_____ АНТЕННО-ФИДЕРНЫЕ ____ СИСТЕМЫ

УДК 533.9;537.8;621.396.67.095.3;621.396.674.3

УПРАВЛЕНИЕ ДИАГРАММОЙ НАПРАВЛЕННОСТИ МНОГОЭЛЕМЕНТНЫХ ПЛАЗМЕННЫХ АНТЕНН ВИБРАТОРНОГО ТИПА

© 2020 г. О. В. Тихоневич^{*a*}, *, Ю. Е. Векшин^{*b*}, И. М. Минаев^{*a*}, **,

Г. П. Кузьмин^{*a*}, А. А. Рухадзе

^а Институт общей физики им. А.М. Прохорова РАН, ул. Вавилова, 38, Москва, 119991 Российская Федерация ^b16 Центральный научно-исследовательский испытательный институт МО РФ им. маршала А.И. Белова, Мытищи-6, Московской обл., 141006 Российская Федерация *E-mail: tichon@kapella.gpi.ru **E-mail: minaev1945@mail.ru Поступила в редакцию 01.08.2018 г.

После доработки 11.01.2019 г. Принята к публикации 21.01.2019 г.

Проведен анализ возможностей управления диаграммой направленности многоэлементных плазменных вибраторных антенн типа волновой канал. Показано, что плазменная вибраторная антенна в рабочем диапазоне является узкополосным частотным фильтром. В многоэлементной линейной плазменной вибраторной антенне, отключение пассивного плазменного вибратора позволяет производить управление шириной диаграммы направленности электронным способом.

DOI: 10.31857/S0033849420020199

ВВЕДЕНИЕ

В ряде прикладных задач возникает необходимость управления электродинамическими параметрами антенн (например, обеспечение электромагнитной совместимости антенн различного частотного диапазона, управление диаграммой направленности, управление эффективной площадью рассеяния антенн и т.п.). Такая возможность появляется, если в качестве токонесущего элемента, вместо металлического проводника, использовать плазму.

Вибраторные антенны используются в миллиметровом, сантиметровом, дециметровом, метровом и в более длинноволновых диапазонах волн вплоть до сверхдлинных волн и представляют собой прямолинейные проводники (одиночные вибраторные антенны) или системы прямолинейных проводников (антенные решетки), возбуждаемые в определенных точках. Вибраторные антенны применяются в системах радиосвязи, радионавигации, телевидении, телеметрии и других областях радиотехники.

Одиночные вибраторные антенны являются слабонаправленными. Для увеличения коэффициента направленного действия и получения диаграммы направленности (ДН) требуемой формы применяют многовибраторные антенны. Теория построения многоэлементных вибраторных (металлических) антенн разработана и широко представлена в литературе [1–3]. Возможность построения многоэлементных плазменных вибраторных антенн, насколько известно авторам, в печати не рассматривалась. Как показано в [4–9], характеристики плазменных одновибраторных антенн при плотности электронов в плазме $n_e \ge n_{\rm kp}$ ($n_{\rm kp}$ – концентрация электронов, при которой рабочая частота ω равна плазменной частоте ω_p , где

отличаются от характеристик металлических одновибраторных антенн. Поэтому для указанных выше целей плазменные антенны могут полностью заменить металлические антенны. Однако в силу того, что параметрами плазмы можно управлять, возможности плазменных антенн могут быть шире, чем у металлических. Так, например, v многовибраторной антенной решетки за счет отключения плазменных рефлекторов можно менять число элементов антенны. При этом в отличие от металлических антенн отключенные элементы практически не будут влиять на диаграмму направленности, формируемую оставшимися элементами. Кроме режима "включен-выключен" имеется возможность управлять величиной ком-

Рис. 1. Эквивалентная схема плазменного вибратора.

плексного сопротивления вибраторной антенны, которое определяется рабочей частотой ω и плазменной частотой ω_p (концентрацией электронов в плазме n_e).

Плазменная вибраторная антенна представляет собой диэлектрическую трубку, заполненную инертным газом, в которой тем или иным способом зажигается разряд, например, с помощью поверхностной волны [4, 10, 11]. Длина плеча у плазменных антенн $\sim \lambda/4...\lambda/2$, такая же как и у металлических. Плотность плазмы, создаваемой электрическим разрядом, определяется параметрами источника и в таких устройствах может достигать значений $n_e \gg n_{\rm KD}$. Если плазменная антенна попадает в переменное электромагнитное поле, то возбуждаемые в плазме токи приводят к возникновению рассеянного плазменной антенной электромагнитного поля, амплитуда и фаза которого зависят от плотности плазмы n_e и, как в металлической антенне, от длины антенны *l* и диаметра а. Представляет интерес рассмотреть возможность управления параметрами плазменной многоэлементной вибраторной антенной решетки за счет изменения n_e (величины комплексного сопротивления).

