– РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ

УДК 537.624;537.632

НЕВЗАИМНЫЕ СВОЙСТВА ОБРАТНЫХ СПИНОВЫХ ВОЛН

© 2020 г. Э. Г. Локк*

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино, Московской обл., 141196 Российская Федерация

**E-mail: edwin@ms.ire.rssi.ru* Поступила в редакцию 26.03.2018 г. После доработки 24.09.2019 г. Принята к публикации 09.10.2019 г.

Исследованы невзаимные свойства мод обратной спиновой волны в касательно намагниченной ферритовой пластине. Установлено, что на поверхности пластины отношение R нормированных амплитуд магнитного потенциала для двух волн с противоположно направленными волновыми векторами, ориентированными под углами $\varphi u \varphi - \pi$ относительно внешнего магнитного поля, существенно зависит от величины φ . Найдено, что существует значение частоты f_R , которое делит диапазон существования обратных спиновых волн на два частотных интервала: для частот, меньших f_R , зависимость $R(\varphi)$ является монотонной (величина R принимает минимальное и максимальное значения при углах, близких к углам отсечки волнового вектора), а для частот, больших f_R , – имеет точки экстремума (максимум и минимум) при значениях φ , равных максимальным углам отсечки поверхностной спиновой волны. Получена формула для ориентации волнового вектора, при которой на распределении амплитуды магнитного потенциала m-й моды волны в сечении ферритовой пластины возникает m-я точка экстремума, лежащая на одной из поверхностей пластины.

DOI: 10.31857/S0033849420030109

ВВЕДЕНИЕ

Как известно, касательно намагниченная ферритовая пленка – одна из немногих реальных сред, в которой могут возбуждаться и распространяться с малыми потерями обратные волны. В работе [1] обратные спиновые волны (ОСВ) были описаны с использованием магнитостатического приближения, из-за чего их часто называют обратными объемными магнитостатическими волнами (МСВ). В дальнейшем многие свойства этих волн и различные устройства на их основе были исследованы и описаны в ряде монографий [2–9] и статей [10-23]. В частности, в работах [13, 16] теоретически и экспериментально установлено, что при возбуждении ОСВ линейным преобразователем возникают две волны, характеризующиеся противоположно направленными волновыми векторами и различным¹ распределением магнитного потенциала в сечении ферритовой пластины. Кроме того, в [16, 18] было найдено, что в зависимости от ориентации волнового вектора (или возбуждающего преобразователя) наибольшее значение магнитного потенциала может находиться как на поверхности, так и внутри ферритовой пластины.

Очевидно, что для разработки спин-волновых устройств необходимо знать, при какой ориентации волнового вектора распределение магнитного потенциала ОСВ имеет точку экстремума непосредственно на поверхности ферритовой пластины и при какой ориентации волнового вектора на поверхности пластины реализуется наибольшее отношение амплитуд магнитных потенциалов, описывающих две волны с противоположно направленными волновыми векторами. Ответы на эти вопросы дают представленные ниже исследования, являющиеся логическим продолжением работ [16, 21].

1. ОСНОВНЫЕ СООТНОШЕНИЯ. ФИЗИЧЕСКИЙ СМЫСЛ НОРМИРОВАННОЙ АМПЛИТУДЫ МАГНИТНОГО ПОТЕНЦИАЛА Ψ^H₀(x)

Рассмотрим бесконечную пластину 2 толщиной *s* из изотропного феррита (рис. 1а). Пластина 2, окруженная полупространствами вакуума 1 и 3, намагничена до насыщения касательным однородным магнитным полем $\overline{H_0}$ и характеризуется тензором магнитной проницаемости μ_2 . Исполь-

¹ Исключением является случай, когда обе волны распространяются параллельно вектору внешнего магнитного поля в противоположных направлениях. Только в этом случае обе волны обладают *одинаковым* распределением магнитного потенциала в сечении ферритовой пластины и поэтому возбуждаются с одинаковой амплитудой.

