэффициент заполнения $\rho = 0.5$, т.е. рассматриваются соsBOC-сигналы, формула (13) с учетом того, что $\tau_1 = \tau_2 = \tau_M$ и $N_{\Pi} = N_M$, может быть представлена в следующем виде:

$$\mu_{\text{cosBOC}-N_{\text{M}}}(t) = \text{rect}_{0.5\tau_{\text{M}}}[t] + \sum_{m=1}^{N_{\text{m}}-1} (-1)^{m} \operatorname{rect}_{\tau_{\text{M}}} [t - (m - 0.5)\tau_{\text{M}}] + (15) + \operatorname{rect}_{0.5\tau_{\text{M}}}[t - (N_{\text{M}} - 0.5)\tau_{\text{M}}],$$

где N_M = 2, 4, 6,...

Видно, что формула (15) совпадает, например, с выражением из работы [4, (2.2)] (при четном $N_{\rm M}$).

На рис. 2 в соответствии с формулой (13) представлены графики косинусных символов МФ $\mu_{cosGBOC-N_{\Pi}}(t)$ при $\rho = 0.25$ применительно к двум типам МФ cosGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 2$ и 4 для одной и той же длительности τ_{C} элемента ПСП g(t).

Рис. 2. Косинусные символы модулирующей функции cosGBOC-сигналов при $\rho = 0.25$, $N_{\Pi} = 2$ (а) и $N_{\Pi} = 4$ (б).

График на рис. 2а соответствует случаю $N_{\Pi} = 2$ и представляет косинусный символ $\mu_{cosGBOC-2}(t)$, который согласно (13) определяется соотношением

$$\mu_{\cos GBOC-2}(t) = \operatorname{rect}_{0.5\tau_1}[t] - \operatorname{rect}_{\tau_2}[t - 0.5\tau_1] + \operatorname{rect}_{0.5\tau_1}[t - 0.5\tau_1 - \tau_2].$$
(16)

Косинусный символ $\mu_{cosGBOC-2}(t)$ характеризует cosGBOC-сигналы с модуляцией, например, типа cosGBOC(1, 1, ρ) или cosGBOC(2, 2, ρ).

График на рис. 26 соответствует случаю $N_{\Pi} = 4$ и представляет косинусный символ $\mu_{cosGBOC-4}(t)$, который в соответствии с (13)) характеризуется формулой

$$\mu_{\cos GBOC-4}(t) = \operatorname{rect}_{0.5\tau_{1}}[t] - \operatorname{rect}_{\tau_{2}}[t - 0.5\tau_{1}] + \operatorname{rect}_{\tau_{1}}[t - 0.5\tau_{1} - \tau_{2}] - \operatorname{rect}_{\tau_{2}}[t - T_{\Pi} - 0.5\tau_{1}] + (17) + \operatorname{rect}_{0.5\tau_{1}}[t - T_{\Pi} - 0.5\tau_{1} - \tau_{2}].$$

Косинусный символ $\mu_{cosGBOC-4}(t)$ определяет cosGBOC-сигналы с модуляцией, например, типа cosGBOC(10, 5, ρ).

Из рассмотрения формулы (13) и рис. 26 видно, что в формировании косинусных символов $\mu_{\cos GBOC-N_{\Pi}}(t)$ при $N_{\Pi} \ge 4$ используются импульсы (в зависимости от их длительности) трех видов:

— положительные импульсы длительностью $0.5 \tau_1,$

положительные импульсы длительностью т₁,

отрицательные импульсы длительностью т₂.

Отметим, что при $N_{\Pi} = 2$ структура косинусного символа $\mu_{cosGBOC-2}(t)$ по сравнению с общим

случаем упрощается и в ней положительные импульсы длительностью τ_1 не используются.

Если у cosGBOC-сигналов коэффициент заполнения ρ варьировать в пределах от 0 до 1, то тогда при определенных значениях ρ соотношения между длительностями этих трех видов импульсов косинусных символов $\mu_{cosGBOC-N_{II}}(t)$ изменяются на противоположные (см. (3) и (6)).

По этой причине, согласно (13), с учетом (3) и (6) в зависимости от значения коэффициента заполнения ρ , где $\rho \in [0, 1]$, при $N_{\Pi} = 4, 6, 8,...$ возможен один из следующих трех вариантов формирования косинусного ППК $r_{cos}(t)$ cosGBOCсигналов [9, 10]:

1-й вариант:
$$\tau_1 \le \tau_2$$
, т.е. $\rho \in \left[0, \frac{1}{2}\right]$; (18)

2-й вариант:
$$0.5\tau_1 \le \tau_2 \le \tau_1$$
, т.е. $\rho \in \left[\frac{1}{2}, \frac{2}{3}\right]$; (19)

3-й вариант:
$$0.5\tau_1 \ge \tau_2$$
, т.е. $\rho \in \left[\frac{2}{3}, 1\right]$. (20)

Как отмечали [9, 10], для cosGBOC-сигналов при $N_{\Pi} = 2$ в структуре косинусного символа $\mu_{cosGBOC-2}(t)$ положительные импульсы длительностью τ_1 не используются, поэтому в таком случае имеют место лишь два варианта формирования косинусного ППК $r_{cos}(t)$ при $\rho \in [0, 1]$:

1-й вариант:
$$0.5\tau_1 \le \tau_2$$
, т.е. $\rho \in \left[0, \frac{2}{3}\right]$; (21)

2-й вариант:
$$0.5\tau_1 \ge \tau_2$$
, т.е. $\rho \in \left[\frac{2}{3}, 1\right]$. (22)

Каждому варианту формирования косинусного ППК $r_{cos}(t)$ соsGBOC-сигналов соответствует свое аналитическое выражение КФ $R_{cosGBOC-N_{\Pi}}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{C}-cosGBOC}(t)$ соsGBOC-сигналов [10].

