_ РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ

УЛК 537.311.322

ЭФФЕКТ ФРЕНКЕЛЯ—ПУЛА ПРИ ИОНИЗАЦИИ АКЦЕПТОРНОЙ ПРИМЕСИ БОРА В АЛМАЗЕ В СИЛЬНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

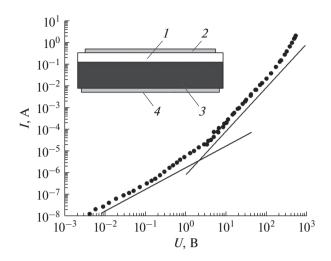
© 2020 г. И. В. Алтухов^а, М. С. Каган^а, С. К. Папроцкий^{а, *}, Н. А. Хвальковский^а, Н. Б. Родионов^b, А. П. Большаков^c, В. Г. Ральченко^c, Р. А. Хмельницкий^d

^аИнститут радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая 11, стр. 7, Москва, 125009 Российская Федерация ^bГосударственный научный центр Российской Федерации, Троицкий институт инновационных и термоядерных исследований, ул. Пушковых, 12, Москва, Троицк, 108840 Российская Федерация ^сИнститут общей физики им. А.М. Прохорова РАН, ул. Вавилова, 38, Москва, 119991 Российская Федерация ^dФизический институт им. П.Н. Лебедева РАН, Ленинский просп., 53, Москва, 119991 Российская Федерация *E-mail: s.paprotskiy@gmail.com
Поступила в редакцию 10.01.2020 г.
После доработки 10.01.2020 г.
Принята к публикации 15.02.2020 г.

Исследована проводимость эпитаксиальных алмазных пленок, слабо легированных бором, в сильном электрическом поле вплоть до \sim 5 × 10⁵ B/cм. Показано, что при комнатной температуре из-за малой концентрации свободных дырок и большой энергии связи бора в алмазе ионизация происходит за счет эффекта Френкеля—Пула.

DOI: 10.31857/S0033849420110029

ВВЕДЕНИЕ

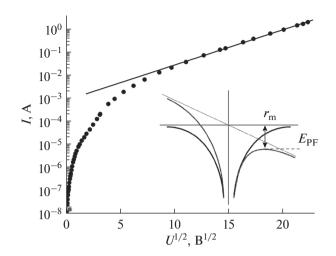

Бор — основная акцепторная примесь в алмазе, которая может сравнительно легко вводиться в большой концентрации. В отличие от германия и кремния, где бор — мелкий акцептор, в алмазе его энергия ионизации ~370 мэВ, что сильно затрудняет использование алмаза для прикладных задач электроники [1]. Даже при комнатной температуре только 1...2% атомов бора ионизуются теплом, поэтому проводимость довольно мала. Чтобы увеличить проводимость, нужно либо повышать температуру, либо увеличивать степень легирования, либо прикладывать достаточно сильное электрическое поле. Процессы ионизации примесных атомов бора в алмазе электрическим полем интересны не только для приложений, но и с точки зрения изучения их отличия от аналогичных процессов ионизации водородоподобных акцепторов в классических полупроводниках германий и кремний. В данной работе представлены результаты исследования полевой ионизации акцепторов бора в алмазе.

1. ОБРАЗЦЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

Исследовались номинально нелегированные (*i*-тип) эпитаксиальные алмазные пленки толщиной

10...12 мкм, выращенные методом газофазного химического осаждения на подложках с ориентацией (100), сильно легированных бором ($\sim 2 \times 10^{19}$ см⁻³). Подложки были вырезаны из кристаллов алмаза $(p^{+}$ -тип), синтезированных методом высокого давления/высокой температуры (НРНТ), и затем отполированы. Поврежденный полировкой поверхностный слой подложки удаляли с помощью последовательности операций: отжиг при 1500°C в течение 1 ч, растворение образовавшегося графита в смеси $H_2SO_4 + K_2Cr_2O_7$ и травление ионным пучком Ar⁺ с энергией 7 кэВ для удаления оставшегося дефектного слоя алмаза толщиной ~4 мкм. Плазмохимический синтез эпитаксиальных алмазных пленок проводили в газоразрядной плазме смеси метана и водорода высокой чистоты, созданной с помощью излучения мощного (до 5 кВт) магнетрона с частотой 2.45 ГГц. Контакты толщиной ~35 нм наносили с обеих сторон пластин методом магнетронного напыления. В качестве материала контактов использовали сплав Ni-W, дающий омический контакт. Сечение изготовленной структуры показано схематически на вставке к рис. 1.

Измерялись вольтамперные характеристики (ВАХ). К образцам прикладывали либо постоян-

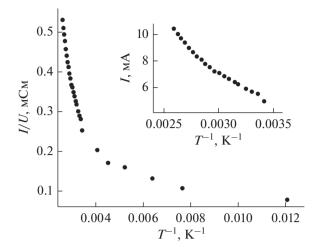

Рис. 1. ВАХ алмаза, легированного бором, при $T=300~\mathrm{K}$. Точки эксперимент, прямые линии — линейная и квадратичная аппроксимации. На вставке — схема структуры в разрезе: I — эпитаксиальная пленка алмаза толщиной $10...12~\mathrm{mkm}$, 2, 4 — металлические контакты толщиной $35~\mathrm{mk}$, 3 — подложка алмаза, сильно легированного бором, толщиной $300~\mathrm{mkm}$.