Рис. 1. Геометрия задачи в пространстве (а) и в плоскости ферритовой пластины (б) (вид со стороны поверхности x = 0): $I \, u \, 3$ – полупространства вакуума, 2 – ферритовая пластина (пленка); 4 – ось симметрии бесконечной касательно намагниченной ферритовой пластины; Пр1 и Пр2 – симметричные друг другу при повороте относительно оси 4 преобразователи, лежащие соответственно на поверхностях x = 0 и x = s. Изображены волновые векторы $\vec{k}(\phi)$ и $\vec{k}(\phi - \pi), \vec{k}(-\phi)$ и $\vec{k}(\pi - \phi)$, их ориентации ϕ и $\phi - \pi, -\phi$ и $\pi - \phi$ и соответствующие векторы групповой скорости $\vec{V}(\phi)$ и $\vec{V}(\phi - \pi), \vec{V}(-\phi)$ и $\vec{V}(\pi - \phi)$ для волн, возбуждаемых преобразователями Пр1 и Пр2 соответственно (\vec{k} и \vec{V} для полезных волн показаны жирными векторами).

зуя уравнения Максвелла в магнитостатическом и безобменном приближениях и вводя магнитный потенциал Ψ по аналогии с работой [1], можно получить уравнения для потенциала Ψ_2 и потенциалов Ψ_1 и Ψ_3 внутри и вне ферритовой пластины. Подставляя решение для магнитного потенциала

$$\begin{cases} \Psi_1 = C \exp(-k_{1x}x - ik_yy - ik_zz) \\ \Psi_2 = (A \sin(k_{2x}x) + B \cos(k_{2x}x)) \times \\ \times \exp(-ik_yy - ik_zz) \\ \Psi_3 = D \exp(k_{3x}x - ik_yy - ik_zz) \end{cases}$$
(1)

в граничные условия (определяемые непрерывностью нормальной компоненты СВЧ магнитной индукции и потенциала на границах сред), получим систему уравнений

$$A\cos(k_{2x}s) - B\sin(k_{2x}s) + \frac{vk_y}{\mu k_{2x}} \times (A\sin(k_{2x}s) + B\cos(k_{2x}s)) = -\frac{k_{1x}C\exp(k_{1x}s)}{\mu k_{2x}}, (2)$$
$$\mu k_{2x}A + vk_yB = k_{1x}D$$
$$A\sin(k_{2x}s) + B\cos(k_{2x}s) = C\exp(k_{1x}s)$$
$$B = D$$

где $\mu = 1 + \omega_M \omega_H / (\omega_H^2 - \omega^2)$ и $\nu = \omega_M \omega / (\omega_H^2 - \omega^2) -$ компоненты тензора магнитной проницаемости феррита, $\omega_H = \gamma H_0$, $\omega_M = 4\pi\gamma M_0$, $\omega = 2\pi f$, $\gamma -$ гиромагнитная постоянная, $4\pi M_0$ – намагниченность насыщения феррита, f – частота волны, A, B, C, D – произвольные коэффициенты, а k_{1x} , k_{2x} , k_{3x} , k_y и k_z – компоненты волнового вектора (причем k_{1x} , k_{2x} и k_{3x} – положительные числа), связанные соотно-

шениями $k_{1x} = k_{3x} = (k_y^2 + k_z^2)^{1/2}, k_{2x} = (-k_y^2 - k_z^2/\mu)^{1/2}.$ Для описания ОСВ в полярной системе координат воспользуемся соотношениями $y = -r\sin\varphi$, $z = r\cos\varphi$ и введем волновой вектор \vec{k} , модуль которого k связан с волновыми числами k_y , k_z , k_{1x} и k_{2x} соотношениями $k_y = -k\sin\varphi$, $k_z = k\cos\varphi$, $k_{2x} =$ $= \alpha k$ и $k_{1x} = k$, где

$$\alpha = \sqrt{-\frac{\cos^2 \varphi}{\mu} - \sin^2 \varphi},$$
 (3)

а ϕ — угол, задающий ориентацию вектора k относительно оси z (углы при исследовании ОСВ удобно отсчитывать от оси z, являющейся для этой волны осью коллинеарного распространения). В полярной системе координат связь между коэффициентами A, B, C и D, следующая из системы (2), и дисперсионное уравнение ОСВ, полученное в результате решения (2), имеют вид

$$A = \frac{1 + v \sin \varphi}{\alpha \mu} B,$$

$$C = \left(\frac{1 + v \sin \varphi}{\alpha \mu} \sin(\alpha ks) + \cos(\alpha ks)\right) B \exp(ks), \quad (4)$$

$$D = B,$$

$$\frac{1}{\mu} + \cos^2 \varphi + \mu_{\perp} \sin^2 \varphi + 2\alpha \operatorname{ctg}(\alpha ks) = 0, \quad (5)$$