3. ОСНОВНЫЕ СООТНОШЕНИЯ ПО РАСЧЕТУ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ОДИНОЧНЫХ ЭЛЕМЕНТОВ МОДУЛИРУЮЩЕЙ ФУНКЦИИ cosGBOC-СИГНАЛОВ

При вычислении КФ cosGBOC-сигналов на основе обратного преобразования Фурье энергетического спектра основные соотношения по расчету статистических характеристик (корреляционных и спектральных) по существу во многом подобны случаю sinGBOC-сигналов [13].

Спектральная плотность (спектральная функция) $G_{cosGBOC}(\omega, \rho)$ одиночного элемента МФ $d_{\tau_{C}-cosGBOC}(t)$ cosGBOC-сигнала представляет собой прямое ПФ от этого элемента МФ [9, 13, 16, 17]:

$$G_{\text{cosGBOC}}(\omega, \rho) \triangleq \text{FT}\left\{d_{\tau_{\text{C}}\text{-}\text{cosGBOC}}(t)\right\} = \int_{-\infty}^{\infty} d_{\tau_{\text{C}}\text{-}\text{cosGBOC}}(t) \exp\left\{-i\omega t\right\} dt, \quad t_0 = 0,$$
(23)

где $FT{\cdot}$ – символ прямого П Φ .

Энергетический спектр (спектральная плотность мощности) $S_{cosGBOC}(\omega,\rho)$ одиночного элемента МФ $d_{\tau_{c}-cosGBOC}(t)$ cosGBOC-сигнала характеризуется соотношением [9, 13, 16, 17]

$$S_{\text{cosGBOC}}(\omega, \rho) \triangleq \frac{1}{\tau_{\text{C}}} \times$$

$$\times \left[G_{\text{cosGBOC}}(\omega, \rho) G_{\text{cosGBOC}}^{*}(\omega, \rho) \right],$$
(24)

где $G_{cosGBOC}^{*}(\omega, \rho)$ — комплексно-сопряженная спектральная плотность от $G_{GBOC}(\omega, \rho)$.

В соответствии с определением КФ для одиночного элемента МФ d_{τ_{C} -cosGBOC(t) cosGBOCсигнала, характеризуемого (12) и (13), можно записать [16, 17]

$$R_{\rm cosGBOC}(\tau,\rho) \triangleq \frac{1}{\tau_C} \times$$

$$\times \int_{0}^{\tau_C} d_{\tau_C - \cos GBOC}(t) d_{\tau_C - \cos GBOC}(t - \tau) dt,$$
(25)

где $R_{\cos GBOC}(\tau, \rho) - K\Phi$ одиночного элемента М Φ $d_{\tau_{C}-\cos GBOC}(t) \cos GBOC$ -сигнала; $\tau_{C} = 1/f_{C} - дли$ тельность элемента ПСП g(t); $|\tau| \le \tau_{C}$.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 1 2020

Согласно общему положению статистической радиотехники, КФ $R_{cosGBOC}(\tau,\rho)$ и соответствующий энергетический спектр $S_{cosGBOC}(\omega,\rho)$ одиночного элемента МФ $d_{\tau_{c}-cosGBOC}(t)$ соsGBOC-сигнала представляют собой пару ПФ (оригиналы и изображения) [16, 17].

В соответствии с этим выполняются следующие соотношения:

$$R_{\text{cosGBOC}}(\tau, \rho) = \text{FT}^{-1} \{ S_{\text{cosGBOC}}(\omega, \rho) \} =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{\text{cosGBOC}}(\omega, \rho) \exp\{i\omega\tau\} d\omega.$$

$$S_{\text{cosGBOC}}(\omega, \rho) = \text{FT} \{ R_{\text{cosGBOC}}(\tau, \rho) \} =$$

$$= \int_{-\infty}^{\infty} R_{\text{cosGBOC}}(\tau, \rho) \exp\{-i\omega\tau\} d\tau,$$
(27)

где $FT^{-1}{\cdot}$ – символ обратного П Φ .

Учитывая, что КФ $R_{cosGBOC}(\tau, \rho)$ и энергетический спектр $S_{cosGBOC}(\omega, \rho)$ представляют собой четные функции своих аргументов, формулы (26) и (27) принимают вид

$$R_{cosGBOC}(\tau,\rho) = FT^{-1} \{S_{cosGBOC}(\omega,\rho)\} =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{cosGBOC}(\omega,\rho) cos\omega\tau d\omega,$$

$$S_{cosGBOC}(\omega,\rho) = FT \{R_{cosGBOC}(\tau,\rho)\} =$$

$$= 2 \int_{0}^{\infty} R_{cosGBOC}(\tau,\rho) cos\omega\tau d\tau.$$
(29)

В статье [13] предложена методика расчета К Φ $R_{sinGBOC}(\tau, \rho)$ одиночных элементов М Φ $d_{\tau_{C}-sinGBOC}(t)$ sinGBOC-сигналов на основе обратного П Φ их энергетического спектра $S_{sinGBOC}(\omega, \rho)$. Распространим эту методику на cosGBOC-сигналы.

Суть методики, позволяющей получить аналитические выражения КФ $R_{cosGBOC}(\tau, \rho)$ одиночного элемента МФ $d_{\tau_c-cosGBOC}(t)$ соsGBOC-сигналов как обратное ПФ энергетического спектра $S_{cosGBOC}(\omega, \rho)$, состоит в том, что он представляется в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками (точками излома КФ $R_{cosGBOC}(\tau, \rho)$) косинусного символа МФ $\mu_{cosGBOC-N_{\Pi}}(t)$ (13). При таком представлении энергетического спектра $S_{cosGBOC}(\omega, \rho)$ последующее вычисление оригиналов по изображениям затруднений не вызывает. Пары ПФ (оригиналы и изображения), которые необходимы для получения аналитических выражений КФ $R_{cosGBOC}(\tau, \rho)$, представлены в табл. 1 [4, 12, 17].