1. КОМПЛЕКСНЫЙ ИМПЕДАНС И МОЩНОСТЬ ИЗЛУЧЕНИЯ ПЛАЗМЕННОЙ ВИБРАТОРНОЙ АНТЕННЫ

Для расчета характеристик плазменной вибраторной антенны представим диэлектрическую трубку в виде конденсатора, который в отсутствие диэлектрического заполнения имеет емкость C_0 .

Конденсатор, заполненный веществом с диэлектрической проницаемостью $\varepsilon(\omega)$, соответствующей плазме

$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\nu_e)} \tag{1}$$

(где v_e — частота столкновений электронов с нейтральными частицами), будет иметь импеданс такой же, как двухполюсник [12, 13] (рис. 1).

Комплексный импеданс двухполюсника (плазменного конденсатора) можно представить в виде

$$Z_{p}(\omega) = Z_{p}(\omega)' + iZ_{p}(\omega)''.$$
⁽²⁾

При расчете характеристик плазменного конденсатора положим, что можно пренебречь краевыми эффектами и считать плазму однородной в поперечном направлении (перпендикулярно оси трубки). При параллельном соединении емкости C_p и индуктивности L_p , когда активное сопротивление R_p включено последовательно с индуктивностью (см. рис. 1), комплексный импеданс рассчитывается по формуле

$$Z = \frac{Z_c \left(Z_L + R_p \right)}{Z_c + Z_L + R_p} = \frac{i}{\omega C} \frac{\omega \left(\omega + iR_p / L_p \right)}{\omega \left(\omega + iR_p / L_p \right) - \omega_p^2}.$$
 (3)

Подставляя $R_p = vL_p$ и $L_p = 1/\omega_p^2 C_0$ [12, 13] получим

$$Z = i \frac{1}{\omega C_0} \frac{\omega(\omega + iv)}{\omega(\omega + iv) - \omega_p^2}.$$
 (4)

Выделяя действительную и мнимую части из (4), имеем

$$R_{p}(\omega) = \frac{1}{C_{0}} \frac{\nu \omega_{p}^{2}}{\left(\omega^{2} - \omega_{p}^{2}\right)^{2} + \omega^{2} \nu^{2}},$$

$$C_{p}(\omega) = C_{0} \left(\frac{\left(\omega^{2} - \omega_{p}^{2}\right)^{2} + \omega^{2} \nu^{2}}{\omega^{2} \left(\omega^{2} - \omega_{p}^{2} + \nu^{2}\right)} \right).$$
(5)

Графики зависимости $R_p(\omega)$ и $C_p(\omega)$ представлены на рис. 2. При $\omega/\omega_p \sim 1$ действительная часть импеданса $R_p(\omega)$ всегда положительна, а мнимая часть меняет знак. В цитируемых работах исследование характеристик плазменной вибраторной антенны проводилось при условии $\omega > \omega_p$. Так, например, исследование условий излучения плазменного слоя в [10, 11] проводилось при $\omega_p^2 > 2\omega^2$.

Из рис. 2 видно, что наиболее сильно электротехнические параметры меняются в области плазменной частоты $\omega \sim \omega_p$. При снижении величины отношения ω/ω_p отрицательная мнимая часть растет, а характеристики плазменного вибратора приближаются к характеристикам металлического вибратора [4]. При росте величины отношения ω/ω_p плазма становится прозрачной для излучения (величина $\varepsilon(\omega)$ стремится к 1 на рабочей частоте) и эффективность возбуждения плазменного вибратора падает.

Для оценки мощности излучения, представим плазменную антенну в виде диполя с длиной пле-

Рис. 2. Зависимости $R_p(\omega)$ (сплошная кривая) и $C_p(\omega)$ (штриховая) от отношения ω/ω_p в области плазменной частоты ($\omega/\omega_p = 1$).

ча *l*. Мощность излучения *P* диполя можно представить в виде [14]

$$P = \frac{\omega^4}{3c^3} 2p_0^2,$$
 (6)

где p_0 – дипольный момент, c – скорость света.