стях пластины x = 0 и x = s, отображаются при данном повороте друг на друг a^2 , то и зависимости

где введено обозначение $\mu_{\perp} = (\mu^2 - \nu^2)/\mu$. Из уравнения (5) величину k можно явно выразить через угол ф и параметры ферритовой пластины

$$k = \Phi(\varphi, f) =$$

$$= \frac{1}{\alpha s} \left[(m-1)\pi + \operatorname{arcctg}\left(\frac{1/\mu + \cos^2 \varphi + \mu_{\perp} \sin^2 \varphi}{-2\alpha}\right) \right], (6)$$

где номер моды *т* принимает значения натуральных чисел (m = 1, 2, 3, ...).

Подставляя (4) в (1), запишем магнитный потенциал Ψ_i внутри и вне пленки (j = 1, 2 или 3) в виде $\Psi_j = \Psi_{j0} \exp(-ikr)$, где амплитуды потенциала Ψ_{j0} в каждой среде определяются выражениями

$$\Psi_{10} = B \left[\frac{1 + v \sin \phi}{\alpha \mu} \sin(\alpha ks) + \cos(\alpha ks) \right] \times \\ \times \exp(ks - kx),$$

$$\Psi_{20} = B \left[\frac{1 + v \sin \phi}{\alpha \mu} \sin(\alpha kx) + \cos(\alpha kx) \right],$$

$$\Psi_{20} = B \exp(kx).$$
(7)

Для краткости амплитуду потенциала, состоящую из трех функций Ψ_{10} , Ψ_{20} и Ψ_{30} обозначим Ψ_{0} . Точно также, через $\Psi_0^{\rm H}$ обозначена *нормированная* амплитуда потенциала

$$\Psi_0^{\rm H} = \Psi_0 / (B \Psi_{0\rm Makc}(\phi)), \qquad (8)$$

где нормировочная величина $\Psi_{0_{Makc}}(\phi)$ представляет собой максимальное значение модуля функции Ψ_{20}/B на отрезке $0 \le x \le s$. (Выражение для величины $\Psi_{0\text{макс}}(\phi)$ получено далее, см. формулу (11).)

Распределение амплитуды $\Psi_0^{H}(x)$, рассчитанное в соответствии с (8) при различных значениях ф для первой и второй мод ОСВ, показано на рис. 2. Расчеты выполнены для частоты ОСВ f = 2000 МГц и параметров поля и пленки, использованных в [16, 21, 22]: $H_0 = 367 \ \Im$, $4\pi M_0 = 1870 \ \Gamma c$, $s = 82 \ MKM$.

Поясним, чем отличаются нормированные и ненормированные зависимости $\Psi_0^{\rm H}(x,\phi)$ И $\Psi_0(x, \phi)$. Поскольку *касательно* намагниченная ферритовая пластина симметрична самой себе при повороте на 180° вокруг единственной оси симметрии (см. рис. 1, ось 4), параллельной вектору H_0 и проходящей через середину пластины, а одинаковые линейные преобразователи Пр1 и Пр2 (см. рис. 1б), расположенные на поверхноволн $\Psi_0^{H}(x, \phi)$ и $\Psi_0^{H}(x, -\phi)$, возбуждаемых этими преобразователями, должны быть симметричны.

Действительно, из рис. 2 видно, что эти зависимости либо иентрально симметричны (для нечетных мод), либо зеркально симметричны (для четных мод). Для ненормированных зависимостей $Ψ_0(x, φ)$ и $Ψ_0(x, -φ)$ такая симметрия не имеет места³, поэтому они неадекватно описывают соотношение амплитуд при тождественных геометриях возбуждения волн, хотя и могут использоваться лля вычислений.