Оригинал	Изображение
$R(\tau) = \mathrm{FT}^{-1}\{S(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) \exp\{i\omega\tau\} d\omega$	$S(\omega) = \mathrm{FT}\left\{R(\tau)\right\} = \int_{-\infty}^{\infty} R(\tau) \exp\left\{-i\omega\tau\right\} d\tau$
$\frac{1}{2}[\delta(\tau+T)+\delta(\tau-T)]$	$\cos \omega T$
$sign(\tau)$	$\frac{2}{i\omega}$
au''	$i^n 2\pi \delta^{(n)}(\omega)$
τ	$i2\pi\delta^{(1)}(\omega)$
$\tau \operatorname{sign}(\tau)$	$-\frac{2}{\omega^2}$
$-\frac{1}{2}\tau \operatorname{sign}(\tau)$	$\frac{1}{\omega^2}$
$-\frac{1}{4}(\tau+bT)\operatorname{sign}(\tau+bT) - \frac{1}{4}(\tau-bT)\operatorname{sign}(\tau-bT)$	$\frac{1}{\omega^2}\cos b\omega T$

Таблица 1. Пары преобразований Фурье

Примечание: $\delta^{(n)}(\omega) - n$ -я производная дельта-функции Дирака $\delta(\omega)$, $\delta^{(1)}(\omega) - 1$ -я производная дельта-функции Дирака $\delta(\omega)$, (1 при z > 0;

sign $z = \begin{cases} 0 & \text{при } z = 0; - \phi \text{ункция "сигнум".} \\ -1 & \text{при } z < 0. \end{cases}$

Далее получим аналитические выражения КФ $R_{cosGBOC}(\tau, \rho)$ одиночных элементов МФ $d_{\tau_{C}-cosGBOC}(t)$ соsGBOC-сигналов на основе формулы (28) как обратное ПФ энергетических спектров $S_{cosGBOC}(\omega, \rho)$ при коэффициенте кратности импульсов $N_{\Pi} = 2$ и 4 для различных значений коэффициента заполнения ρ , где $\rho \in [0, 1]$.

4. КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ ОДИНОЧНЫХ ЭЛЕМЕНТОВ МОДУЛИРУЮЩЕЙ ФУНКЦИИ cosGBOC-СИГНАЛОВ

Применительно к cosGBOC-сигналам энергетический спектр $S_{cosGBOC}(f,\rho)$ одиночного элемента МФ $d_{\tau_{C}-cosGBOC}(t)$, характеризуемого (12) и (13), при произвольном значении коэффициента кратности импульсов N_{Π} определяется следующей формулой [9]:

$$S_{\cos GBOC-N_{\Pi}}(f,\rho) = \frac{1}{f_{C}} \frac{\sin^{2}\left(\frac{\pi f}{f_{C}}\right)}{\left(\frac{\pi f}{f_{C}}\right)^{2} \sin^{2}\left(\frac{2\pi f}{N_{\Pi}f_{C}}\right)} \times \left[2\sin\left(\rho\frac{\pi f}{N_{\Pi}f_{C}}\right)\cos\left((2-\rho)\frac{\pi f}{N_{\Pi}f_{C}}\right) - (30) - \sin\left((1-\rho)\frac{2\pi f}{N_{\Pi}f_{C}}\right)\right]^{2},$$

где $f_{\rm C}$ – частота следования символов ПСП g(t) (8); $N_{\Pi} = 2, 4, 6, \dots$ – коэффициент кратности импульсов, характеризуемый (11); $\rho \in [0, 1]$ – коэффициент заполнения (5).

Методика вычисления аналитических выражений КФ $R_{cosGBOC}(\tau,\rho)$ одиночных элементов МФ $d_{\tau_{C}-cosGBOC}(t)$ на основе обратного ПФ (28) энергетических спектров $S_{cosGBOC}(f,\rho)$ (30) применительно к cosGBOC-сигналам в случаях $N_{\Pi} = 2$ и 4 по существу одинакова.

4.1. Корреляционная функция R_{cosGBOC-2}(τ,ρ) одиночного элемента модулирующей функции cosGBOC-сигнала с коэффициентом кратности импульсов N_Π = 2

При коэффициенте кратности импульсов $N_{\Pi} = 2$ энергетический спектр $S_{\cos GBOC-2}(f,\rho)$ одиночного элемента МФ $d_{\tau_{C}-\cos GBOC-2}(t)$ соsGBOC-сигналов, согласно (30), описывается следующим выражением:

$$S_{\cos GBOC-2}(f,\rho) = \frac{1}{f_{\rm C}} \frac{1}{\left(\frac{\pi f}{f_{\rm C}}\right)^2} \times$$

$$\times \left[2\sin \rho \frac{\pi f}{2f_{\rm C}} \cos(2-\rho) \frac{\pi f}{2f_{\rm C}} - \sin(1-\rho) \frac{\pi f}{f_{\rm C}} \right]^2,$$
(31)

где $\rho \in [0, 1], N_{\Pi} = 2, \tau_{C} = T_{\Pi}.$

В соответствии с предложенной методикой (по аналогии с sinGBOC-сигналами [13]) представим энергетический спектр $S_{cosGBOC-2}(f,\rho)(31)$ при $N_{\Pi} = 2$ в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками косинусного символа МФ $\mu_{cosGBOC-2}(t)$ (16) cosGBOC-сигналов (т.е. точками излома КФ $R_{cosGBOC-2}(\tau,\rho)$).

В таком случае формула (31) принимает следующий вид:

$$S_{\cos GBOC-2}(\omega, \rho) = \frac{2}{\omega^2 \tau_C} \sum_{i=0}^4 h_i \cos_i \omega \tau_C, \qquad (32)$$

где $\rho \in [0, 1], N_{\Pi} = 2, \tau_C = T_{\Pi}, \omega = 2\pi f$, а коэффициенты h_i и g_i $(i = \overline{0, 4})$ представлены в табл. 2.

Видно, что формула (32) совпадает с соответствующим выражением для энергетического спектра $S_{\cos GBOC-2}(\omega, \rho)$ из работы [10, ф-ла (38)].

