ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 621.396

ЗАВИСИМОСТЬ ВХОДНЫХ СОПРОТИВЛЕНИЙ ВИБРАТОРНЫХ И МИКРОПОЛОСКОВЫХ АНТЕНН ОТ ПЕРВИЧНОГО ПОЛЯ

© 2020 г. С. И. Эминов*

Новгородский государственный университет им. Ярослава Мудрого, ул. Большая Санкт-Петербургская, 41, Великий Новгород, 173003 Российская Федерация *E-mail: eminovsi@mail.ru

Поступила в редакцию 13.03.2020 г. После доработки 13.03.2020 г. Принята к публикации 07.05.2020 г.

Исследована зависимость входных сопротивлений вибраторных и микрополосковых антенн от профиля первичного поля с использованием аналитического обращения главного гиперсингулярного оператора и явного вида обратного интегрального оператора. Найдены общие закономерности в поведении входных сопротивлений для произвольных первичных полей. Проведены численные расчеты и получено согласие с теоретическими результатами.

DOI: 10.31857/S0033849420110054

1

ВВЕДЕНИЕ. ПОСТАНОВКА ПРОБЛЕМЫ

Электродинамический анализ вибраторных антенн основан на решении гиперсингулярного уравнения вида [1, 2]

$$\frac{1}{\pi} \frac{\partial}{\partial \tau} \int_{-1}^{1} u(t) \frac{\partial}{\partial t} \ln \frac{1}{|\tau - t|} dt +$$

$$+ \int_{-1}^{1} K(\tau, t) u(t) dt = f(\tau), \quad -1 \le \tau \le 1.$$
(1)

Уравнение (1) также описывает микрополосковые [3, 4] и щелевые антенны [5]. К числу неисследованных задач относится изучение зависимости решения (1) от профиля первичного поля, т.е. от $f(\tau)$. Для активных антенн первичное поле локализовано в небольшой области, по сравнению с длиной антенны и с длиной волны. Поэтому при разработке приближенных методов расчета первичное поле представлялось в виде [6–8]

$$f(\tau) = \delta(\tau), \qquad (2)$$

где $\delta(\tau)$ – дельта функция Дирака. Однако еще в работе [9] было выяснено, что точное решение уравнения (1) в нуле обращается в бесконечность. Поэтому модель (2) не применима.

В связи с этим в теории активных антенн часто полагают, что функция $f(\tau)$ отлична от нуля на малом участке [- ε , ε] (ε много меньше единицы), а на этом промежутке постоянна и равна 1/2 ε . Нас интересует вопрос: как изменится решение уравнения (1) и характеристики антенн, если взять другую функцию, также локализованную на промежутке $[-\varepsilon, \varepsilon]$?

Предположим, что функция $f(\tau)$ равна нулю вне промежутка [-1,1], непрерывна на [-1,1], неотрицательна и

$$\int_{-1}^{1} f(t) dt = 1.$$
 (3)

На основе $f(\tau)$ сконструируем функцию

$$f_{\varepsilon}(\tau) = \begin{cases} \frac{1}{\varepsilon} f\left(\frac{\tau}{\varepsilon}\right), \ |\tau| \le \varepsilon, \\ 0, \qquad |\tau| > \varepsilon. \end{cases}$$
(4)

Функция $f_{\varepsilon}(\tau)$ локализована на малом промежутке $[-\varepsilon, \varepsilon]$ и удовлетворяет соотношению (3), т.е. интеграл от нее равен 1. Далее $f_{\varepsilon}(0) = \frac{1}{\varepsilon} f(0)$ и по мере уменьшения ε растет значение функции в нуле $f_{\varepsilon}(0)$.

Как показано в [10, стр. 97], такая функция $f_{\varepsilon}(\tau)$ аппроксимирует $\delta(\tau)$ в интегральном смысле, т.е. для произвольной гладкой функции $\phi(\tau)$

$$\int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) \varphi(t) dt \to \int_{-1}^{1} \delta(t) \varphi(t) dt = \varphi(0)$$

при $\varepsilon \to 0.$

Таким образом, модель $\delta(\tau)$ – дельта функции заменяем на аппроксимирующую функцию $f_{\varepsilon}(\tau)$, которая непрерывна и как следствие принадлежит пространству квадратично-суммируемых функций $L_2[-1,1]$.