Преобразуем формулу для мощности так, чтобы в нее входил ток в вибраторе $I_{\rm B}$, для чего воспользуемся соотношением [14]

$$p_0 = (I_{\rm B}l)/\omega, \tag{7}$$

где $I_{\rm B} = U/R_p$. При $U \approx El$ [13] получаем

$$P = \frac{2\omega^2}{3c^3} \frac{1}{R_p^2} E^2 l^2.$$
 (8)

Величина тока, протекающего в плазменном столбе в области резонанса, определяется сопротивлением $R_p(\omega)$. Таким образом, изменение величины отношения ω/ω_p на 10%, как видно из рис. 2, приведет к изменению мощности излучения более чем на порядок (8).

В многоэлементных вибраторных антеннах возбуждение пассивных элементов происходит за счет токов, индуцируемых электрическим полем E излучателя. Влияние излучения пассивного излучателя на форму ДН определяется величиной и фазой тока в пассивном вибраторе. Изменение концентрации n_e в плазменной антенне позволяет управлять фазой (за счет изменения мнимой части импеданса) и амплитудой (за счет изменения действительной части импеданса) тока в плазменных вибраторах. Наиболее сильно эти зависимости

Рис. 3. Многоэлементная вибраторная линейная решетка: активный излучатель (I) и пассивные излучатели – рефлектор (2), директоры (3-8).

проявляются при $\omega \sim \omega_p$. Полученные результаты показывают (см. рис. 2), что в области $\omega \sim \omega_p$ плазменная вибраторная антенна является узкополосным частотным фильтром. При использовании плазменных вибраторов в многоэлементной вибраторной антенне, когда рабочая частота лежит в области ω_p , любое отклонение отношения ω/ω_p от единицы будет приводить к расстройке по частоте всей системы.

Для иллюстрации возможности работы в режиме "включен—выключен" на рис. 3 приведен вид восьмиэлементной линейной плазменной вибраторной антенны и на рис. 4 — картина изменения ДН (MMANA http://gal-ana.de/promm/index.htm):

Рис. 4. Диаграмма направленности восьмиэлементной плазменной антенны при отключении отдельных элементов (для наглядности не показаны ДН при отключении 8-го, 7-го и 6-го элементов).

за счет отключения пассивных элементов начиная с 8-го. Из рис. 4 видно, как меняется ширина главного лепестка ДН при последовательном отключении пассивных плазменных элементов антенны.

ЗАКЛЮЧЕНИЕ

Полученные результаты показывают, что плазменная вибраторная антенна в рабочем диапазоне $\omega \sim \omega_p$ является узкополосным частотным фильтром. При использовании плазменных вибраторов в многоэлементной вибраторной антенне, когда рабочая частота лежит в области ω_p , любое отклонение отношения ω/ω_p от единицы за счет изменения электротехнических параметров плазменного вибратора приводит к частотной расстройке всей системы, в области $\omega \ll \omega_p$ отключение пассивного плазменного вибратора позволяет производить управление шириной ДН электронным способом.

СПИСОК ЛИТЕРАТУРЫ

1. Марков Л.Н. Антенные системы радиоэлектронной техники. М.: Воениздат, 1993.

- 2. Айзенберг Г.З., Белоусов С.П., Журбенко Э.М. и др. Коротковолновые антенны. 2-е изд. М.: Радио и связь, 1985.
- 3. Айзенберг Г.З., Ямпольский В.Г., Терешин О.Н. Антенны УКВ. М.: Связь, 1977.
- 4. *Истомин Е.Н., Карфидов Д.М., Минаев И.М. и др. //* Физика плазмы. 2006. Т. 32. № 5. С. 423.
- 5. Коновалов В.Н., Кузьмин Г.П., Минаев И.М. и др. // РЭ. 2015. Т. 60. № 7. С. 742.
- 6. Гусейн-заде Н.Г., Минаев И.М., Рухадзе К.З., Рухадзе А.А. // РЭ. 2011. Т. 56. № 10. С. 1345.
- 7. Кирсанов Н.А., Коновалов В.Н., Минаев И.М., Рухадзе А.А. // Радиотехника. 2012. № 10. С. 1611.
- Кузьмин Г.П., Минаев И.М., Тихоневич О.В. и др. // РЭ. 2012. Т. 57. № 5. С. 590.
- 9. Богачев Н.Н., Богданкевич И.Л., Гусейн-заде Н.Г., Рухадзе А.А. // Физика плазмы. 2015. Т. 41. № 10. С. 860.
- 10. Кириченко Ю.В. // РЭ. 2017. Т. 62. № 2. С. 165.
- 11. Кириченко Ю.В. // РЭ. 2017. Т. 62. № 12. С. 1215.
- 12. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988.
- 13. Александров А.Ф., Кузелев М.В. Теоретическая плазменная электротехника. М., 2011.
- 14. *Корбанский И.Н.* Теория электромагнитного поля. М.: Наука, 1964.