Найдем КФ $R_{cosGBOC-2}(\tau, \rho)$ (25) одиночного элемента МФ $d_{\tau_c-cosGBOC-2}(t)$ (см. (12) и (16)) cosGBOC – сигналов с коэффициентом кратности импульсов $N_{\Pi} = 2$ как обратное ПФ (28) энергетического спектра $S_{cosGBOC-2}(\omega, \rho)$ (32).

Подставив (32) в (28), получим

$$R_{\cos GBOC-2}(\tau,\rho) = FT^{-1} \{S_{\cos GBOC-2}(\omega,\rho)\} =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{\cos GBOC-2}(\omega,\rho) \cos \omega \tau d\omega =$$

$$= FT^{-1} \{\frac{2}{\omega^{2}\tau_{C}} \sum_{i=0}^{4} h_{i} \cos g_{i} \omega \tau_{C}\} =$$

$$= \frac{2}{\tau_{C}} \sum_{i=0}^{4} h_{i} FT^{-1} \{\frac{1}{\omega^{2}} \cos g_{i} \omega \tau_{C}\}.$$
(33)

Оригиналы $FT^{-1}\left\{\frac{1}{\omega^2}\cos g_i\omega \tau_C\right\}$, где $i = \overline{0, 4}$, приведены в табл. 1 и имеют вид

$$FT^{-1}\left\{\frac{1}{\omega^{2}}\cos g_{i}\omega\tau_{C}\right\} = -\frac{1}{4}(\tau + g_{i}\tau_{C})\operatorname{sign}(\tau + g_{i}\tau_{C}) - \frac{1}{4}(\tau - g_{i}\tau_{C})\operatorname{sign}(\tau - g_{i}\tau_{C}),$$
(34)

коэффициенты g_i (i = 0, 4) приведены в табл. 2.

Входящая в формулу (34) функция "сигнум" *z* (см. табл. 1) имеет вид

sign
$$z = \begin{cases} 1 & \Pi p \mu & z > 0; \\ 0 & \Pi p \mu & z = 0; \\ -1 & \Pi p \mu & z < 0. \end{cases}$$
 (35)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 1 2020

Таблица 2. Коэффициенты формулы энергетического спектра $S_{cosGBOC-2}(\omega, \rho)$

i	h_i	g_i
0	5	0
1	- 1	1
2	— 4	0.5ρ
3	- 4	$1 - \rho$
4	4	$1 - 0.5\rho$

Подставив (34) в (33), находим, что К Φ $R_{cosGBOC-2}(\tau, \rho)$ равна

$$R_{\cos GBOC-2}(\tau, \rho) = -\frac{1}{2} \times \\ \times \sum_{i=0}^{4} h_i \left\{ \frac{\tau}{\tau_C} \left[\operatorname{sign}(\tau + g_i \tau_C) + \operatorname{sign}(\tau - g_i \tau_C) \right] + (36) \right. \\ \left. + g_i \left[\operatorname{sign}(\tau + g_i \tau_C) - \operatorname{sign}(\tau - g_i \tau_C) \right] \right\},$$

где $\rho \in [0, 1], N_{\Pi} = 2, \tau_{C} = T_{\Pi}$, а коэффициенты h_{i} и g_{i} ($i = \overline{0, 4}$) приведены в табл. 2.

Для cosGBOC-сигналов при $N_{\Pi} = 2$ в зависимости от значения коэффициента заполнения ρ , где $\rho \in [0, 1]$, возможен, как отмечали (см. (21) и (22)), один из двух вариантов формирования ко-синусного ППК $r_{cos}(t)$.

Так, 1-й вариант формирования косинусного ППК $r_{cos}(t)$ соsGBOC-сигналов при $N_{\Pi} = 2$ (21) соответствует условию, что $0.5\tau_1 \le \tau_2$, т.е. $\rho \in \left[0, \frac{2}{3}\right]$, и 2-й вариант формирования косинусного ППК $r_{cos}(t)$ соsGBOC-сигналов при $N_{\Pi} = 2$ (22) соответствует условию, что $0.5\tau_1 \ge \tau_2$, т.е. $\rho \in \left[\frac{2}{3}, 1\right]$.

Каждому варианту формирования косинусного ППК $r_{cos}(t)$ присуща своя последовательность чередования характерных точек КФ $R_{cosGBOC-2}(\tau,\rho)$ на оси времени смещения τ (т.е. точек излома КФ $R_{cosGBOC-2}(\tau,\rho)$) и соответственно свое аналитическое выражение КФ $R_{cosGBOC-2}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{c}-cosGBOC-2}(t)$ соsGBOC-сигналов [10].

Согласно предложенной методике с учетом значений функции "сигнум" (35) произведем вычисления в формуле (36) отдельно для 1-го и 2-го вариантов формирования косинусного ППК $r_{cos}(t)$.

В результате находим, что КФ $R_{cosGBOC-2}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{C}-cosGBOC-2}(t)$ соsGBOCсигналов с коэффициентом кратности импульсов

Рис. 3. Корреляционные функции $R_{cosGBOC-2}(\tau, \rho)$ одиночного элемента модулирующей функции cosGBOC-сигнала с коэффициентом кратности импульсов $N_{\Pi} = 2$ при $\rho \in \left[0, \frac{2}{3}\right]$ (a) и $\rho \in \left[\frac{2}{3}, 1\right]$ (б).