2. УГЛЫ $\phi_{_{3KCT}}$, ПРИ КОТОРЫХ ЗАВИСИМОСТЬ $\Psi_0^{_{\rm H}}(x)$ ИМЕЕТ ТОЧКУ ЭКСТРЕМУМА НА ПОВЕРХНОСТИ ФЕРРИТОВОЙ ПЛАСТИНЫ ДЛЯ ВСЕХ МОД ОСВ

Как видно из рис. 2, при $\phi = 0$ и $\phi = 180^{\circ}$ pac-

пределение потенциала $\Psi_0^{\rm H}(x)$ имеет одинаковую (по абсолютной величине) амплитуду на обеих поверхностях пластины (кривые 1), причем это распределение имеет m - 1 точек экстремума, в которых $\partial \Psi_0^{\scriptscriptstyle \mathrm{H}} / \partial x = 0$. То есть для первой моды зависимость $\Psi_0^{H}(x)$ не имеет точек экстремума, для второй моды имеет одну точку экстремума и т.д. С изменением угла ф (в любую сторону от направлений $\phi = 0$ и $\phi = 180^{\circ}$) при некоторых значениях

 $\varphi = \pm \varphi_{\mathsf{экст}}$ и $\varphi = \pi \pm \varphi_{\mathsf{экст}}$ на зависимости $\Psi_{20}^{\mathsf{H}}(x)$ возникает еще одна т-я точка экстремума, локализованная на одной из поверхностей пластины. При дальнейшем изменении угла ϕ эта *m*-я точка экстремума смещается от поверхности к середине пластины (см. рис. 2, кривые 2-7).

Для вычисления угла $\phi_{\scriptscriptstyle \mathsf{экст}}$ найдем вначале координату $x = x_{\operatorname{экст}}$, которая соответствует точке экстремума на зависимости $\Psi_{20}^{H}(x)$. Чтобы определить эту координату найдем производную $\partial \Psi_0^{\rm H} / \partial x$, продифференцировав выражение (8) и приравняем ее нулю:

$$\frac{1+\nu\sin\phi}{\mu}\cos(\alpha kx_{_{\rm 3KCT}}) - \alpha\sin(\alpha kx_{_{\rm 3KCT}}) = 0.$$
(9)

² Фактически речь идет о тождественных геометриях возбуждения волн.

³ Кратко это можно объяснить так: полагая, например, в (7) B = 0.86 для приведенных выше параметров и $\phi = 23.9^{\circ}$ получим кривую 3 на рис. 2а, для которой в точке $G \Psi_{20}(x = 0) =$ = 0.86. Однако чтобы при $\phi = -23.9^{\circ}$ мы получили бы в точке *L* на кривой 6 рис. 26 $\Psi_{20}(x = s) = -0.86$, необходимо в (7) положить B = 0.298 (если же оставить B = 0.86 при $\phi =$ -23.9° , то получим в точке L на кривой $6 \Psi_{20}(x = s) = -2.49$, а в точке $H - \Psi_{20}(x = 0) = 0.86$). Таким образом, нормиров-

ка обеспечивает необходимую симметрию кривых $\Psi_0^{H}(x, \varphi)$ и $\Psi_0^{\rm H}(x, -\phi)$ и удобство отображения всех кривых на одном рисунке.

ЛОКК

Рис. 2. Нормированное распределение амплитуды магнитного потенциала $\Psi_0^H(x)$ для первой (а и б) и второй (в и г) мод ОСВ при f = 2000 МГц и следующих положительных (а и в) и отрицательных (б и г) значениях угла φ : 0° и 180° (1), $\varphi_{9\kappa cT1} = 16.3^{\circ}$ и $\varphi_{9\kappa cT2} = 163.7^{\circ}$ (2), $\varphi_{R1} = 23.9^{\circ}$ и $\varphi_{R2} = 156.1^{\circ}$ (3), 40° и 160° (4), $\varphi_{9\kappa cT4} = -16.3^{\circ}$ и $\varphi_{9\kappa cT3} = -163.7^{\circ}$ (5), $\varphi_{R4} = -23.9^{\circ}$ и $\varphi_{R3} = -156.1^{\circ}$ (6), -40° и -160° (7). Координаты x = 0, x = s/2 = 41 мкм и x = s = 82 мкм обозначены прямыми 8-10, причем прямая 9 является осью зеркальной симметрии, при которой кривые $\Psi_0^H(x)$ на рис. 2в симметричны кривым $\Psi_0^H(x)$ на рис. 2г. Для первой моды ОСВ точками G, H, K и L отмечены значения $\Psi_0^H(x = 0)$ и $\Psi_0^H(x = s)$ на кривых 3 и 6, а точкой S – центр симметрии, при которой кривые $\Psi_0^H(x)$ на рис. 2a симметричны кривым $\Psi_0^H(x)$ на рис. 26.