ное напряжение (в линейной области ВАХ), либо треугольные импульсы напряжения с временем нарастания 0.5...100 мкс и частотой повторения 1...100 Гц (во избежание джоулева нагрева образцов при больших напряжениях). В последнем случае ВАХ восстанавливали из зависимостей напряжения и тока от времени.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведена ВАХ образца с омическими контактами при комнатной температуре в дважды логарифмическом масштабе. В слабых полях ВАХ линейна, что позволяет оценить концентрацию p свободных носителей в этом слое и, соответственно, концентрацию $N_{\rm B}$ нейтральных атомов акцепторной примеси бора. Используя величину подвижности дырок $\sim 1000~{\rm cm^2/(B~c)}$ [2], получаем $p\sim 10^8~{\rm cm^{-3}}$ и $N_{\rm B}\sim 10^{14}~{\rm cm^{-3}}$. Начиная с полей $\sim 3~{\rm kB/cm}$ наблюдается квадратичная зависимость тока от напряжения, которую мы связываем с линейной зависимостью коэффициента захвата дырок на притягивающие ионы бора от электрического поля [3]. Экспериментально аналогичная зависимость наблюдалась, например, при захвате дырок на ионы бора в кремнии [4].

При полях выше ~30 В/см наблюдается сильный (экспоненциальный) рост тока, вызванный ионизацией бора. Мы связываем ионизацию примеси в сильном поле с увеличением термоэлектронной эмиссии за счет эффекта Френкеля—Пула — понижения кулоновского потенциала примеси внешним электрическим полем (вставка на рис. 2).


Рис. 2. ВАХ алмаза, легированного бором, демонстрирующая ионизацию по эффекту Френкеля—Пула. На вставке — схема эффекта; $E_{\rm PF}$ — энергия понижения примесного барьера по Френкелю, $r_{\rm m}$ — положение максимума потенциала.

При этом зависимость концентрации носителей p от приложенного электрического поля E дается формулой Френкеля [5]

$$p \propto \exp\left[\left(e^3 E/\varepsilon\right)^{1/2}/kT\right],$$

где e — элементарный заряд, ϵ — диэлектрическая проницаемость, k — постоянная Больцмана, T — температура. На рис. 2 приведена ВАХ образца алмаза при комнатной температуре. Хорошая линейная аппроксимация зависимости $\lg I$ от $U^{1/2}$ при полях E > 30 кВ/см подтверждает сделанный вывод. Действительно, при этих полях дрейфовая скорость дырок должна насыщаться и ток $I = epv_0s$ (v_0 — насыщенная дрейфовая скорость, s — площадь образца) пропорционален концентрации свободных дырок.

В случае ударной ионизации обычно наблюдается появление на ВАХ S-образного участка. S-образность при ударной ионизации водородоподобной примеси связывают с возбужденными состояниями, по которым происходит каскадный захват носителей, ионизованных полем с основного состояния, а поле их ионизации существенно меньше, чем для основного (эта модель предложена в работе [6]). В алмазе, сильно легированном бором, также наблюдалась S-образная ВАХ [7]. Основная особенность ВАХ в нашем случае – отсутствие S-образности. Причиной этого также является эффект Френкеля-Пула. В сильных полях, достаточных для ударной ионизации основного состояния акцептора в алмазе, из-за сильного понижения примесного потенциала уже первое (самое глубокое) возбужденное состояние бора (~70 мэВ) оказывается в сплошном спектре валентной зоны, образуя

Рис. 3. Температурная зависимость проводимости алмазной пленки толщиной 10 мкм в интервале от температуры жидкого азота до 400 К. На вставке — часть этой зависимости для интервала 300-400 К.

так называемое резонансное (квазилокальное) состояние. Именно поэтому перезарядка примесных уровней, приводящая к появлению S-образности, практически отсутствует.

На рис. 3 приведена температурная зависимость проводимости алмаза с бором в поле $100 \, \text{кB/cm}$. При температурах выше комнатной эта зависимость активационная, проводимость σ пропорциональна $\exp(\Delta \varepsilon/kT)$ (вставка на рис. 3). Однако энергия активации $\Delta \varepsilon$ оказалась значительно меньше ожидаемой. Френкелевское понижение примесного барьера при $100 \, \text{кB/cm}$ составляет $\sim 100 \, \text{мэВ}$, поэтому $\Delta \varepsilon$ должна уменьшиться до $370 - 100 = 270 \, \text{мэВ}$. Это противоречие может быть объяснено с помощью замены решеточной температуры T на некоторую "эффективную" температуру T^* , вве-

денную в книге [3] (гл. 10) и с учетом разогрева дырок электрическим полем.

ЗАКЛЮЧЕНИЕ

Исследован вертикальный транспорт дырок в монокристаллических алмазных пленках, легированных бором, в сильных электрических полях. Оценены концентрации примесей и свободных дырок. Установлено, что при комнатной температуре из-за малой концентрации свободных дырок и большой энергии связи бора в алмазе ионизация происходит за счет эффекта Френкеля—Пула — понижения кулоновского барьера примеси в электрическом поле.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания при частичной поддержке Российского фонда фундаментальных исследований (грант 18-02-01079).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kalish R.* // J. Phys. D: Appl. Phys. 2007. V. 40. № 20. P. 6467.
- 2. *Barjon J., Habka N., Mer C. et al.* // Phys. Stat. Sol. Rapid Res. Lett. 2009. V. 3. № 6. P. 202.
- 3. *Abakumov V.N., Perel V.I., Yassievich I.N.* Nonradiative Recombination in Semiconductors. Amsterdam: North Holland, 1991.
- 4. Годик Э.Э., Курицын Ю.А., Синис В.П. // ФТП. 1978. Т. 12. № 2. С. 351.
- 5. Frenkel J. // Phys. Rev. 1938. V. 54. № 8. P. 647.
- 6. *Kastalskii A.A.* // Phys. Stat. Sol. (a). 1973. V. 15. № 2. P. 599.
- 7. *Mortet V., Tremouilles D., Bulir J. et al.* // Appl. Phys. Lett. 2016. V. 108. № 15. P. 152106.