 $N_{\Pi} = 2$ характеризуется следующими соотношениями:

$$R_{\cos GBOC-2}(\tau, \rho) = = \begin{cases} R_{\cos GBOC-2-1}(\tau, \rho) & при & 0 \le \rho \le \frac{2}{3}, \\ R_{\cos GBOC-2-2}(\tau, \rho) & при & \frac{2}{3} \le \rho \le 1. \end{cases}$$
(37)

Входящие в формулу (37) КФ $R_{cosGBOC-2-1}(\tau, \rho)$ и $R_{cosGBOC-2-2}(\tau, \rho)$ равны соответственно

$$\begin{split} R_{\cos GBOC-2-1}(\tau,\rho) = \\ \left\{ \begin{aligned} 1 - 5\frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ 0 \leq |\tau| \leq 0.5\rho\tau_{\rm C}, \\ 1 - 2\rho - \frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ 0.5\rho\tau_{\rm C} \leq |\tau| \leq (1-\rho)\tau_{\rm C}, \\ -3 + 2\rho + 3\frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ (1-\rho)\tau_{\rm C} \leq |\tau| \leq (1-0.5\rho)\tau_{\rm C}, \\ 1 - \frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ (1-\rho)\tau_{\rm C} \leq |\tau| \leq \tau_{\rm C}, \\ 1 - \frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ (1-0.5\rho)\tau_{\rm C} |\tau| \leq \tau_{\rm C}, \\ \end{bmatrix} \\ r \mu \rho \in \left[0, \frac{2}{3} \right], N_{\Pi} = 2, \tau_{\rm C} = T_{\Pi}; \\ R_{\cos GBOC-2-2}(\tau, \rho) = \\ \left\{ \begin{aligned} 1 - 5\frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ 0 \leq |\tau| \leq (1-\rho)\tau_{\rm C}, \\ -3 + 4\rho - \frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ (1-\rho)\tau_{\rm C} \leq |\tau| \leq 0.5\rho\tau_{\rm C}, \\ -3 + 2\rho + 3\frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ 0.5\rho\tau_{\rm C} \leq |\tau| \leq (1-0.5\rho)\tau_{\rm C}, \\ 1 - \frac{|\tau|}{\tau_{\rm C}} & \Pi p \mu \ \ (1-0.5\rho)\tau_{\rm C} \leq |\tau| \leq \tau_{\rm C}, \\ 0 & \Pi p \mu \ \ |\tau| \geq \tau_{\rm C}, \end{aligned} \right.$$

где $\rho \in \left[\frac{2}{3}, 1\right], N_{\Pi} = 2, \tau_{C} = T_{\Pi}.$

В формулах (37)–(39) и далее, характеризующих КФ $R_{cosGBOC-2-1}(\tau,\rho)$ и $R_{cosGBOC-2-2}(\tau,\rho)$, последние цифры в индексах означают, что рассматривается 1-й или 2-й вариант формирования косинусного ППК $r_{cos}(t)$ cosGBOC-сигналов.

Формулы (37)–(39), как и следовало ожидать, совпадают с соответствующими выражениями для КФ $R_{cosGBOC-2}(\tau,\rho)$ из [10] (см. (30)–(32)), которые получены другим методом (на основе общего определения КФ и без использования энергетического спектра).

На рис. За и Зб представлены графики КФ $R_{cosGBOC-2}(\tau, \rho)$, построенные согласно (37)–(39), для одиночного элемента МФ $d_{\tau_{C}-cosGBOC-2}(t)$ соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 2$ при различных значениях ко-эффициента заполнения ρ : а) при $\rho \in \left[0, \frac{2}{3}\right]$, б) при $\rho \in \left[\frac{2}{3}, 1\right]$. На этих же рисунках изображены графики КФ $R_{cosBOC-2}(\tau)$ и $R_{BPSK}(\tau)$ соответствую-

щих cosBOC-сигналов (штриховые линии) и BPSK-сигналов (штрихпунктирные линии).

Графики на рис. За характеризуют КФ $R_{cosGBOC-2}(\tau,\rho)$ соsGBOC-сигналов при $\rho = 0.3$ (сплошная линия) и 0.45 (пунктирная линия), на рис. Зб – при $\rho = 2/3$ (сплошная линия) и 0.9 (пунктирная линия). Все КФ $R_{cosGBOC-2}(\tau,\rho)$ на рис. За и Зб являются нормированными. Особенности КФ $R_{cosGBOC-2}(\tau,\rho)$ обсуждаются в [10].

4.2. Корреляционная функция R_{cosGBOC-4}(τ,ρ) одиночного элемента модулирующей функции cosGBOC-сигнала с коэффициентом кратности импульсов N_Π = 4

Энергетический спектр $S_{cosGBOC-4}(f,\rho)$ (24) одиночного элемента МФ $d_{\tau_c-cosGBOC-4}(t)$, характеризуемого (12) и (17), cosGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 4$, в соответствии с (30), имеет вид

$$S_{\text{cosGBOC}-4}(f,\rho) = \frac{1}{f_{\text{C}}} \frac{\cos^2 \frac{\pi f}{2f_{\text{C}}}}{\left(\frac{\pi f}{2f_{\text{C}}}\right)^2} \times$$
(40)

$$\times \left[2\sin\rho\frac{\pi f}{4f_{\rm C}}\cos(2-\rho)\frac{\pi f}{4f_{\rm C}}-\sin(1-\rho)\frac{\pi f}{2f_{\rm C}}\right]^2,$$

где $\rho \in [0, 1], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi}.$

Согласно предложенной методике, чтобы получить аналитическое выражение КФ $R_{cosGBOC-4}(\tau, \rho)$ (25) одиночного элемента МФ $d_{\tau_{C}-cosGBOC-4}(t)$ соsGBOC-сигналов, представим энергетический спектр $S_{cosGBOC-4}(f,\rho)$ (40) при $N_{\Pi} = 4$ (по аналогии с sinGBOC-сигналами [13]) в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками косинусного символа МФ $\mu_{cosGBOC-4}(t)$ (17) (т.е. точками излома КФ $R_{cosGBOC-4}(\tau,\rho)$). В таком случае находим, что формула энергетического спектра $S_{cosGBOC-4}(f,\rho)$ (40) может быть записана в следующем виде:

$$S_{\cos GBOC-4}(\omega, \rho) = \frac{1}{\omega^2 T_{\Pi}} \sum_{i=0}^{9} h_i \cos g_i \omega T_{\Pi}, \qquad (41)$$

где $\rho \in [0, 1], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi}, \omega = 2\pi f$, а коэффициенты h_{i} и g_{i} $(i = \overline{0,9})$ представлены в табл. 3.

Видно, что формула (41) совпадает с соответствующим выражением для энергетического спектра $S_{cosGBOC-4}(\omega, \rho)$ из [10] (см. ф-ла (54)).