Целью данной работы является изучение влияния аппроксимирующей функции $f_{\varepsilon}(\tau)$ на характеристики антенн при малых значениях ε , выявление общих закономерностей для произвольных аппроксимирующих функций.

1. ХАРАКТЕРИСТИЧЕСКОЕ ГИПЕРСИНГУЛЯРНОЕ УРАВНЕНИЕ

Рассмотрим характеристическое уравнение

$$\frac{1}{\pi} \frac{\partial}{\partial \tau} \int_{-1}^{1} u(t) \frac{\partial}{\partial t} \ln \frac{1}{|\tau - t|} dt = f_{\varepsilon}(\tau), \quad -1 \le \tau \le 1.$$
 (5)

Решение этого уравнения находится аналитически [1]

$$u(\tau) = \frac{2}{\pi} \int_{-1}^{1} f_{\varepsilon}(t) \times \left(\frac{\ln 2}{2} + \ln \sin \frac{\arccos t + \arccos \tau}{2} - \frac{1}{2} \ln |\tau - t|\right) dt =$$

$$= \frac{1}{\pi} \int_{-1}^{1} f_{\varepsilon}(t) \ln \left| \frac{|1 - \tau t + \sqrt{1 - \tau^2} \sqrt{1 - t^2}|}{\tau - t} \right| dt.$$
(6)

Входные сопротивления и входные проводимости определяются через значение решения в нуле u(0). Поэтому далее изучим поведение u(0). Из (6) получим

$$u(0) = \frac{1}{\pi} \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) \ln \left| \frac{1 + \sqrt{1 - t^2}}{t} \right| dt =$$

$$= -\frac{1}{\pi} \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) \ln |t| dt + \frac{1}{\pi} \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) \ln \left| 1 + \sqrt{1 - t^2} \right| dt.$$
(7)

Преобразуем первый интеграл с учетом свойств функции $f_{\varepsilon}(\tau)$

$$\int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) \ln|t| dt = \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) (\ln|t| - \ln|\varepsilon|) dt + + \ln|\varepsilon| \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) dt = \int_{-\varepsilon}^{\varepsilon} \frac{1}{\varepsilon} f\left(\frac{t}{\varepsilon}\right) \ln\left|\frac{t}{\varepsilon}\right| dt + + \ln|\varepsilon| \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) dt = \int_{-1}^{1} f(x) \ln|x| dx + \ln|\varepsilon|.$$
(8)

Второй интеграл в (7) найдем приближенно

$$\int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(t) \ln \left| 1 + \sqrt{1 - t^2} \right| dt = \int_{-\varepsilon}^{\varepsilon} \frac{1}{\varepsilon} f\left(\frac{t}{\varepsilon}\right) \ln \left| 1 + \sqrt{1 - t^2} \right| dt =$$
(9)
=
$$\int_{-1}^{1} f(x) \ln \left| 1 + \sqrt{1 - \varepsilon^2 x^2} \right| dx \approx \ln 2, \quad \text{при } \varepsilon \to +0.$$
Окончательно получим формулу

$$u(0) = \frac{1}{\pi} \left(\ln \left| \frac{2}{\epsilon} \right| - \int_{-1}^{1} f(x) (\ln |x|) dx \right) =$$
$$= \frac{1}{\pi} \ln \left| \frac{2}{\epsilon} \right| \left(1 - \frac{\int_{-1}^{1} f(x) (\ln |x|) dx}{\ln \left| \frac{2}{\epsilon} \right|} \right).$$
(10)

Из полученной формулы (10) следует замечательное свойство решения характеристического уравнения: u(0) асимптотически, при малых ε , не зависит от функции $f_{\varepsilon}(\tau)$, аппроксимирующей дельта функцию Дирака.

В работе [1] развит численно-аналитический метод решения гиперсингулярных уравнений. Решение ищется в виде суммы двух функций, одна из которых находится из решения характеристического уравнения, а второе численно. Можно показать, что второе решение от є не зависит. Поэтому формула (10) на самом деле определяет зависимость решения для всего уравнения (1).

2. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВХОДНОГО СОПРОТИВЛЕНИЯ

В предыдущем пункте проведено теоретическое исследование и выявлена закономерность в поведении входного сопротивления: при малых є входное сопротивлении *асимптотически* не зависит от функции $f_{\varepsilon}(\tau)$, аппроксимирующей дельта функцию Дирака.

В этом пункте проведем точные расчеты на основе численно-аналитического метода работы [1] и сравним результаты расчета для двух моделей. В первой модели, как и в работе [1], функция $f(\tau)$ постоянна, соответственно этому

$$f_{\varepsilon}^{1}(\tau) = \begin{cases} \frac{1}{2\varepsilon}, & |\tau| \le \varepsilon, \\ 0, & |\tau| > \varepsilon. \end{cases}$$
(11)

Для второй модели $f(\tau)$ на концах интервала обращается в нуль по корневому закону

$$f_{\varepsilon}^{2}(\tau) = \frac{2}{\pi\varepsilon} \begin{cases} \sqrt{1 - \frac{\tau^{2}}{\varepsilon^{2}}}, |\tau| \le \varepsilon, \\ 0, |\tau| > \varepsilon. \end{cases}$$
(12)

l/a	<i>Z</i> ₁ , Ом	<i>Z</i> ₂ , Ом	δ, %
20	116.43 + i19.97	117.14 + <i>i</i> 17.84	1.9
50	100.40 + i 44.13	100.96 + i 43.60	0.7
100	92.34 + <i>i</i> 48.05	92.63 + <i>i</i> 47.84	0.34
200	87.51 + <i>i</i> 48.59	87.65 + <i>i</i> 48.50	0.17
400	84.47 + <i>i</i> 48.12	84.53 + <i>i</i> 48.08	0.074
500	83.73 + <i>i</i> 47.90	83.78 + <i>i</i> 47.87	0.06
1000	81.92 + <i>i</i> 47.18	81.95 + <i>i</i> 47.16	0.04

Таблица 1. Относительные отклонения δ при $\varepsilon = 0.01$, $l = 0.25\lambda$

Таблица 2. Относительные отклонения δ при l = 200a, $l = 0.25\lambda$

3	<i>Z</i> ₁ , Ом	<i>Z</i> ₂ , Ом	δ, %
0.2	84.78 + <i>i</i> 51.60	84.93 + <i>i</i> 51.18	0.45
0.1	85.38 + <i>i</i> 50.21	85.59 + i50.00	0.3
0.01	87.51 + <i>i</i> 48.59	87.65 + i 48.50	0.17
0.001	89.15 + <i>i</i> 47.53	89.28 + <i>i</i> 47.43	0.16

Таблица 3. Относительные отклонения δ при $\varepsilon = 0.01$, $l = 0.5\lambda$

l/a	<i>Z</i> ₁ , Ом	<i>Z</i> ₂ , Ом	δ, %
20	43.48 <i>- i</i> 140.14	39.81– <i>i</i> 134.63	4.7
50	136.03 <i>- i</i> 311.36	125.72 <i>– i</i> 301.48	4.4
100	280.35 <i>- i</i> 505.37	262.77 <i>– i</i> 493.96	3.8
200	505.63 <i>- i</i> 744.14	481.51– <i>i</i> 734.11	3.0
400	815.95 <i>– i</i> 1014.84	788.04 <i>- i</i> 1008.28	2.2
500	933.55 <i>- i</i> 1107.09	905.09 <i>– i</i> 1101.81	2
1000	1350.69 <i>- i</i> 1406.26	1322.15 <i>- i</i> 1404.77	1.5

Вторая модель применялась в монографии [11, стр. 164] с целью построения эффективного численного алгоритма.

Для первой модели, входное сопротивление обозначим как Z_1 , а для второй модели — через Z_2 . Для сравнения входных сопротивлений, введем относительное отклонение по формуле

$$\delta = \frac{|Z_1 - Z_2|}{|Z_1|} \times 100\%.$$
(13)

Ниже в таблицах приведены значения относительного отклонения для различных значений l/a, l/λ и ε (a – радиус, l – длина плеча вибраторной антенны, 2l – длина антенны, 2Δ – длина участка антенны, где первичное поле отлично от нуля, $\varepsilon = \Delta/l$, λ – длина волны).