Из уравнения (9) легко найти координату $x_{3 \text{кст}}$:

$$x_{_{\Im KCT}} = \frac{1}{\alpha k} \operatorname{arctg}\left(\frac{1 + \nu \sin \varphi}{\alpha \mu}\right). \tag{10}$$

Получим также выражение для нормировочной величины $\Psi_{0_{Makc}}(\phi)$, стоящей в формуле (8). Подставляя $\sin(\alpha kx_{_{3KCT}})$ из соотношения (9) в (7), используя соотношение $\cos(\alpha kx_{_{3KCT}}) = 1/(1 + tg^2(\alpha kx_{_{3KCT}}))^{1/2}$ и учитывая (10), можно найти значение зависимости $\Psi_{20}(x)$ в точке экстремума при $x = x_{3 \text{кст}}$ и записать следующее выражение для нормировочной величины $\Psi_{0 \text{макс}}(\varphi)$:

$$\Psi_{0_{MAKC}}(\phi) = \sqrt{1 + \frac{(1 + \nu \sin \phi)^2}{\alpha^2 \mu^2}}.$$
 (11)

Отметим, что зависимость $\Psi_{20}(x)$ для первой моды ОСВ не имеет точек экстремума для углов φ из интервалов значений $-\varphi_{\text{экстl}} < \varphi < \varphi_{\text{экстl}}$ и $\pi - \varphi_{\text{экстl}} <$

271

 $<\phi<\pi+\phi_{_{
m SKCT1}}$. Поэтому, чтобы получить норми-

рованное распределение $\Psi_{20}^{H}(x)$ для таких углов φ , необходимо нормировать зависимость $\Psi_{20}(x)$ на максимальное значение, реализующееся на одной из поверхностей пленки.

Найдем теперь из выражения (9) параметры волны, при которых зависимость $\Psi_{20}^{\text{H}}(x)$ имеет точку экстремума (максимум) прямо на поверхности ферритовой пленки при x = 0 (рис. 2а, кривая 2). Полагая в (9) $x_{_{ЭКСТ}} = 0$, получим простое уравнение для вычисления угла $\varphi_{_{ЭКСТ}}$

$$1 + v \sin \varphi_{\mathsf{ЭКСТ}} = 0. \tag{12}$$

В интервале значений – $\pi < \phi_{_{3KCT}} \le \pi$ уравнение (12) имеет два решения, $\phi_{_{3KCT1}}$ и $\phi_{_{3KCT2}} = \pi - \phi_{_{3KCT1}}$, причем величина $\phi_{_{3KCT1}}$ определяется выражением

$$\varphi_{\mathsf{PKCT1}} = -\arcsin(1/\nu). \tag{13}$$

Поскольку $\nu < 0$ во всем диапазоне существования OCB, то угол $\phi_{_{3\kappa ctl}}$ — величина положительная.

Из справедливости уравнения (12) следует, что при $\varphi = \varphi_{_{3KCT}}$ коэффициент *A* в (4) равен нулю, нормировочная величина в (11) $\Psi_{_{0MAKC}}(\varphi_{_{3KCT}})$ равна единице, а зависимость $\Psi_{_{20}}^{^{H}}(x, \varphi_{_{3KCT}})$, определяемая выражением (8), представляет собой обычную косинусоиду

$$\Psi_{20}^{\rm H}(x,\varphi_{\rm 3KCT}) = \cos(\alpha kx), \qquad (14)$$

где следует использовать значения α и k при $\phi = \phi_{\text{экст}}$.