Таблица 3. Коэффициенты формулы энергетического спектра $S_{\cos GBOC-4}(\omega, \rho)$

i	h _i	<i>gi</i>
0	9	0
1	- 4	0.5ρ
2	— 4	ρ
3	- 8	$1 - \rho$
4	8	1
5	4	1 – 0.5p
6	— 4	1 + 0.5ρ
7	— 4	$2 - \rho$
8	4	2 – 0.5p
9	- 1	2

Далее получим КФ $R_{cosGBOC-4}(\tau, \rho)$ (25) при $N_{\Pi} = 4$ как обратное ПФ энергетического спектра $S_{cosGBOC-4}(\omega, \rho)$ (41). Подставив (41) в (28), получим

$$R_{\cos GBOC-4}(\tau,\rho) = \mathrm{FT}^{-1} \{S_{\cos GBOC-4}(\omega,\rho)\} =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{\cos GBOC-4}(\omega,\rho) \cos \omega \tau d\omega =$$

$$= \mathrm{FT}^{-1} \{\frac{1}{\omega^{2} T_{\Pi}} \sum_{i=0}^{9} h_{i} \cos g_{i} \omega T_{\Pi}\} =$$

$$= \frac{1}{T_{\Pi}} \sum_{i=0}^{9} h_{i} \mathrm{FT}^{-1} \{\frac{1}{\omega^{2}} \cos g_{i} \omega T_{\Pi}\}.$$
(42)

Оригиналы FT⁻¹ $\left\{ \frac{1}{\omega^2} \cos g_i \omega T_{\Pi} \right\}$, где $i = \overline{0,9}$, входящие в (42), приведены в табл. 1 и имеют вид

$$\operatorname{FT}^{-1}\left\{\frac{1}{\omega^{2}}\cos g_{i}\omega T_{\Pi}\right\} = -\frac{1}{4}(\tau + g_{i}T_{\Pi})\operatorname{sign}(\tau + g_{i}T_{\Pi}) - \frac{1}{4}(\tau - g_{i}T_{\Pi})\operatorname{sign}(\tau - g_{i}T_{\Pi}),$$

$$(43)$$

коэффициенты g_i ($i = \overline{0,9}$) приведены в табл. 3.

Подставив (43) в (42), после вычислений находим, что КФ $R_{cosGBOC-4}(\tau, \rho)$ равна

$$R_{\cos GBOC-4}(\tau,\rho) =$$

$$= -\frac{1}{4} \sum_{i=0}^{9} h_i \left\{ \frac{\tau}{T_{\Pi}} [\operatorname{sign}(\tau + g_i T_{\Pi}) + \operatorname{sign}(\tau - g_i T_{\Pi})] + g_i [\operatorname{sign}(\tau + g_i T_{\Pi}) - \operatorname{sign}(\tau - g_i T_{\Pi})] \right\},$$
(44)

где $\rho \in [0, 1], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi}$, а коэффициенты h_{i} и g_{i} ($i = \overline{0, 9}$) приведены в табл. 3.

Для соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 4$ в зависимости от значения коэффициента заполнения ρ , где $\rho \in [0, 1]$, возможен, как отмечали (см. (18)–(20)), один из трех вариантов формирования косинусного ППК $r_{cos}(t)$ [10]. Так, 1-й вариант (18) соответствует условию, что $\tau_1 \le \tau_2$, т.е. $\rho \in \left[0, \frac{1}{2}\right]$; 2-й вариант (19) соответствует условию, что $0.5\tau_1 \le \tau_2 \le \tau_1$, т.е. $\rho \in \left[\frac{1}{2}, \frac{2}{3}\right]$; 3-й вариант (20) соответствует условию, что $\tau_2 \le 0.5\tau_1$, т.е. $\rho \in \left[\frac{2}{3}, 1\right]$.

Каждому варианту формирования косинусного ППК $r_{cos}(t)$ присуща своя последовательность чередования характерных точек КФ $R_{cosGBOC-4}(\tau, \rho)$

на оси времени смещения τ (т.е. точек излома КФ) и, соответственно, свое аналитическое выражение КФ $R_{cosGBOC-4}(\tau,\rho)$ [10].

В соответствии с используемой методикой (аналогично случаю при $N_{\Pi} = 2$) произведем с учетом (35) вычисления в формуле (44) отдельно для каждого варианта формирования косинусно-го ППК $r_{cos}(t)$.

В результате находим, что КФ $R_{cosGBOC-4}(\tau,\rho)$ одиночного элемента МФ $d_{\tau_{C}-cosGBOC-4}(t)$ соsGBOCсигналов с коэффициентом кратности импульсов $N_{\Pi} = 4$ характеризуется следующими соотношениями:

$$R_{\cos GBOC-4}(\tau, \rho) = = \begin{cases} R_{\cos GBOC-4-1}(\tau, \rho) & \text{при } 0 \le \rho \le \frac{1}{2}, \\ R_{\cos GBOC-4-2}(\tau, \rho) & \text{при } \frac{1}{2} \le \rho \le \frac{2}{3}, \\ R_{\cos GBOC-4-3}(\tau, \rho) & \text{при } \frac{2}{3} \le \rho \le 1. \end{cases}$$
(45)