Таблица 4. Относительные отклонения δ при l = 200a, $l = 0.5\lambda$

3	<i>Z</i> ₁ , Ом	<i>Z</i> ₂ , Ом	δ,%
0.2	1620.39 + <i>i</i> 192.64	1623.92 <i>- i</i> 118.05	19.1
0.1	1263.25 <i>- i</i> 663.03	1137.75 <i>– i</i> 731.91	10.6
0.01	505.63 <i>– i</i> 744.14	481.51 <i>– i</i> 734.11	3.0
0.001	297.84 <i>– i</i> 622.92	286.22 <i>- i</i> 613.36	2.2

Таблица 5. Относительные отклонения δ при l = 200a, $l = 0.75\lambda$

ε	<i>Z</i> ₁ , Ом	<i>Z</i> ₂ , Ом	δ,%
0.2	127.10 + i 74.48	125.45 + i70.19	3.2
0.1	122.90 + <i>i</i> 61.50	123.39 + <i>i</i> 59.79	1.3
0.01	130.51 + <i>i</i> 48.54	131.13 + <i>i</i> 47.81	0.69
0.001	137.31 + <i>i</i> 39.23	137.82 + <i>i</i> 38.39	0.69

Проанализируем результаты, представленные в табл. 1–5. Из табл. 1 и 3 следует сильная зависимость относительного отклонения от радиуса вибратора, чем меньше радиус вибраторной антенны или отношение радиуса к длине, тем отклонение меньше.

Для полуволнового вибратора (табл. 1, 2) при малых значениях *a* и є относительное отклонение значительно меньше 1%, т.е. *входное сопротивление тонкого полуволнового вибратора практически не зависит от модели*. Это положение подтвердилось и для других моделей, в частности была рассмотрена модель бесконечно дифференцируемой функции, приведенной в [10, стр. 86] (в указанной работе функция называется "шапочкой").

Для волнового вибратора относительное отклонение больше, чем для полуволнового и даже полутора волнового вибратора.

Из табл. 2, 4, 5 следует, что для всех антенн уменьшение є приводит к уменьшению относительного отклонения и численные результаты подтверждают теоретические выводы, полученные на основе формулы (10).

выводы

1. Дана математическая постановка задачи исследования зависимости входных сопротивлений антенн от профиля первичного поля: как зависят входные сопротивления от функции, аппроксимирующей дельта-функцию Дирака.

2. Доказано, что если область локализации первичного поля мала по сравнению с длиной антенны, то входное сопротивление асимптотически не зависит от аппроксимирующей функции. Доказательство основано на явной формуле обращения гиперсингулярного оператора.

3. Проведены численные расчеты и получено согласие с теоретическими результатами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сочилин А.В., Эминов С.И. // РЭ. 2008. Т. 53. № 5. С. 553.
- 2. Лифанов И.К., Ненашев А.С. // Дифференциальные уравнения. 2005. Т. 41. № 1. С. 121.
- 3. Клюев Д.С., Соколова Ю.В. // РЭ. 2015. Т. 60. № 1. С. 52.
- 4. Клюев Д.С., Коршунов С.А., Осипов О.В. и др. // РЭ. 2018. Т. 63. № 5. С. 429.

- 5. Плотников В.Н., Радциг Ю.Ю., Эминов С.И. // Журн. вычисл. математики и мат. физики. 1994. Т. 34. № 1. С. 68.
- 6. *Hallen E.* // Nova Acta Regiae Societatis Scientiarum Upsaliensis. Ser. 4. 1938. V. 11. № 4. P. 1.
- 7. Леонтович М.А., Левин М.Л. // ЖТФ. 1944. Т. 14. № 9. С. 481.
- Вычислительные методы в электродинамике / Под ред. Р. Митры. М.: Мир, 1977.
- 9. Вайнштейн Л.А., Фок В.А. // ЖТФ. 1967. Т. 37. № 7. С. 1189.
- 10. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981.
- Неганов В.А., Табаков Д.П., Яровой Г.П. Современная теория и практические применения антенн. М.: Радиотехника, 2009.