Входящие в формулу (45) КФ $R_{cosGBOC-4-1}(\tau,\rho)$, $R_{cosGBOC-4-2}(\tau,\rho)$ и $R_{cosGBOC-4-3}(\tau,\rho)$ равны соответственно:

$$R_{\text{cosGBOC}-4-1}(\tau, \rho) = \begin{cases} 1 - 4.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ 0 \le |\tau| \le 0.5 \rho T_{\Pi}, \\ 1 - \rho - 2.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ 0.5 \rho T_{\Pi} \le |\tau| \le \rho T_{\Pi}, \\ 1 - 3\rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ \rho T_{\Pi} \le |\tau| \le (1 - \rho)T_{\Pi}, \\ -3 + \rho + 3.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ (1 - \rho)T_{\Pi} \le |\tau| \le (1 - 0.5\rho)T_{\Pi}, \\ -1 + 1.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ (1 - 0.5\rho)T_{\Pi} \le |\tau| \le T_{\Pi}, \\ 3 - 2.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ (1 - 0.5\rho)T_{\Pi} \le |\tau| \le (2 - \rho)T_{\Pi}, \\ 1 - \rho - 0.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ (1 + 0.5\rho)T_{\Pi} \le |\tau| \le (2 - \rho)T_{\Pi}, \\ -3 + \rho + 1.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ (2 - \rho)T_{\Pi} \le |\tau| \le (2 - 0.5\rho)T_{\Pi}, \\ 1 - 0.5 \frac{|\tau|}{T_{\Pi}} & \Pi \rho u \ (2 - 0.5\rho)T_{\Pi} \le |\tau| \le 2T_{\Pi} = \tau_{C}, \\ 0 & \Pi \rho u \ |\tau| \ge 2T_{\Pi} = \tau_{C}, \end{cases}$$

где $\rho \in \left[0, \frac{1}{2}\right], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi};$

$$R_{\text{cosGBOC}-4-2}(\tau,\rho) = \begin{cases} 1-4.5\frac{|\tau|}{T_{\Pi}} & \text{при } 0 \le |\tau| \le 0.5\rho T_{\Pi}, \\ 1-\rho-2.5\frac{|\tau|}{T_{\Pi}} & \text{при } 0.5\rho T_{\Pi} \le |\tau| \le (1-\rho)T_{\Pi}, \\ -3+3\rho+1.5\frac{|\tau|}{T_{\Pi}} & \text{при } (1-\rho)T_{\Pi} \le |\tau| \le \rho T_{\Pi}, \\ -3+\rho+3.5\frac{|\tau|}{T_{\Pi}} & \text{при } \rho T_{\Pi} \le |\tau| \le (1-0.5\rho)T_{\Pi}, \\ -1+1.5\frac{|\tau|}{T_{\Pi}} & \text{при } (1-0.5\rho)T_{\Pi} \le |\tau| \le T_{\Pi}, \\ 3-2.5\frac{|\tau|}{T_{\Pi}} & \text{при } T_{\Pi} \le |\tau| \le (1+0.5\rho)T_{\Pi}, \\ 1-\rho-0.5\frac{|\tau|}{T_{\Pi}} & \text{при } (1+0.5\rho)T_{\Pi} \le |\tau| \le (2-\rho)T_{\Pi}, \\ -3+\rho+1.5\frac{|\tau|}{T_{\Pi}} & \text{при } (2-\rho)T_{\Pi} \le |\tau| \le (2-0.5\rho)T_{\Pi}, \\ 1-0.5\frac{|\tau|}{T_{\Pi}} & \text{при } (2-0.5\rho)T_{\Pi} \le |\tau| \le 2T_{\Pi} = \tau_{C}, \\ 0 & \text{при } |\tau| \ge 2T_{\Pi} = \tau_{C}, \end{cases}$$

где
$$\rho \in \left[\frac{1}{2}, \frac{2}{3}\right], N_{\Pi} = 4, \tau_{C} = 2T_{\Pi};$$

$$R_{\text{cosGBOC}-4-3}(\tau,\rho) = \begin{cases} 1-4.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad 0 \le |\tau| \le (1-\rho)T_{\Pi}, \\ -3+4\rho - 0.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad (1-\rho)T_{\Pi} \le |\tau| \le 0.5\rho T_{\Pi} \\ -3+3\rho + 1.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad 0.5\rho T_{\Pi} \le |\tau| \le (1-0.5\rho)T_{\Pi}, \\ -1+2\rho - 0.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad (1-0.5\rho)T_{\Pi} \le |\tau| \le \rho T_{\Pi}, \\ -1+1.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad \rho T_{\Pi} \le |\tau| \le T_{\Pi}, \\ 3-2.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad T_{\Pi} \le |\tau| \le (2-\rho)T_{\Pi}, \\ -1+2\rho - 0.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad (2-\rho)T_{\Pi} \le |\tau| \le (1+0.5\rho)T_{\Pi}, \\ -3+\rho+1.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad (1+0.5\rho)T_{\Pi} \le |\tau| \le (2-0.5\rho)T_{\Pi}, \\ 1-0.5\frac{|\tau|}{T_{\Pi}} & \Pi p \mu \quad (2-0.5\rho)T_{\Pi} \le |\tau| \le 2T_{\Pi} = \tau_{C}, \\ 0 & \Pi p \mu \quad |\tau| \ge 2T_{\Pi} = \tau_{C}, \end{cases}$$

где $\rho \in \left[\frac{2}{3}, 1\right] N_{\Pi} = 4, \tau_{C} = 2T_{\Pi}.$

Рис. 4. Корреляционные функции $R_{cosGBOC-4}(\tau, \rho)$ одиночного элемента модулирующей функции cosGBOC-сигнала с коэффициентом кратности импульсов $N_{\Pi} = 4$ при $\rho \in \left[0, \frac{1}{2}\right]$ (а), $\rho \in \left[\frac{1}{2}, \frac{2}{3}\right]$ (б) и $\rho \in \left[\frac{2}{3}, 1\right]$ (в).

Как и следовало ожидать, формулы (45)–(48), совпадают с соответствующими выражениями для КФ $R_{cosGBOC-4}(\tau, \rho)$ из [10], которые получены другим методом (на основе общего определения КФ и без использования энергетического спектра).

На рис. 4а–4в согласно (45)–(48) представлены графики КФ $R_{cosGBOC-4}(\tau, \rho)$ для одиночного элемента МФ $d_{\tau_c-cosGBOC-4}(t)$ cosGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 4$ при различных значениях коэффициента заполнения ρ , где $\rho \in [0, 1]$ (при $\rho \in \left[0, \frac{1}{2}\right]$ – рис. 4а, при $\rho \in \left[\frac{1}{2}, \frac{2}{3}\right]$ – рис. 4б и при $\rho \in \left[\frac{2}{3}, 1\right]$ – рис. 4в). На этих же рисунках изображены графики КФ $R_{\text{BPSK}}(\tau)$ BPSK-сигналов (штрихпунктирные). На рис. 4а–4в представлены графики К Φ $R_{cosGBOC-4}(\tau, \rho)$ cosGBOC-сигналов при различных ρ :

а) $\rho = 0.45$ (сплошная кривая), $\rho = 0.3$ (штриховая) и $\rho = 0.5$ (пунктирная) (случай соответствующих cosBOC-сигналов);

б) ρ = 2/3 (сплошная) и ρ = 0.55 (штриховая);

в) $\rho = 0.9$ (сплошная), $\rho = 0.75$ (штриховая) и при $\rho = 2/3$ (пунктирная).

Все КФ $R_{cosGBOC-4}(\tau, \rho)$ на рис. 4а–4в являются нормированными.

Особенности КФ $R_{cosGBOC-4}(\tau, \rho)$ cosGBOCсигналов рассматриваются в [10].

ЗАКЛЮЧЕНИЕ

Шумоподобные cosGBOC-сигналы, являющиеся обобщением cosBOC-сигналов, предназначены для применения в перспективных глобальных СРНС) таких, как GPS (США), Galileo (ЕС), ГЛОНАСС (Россия) и BeiDou (Китай).

Основной научный результат работы состоит в том, что предложенная в [13] методика вычисления КФ одиночных элементов МФ sinGBOCсигналов на основе обратного ПФ энергетических спектров распространена на cosGBOC-сигналы, и этим способом получены аналитические выражения КФ $R_{cosGBOC-N_{\Pi}}(\tau, \rho)$ одиночных элементов МФ $d_{\tau_{C}-cosGBOC}(t)$ соsGBOC-сигналов с коэффициентом кратности импульсов $N_{\Pi} = 2$ и 4 для различных значений коэффициента заполнения ρ , где $\rho \in [0, 1]$.

В основе методики лежит представление энергетического спектра GBOC-сигналов в виде взвешенной алгебраической суммы косинусов углов, определяемых характерными точками синусного символа $M\Phi \mu_{GBOC}(t)$ (т.е. точками излома $K\Phi$).

Полученные аналитические выражения КФ $R_{cosGBOC-2}(\tau, \rho)$ и $R_{cosGBOC-4}(\tau, \rho)$, как и следовало ожидать, совпадают с соответствующими формулами из [10], найденными другим методом (на основе общего определения КФ и без использования энергетических спектров).

Вычисление КФ $R_{cosGBOC-N_{\Pi}}(\tau, \rho)$ путем обратного ПФ энергетических спектров $S_{cosGBOC-N_{\Pi}}(\omega, \rho)$ в ряде случаев оказывается более предпочтительным при сравнении со способом получения КФ на основе их общего определения.

По изложенной методике аналогичным образом можно получить аналитические выражения КФ $R_{cosGBOC-N_{\Pi}}(\tau, \rho)$ одиночных элементов МФ cosGBOC-сигналов при любом другом значении коэффициента кратности импульсов N_{Π} , где $N_{\Pi} = 2, 4, 6,$ Располагая аналитическими выражениями КФ $R_{cosGBOC-N_{n}}(\tau,\rho)$ одиночных элементов МФ соsGBOC-сигналов, удается осознанно преодолевать трудности при разработке навигационной аппаратуры потребителей (в частности, дискриминаторов) с целью обеспечения, по возможности, однозначного слежения за основным пиком КФ и минимизации вероятности захвата ее боковых (ложных) пиков. Для СРНС грядущего поколения на этой же основе можно в принципе количественно рассчитать потенциальные характеристики точности слежения за ПСП дальномерного кода и оценить разрешающую способность сигналов в условиях многолучевости и при действии помех различного рода.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Betz J.W.* // Proc. National Technical Meeting of the Institute of Navigation (ION NTM'99), January 1999. P. 639.
- Betz J.W. // Navigation, J. ION. 2001. V. 48. № 4. P. 227.
- 3. *Hein G.W., Godet J., Issler J.-L. et al.* // Proc. Institute of Navigation Global Positioning System Meeting (ION GPS 2002). Portland. USA. 24–27 Sep. 2002. Fairfax: ION, 2002. P. 266.
- Ярлыков М.С. Меандровые шумоподобные сигналы (ВОС-сигналы) и их разновидности в спутниковых радионавигационных системах. М.: Радиотехника, 2017.
- Liu W., Hu Y., Zhan X.Q. // Electronics Lett. 2012. V. 48. № 5. P. 284.
- 6. *Liu W., Hu Y.* // J. Communications Technology and Electronics. 2014. V. 59. № 11. P. 1206.
- 7. Ярлыков М.С. // РЭ. 2017. Т. 62. № 10. С. 964.
- 8. Ярлыков М.С., Ярлыкова С.М. // РЭ. 2018. Т. 63. № 2. С. 157.
- 9. Ярлыков М.С. // РЭ. 2018. Т. 63. № 8. С. 808.
- 10. Ярлыков М.С., Ярлыкова С.М. // РЭ. 2019. Т. 64. № 7. С. 694.
- 11. Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985.
- 12. Ярлыков М.С. // РЭ. 2016. Т. 61. № 8. С. 725.
- 13. Ярлыков М.С. // РЭ. 2019. Т. 64. № 8. С. 775.
- Global Positioning Systems Directorate. Systems Engineering and Integration. Interface Specification IS GPS – 200. – Navstar GPS Space Segment/Navigation User Interfaces, IS – GPS –200G, 05 September 2012.
- Шебшаевич В.С., Дмитриев П.П., Иванцевич Н.В. и др. Сетевые спутниковые радионавигационные системы. 2-е изд. М.: Радио и связь, 1993.
- Тихонов В.И. Статистическая радиотехника. 2-е изд. М.: Сов. радио, 1982.
- Стеценко О.А. Радиотехнические цепи и сигналы. М.: Высшая школа, 2007.