Для нахождения угла $\phi_{3\kappa cr}$, при котором зависимость $\Psi_{20}^{H}(x)$ имеет точку экстремума⁴ на поверхности x = s, положим в (9) $x_{3\kappa cr} = s$. В итоге получим

$$tg(\alpha ks) = (1 + \nu \sin \varphi) / \alpha \mu.$$
 (15)

Находя величину $tg(\alpha ks)$ из соотношения (5) и подставляя ее в (15), получим уравнение

$$(1 + \nu \sin \varphi) \left(\frac{1}{\mu} + \cos^2 \varphi + \mu_{\perp} \sin^2 \varphi \right) + 2\alpha^2 \mu = 0.(16)$$

Раскрывая скобки, учитывая (3) и приводя подобные, можно разложить уравнение (16) на множители, одним из которых является множитель $1 - v \sin \phi_{_{экст}}$. То есть для вычисления угла $\phi_{_{экст}}$ получаем простое уравнение

$$1 - v \sin \varphi_{\text{экст}} = 0. \tag{17}$$

В интервале значений $-\pi < \phi_{_{3KCT}} \le \pi$ уравнение (17) имеет два решения, $\phi_{_{3KCT3}} = \phi_{_{3KCT1}} - \pi u \phi_{_{3KCT4}} =$ $= -\phi_{_{3KCT1}}$, где величина $\phi_{_{3KCT1}}$ определяется выражением (13).

Таким образом, зависимость $\Psi_0^{H}(x)$ имеет точку экстремума непосредственно на одной из поверхностей ферритовой пластины при четырех углах $\phi_{_{3KCT1}} = -\arcsin(1/\nu)$, $\phi_{_{3KCT2}} = \pi - \phi_{_{3KCT1}}$, $\phi_{_{3KCT3}} = \phi_{_{3KCT1}} - \pi u \phi_{_{3KCT4}} = - \phi_{_{3KCT1}}$.

Следует отметить, что все формулы, приведенные в этом разделе, справедливы *для всех мод* ОСВ.

Зависимости углов $\phi_{3\kappa cr1}$... $\phi_{3\kappa cr4}$ от частоты волны *f* удобно изображать в полярной системе координат вместе с зависимостями углов отсечки OCB $\phi_{orc}^{OCB}(f)$ и углов отсечки поверхностной спиновой волны (ПСВ) $\phi_{orc}^{\Pi CB}(f)$ (рис. 3, кривые *1*–4, *5*–8 и 9–12 соответственно). Напомним, что углами отсечки спиновой волны называют углы, при которых $k \to \infty$, т.е. углы наклона асимптот изочастотной зависимости⁵. Таким образом, каждый угол отсечки определяет предельную ориентацию волнового вектора при данной частоте.

На рис. 3 также отмечены области ϕ_{OCB} и $\phi_{\Pi CB}$, соответствующие всем возможным ориентациям волнового вектора для ОСВ и ПСВ в ферритовой пластине (подробнее см. [21]). Анализируя рис. 2 и 3, можно отметить следующие свойства и особенности представленных зависимостей.

Зависимости $\varphi_{3\kappaст1}(f) - \varphi_{3\kappaст4}(f)$ (см. рис. 3 кривые *1*-4) и зависимости углов отсечки ПСВ $\varphi_{orc1}^{\Pi CB}(f) - \varphi_{orc4}^{\Pi CB}(f)$ (кривые 9–12) имеют с окружностью $f_{\perp} = \omega_{\perp}/2\pi = \sqrt{\omega_{H}^{2} + \omega_{H}\omega_{M}}/2\pi = 2539$ МГц (см. рис. 3, *18*) общие точки при значениях углов $\varphi_{orc1}^{\Pi CB}(f_{\perp}), \quad \varphi_{orc2}^{\Pi CB}(f_{\perp}) = \pi - \varphi_{orc1}^{\Pi CB}(f_{\perp}), \quad \varphi_{orc3}^{\Pi CB}(f_{\perp}) =$ $= \varphi_{orc1}^{\Pi CB}(f_{\perp}) - \pi \, \mu \, \varphi_{orc4}^{\Pi CB}(f_{\perp}) = -\varphi_{orc1}^{\Pi CB}(f_{\perp}), \, где \, \varphi_{orc1}^{\Pi CB}(f_{\perp})$ называют *максимальным* углом отсечки ПСВ при $f \rightarrow f_{\perp}$ и находят по формуле⁶, полученной в [1]

$$\varphi_{\text{orcl}}^{\text{IICB}}(f_{\perp}) = \pi/2 - \operatorname{arctg} \sqrt{\omega_M / \omega_H}.$$
 (18)

Поскольку при заменах φ на $\pi - \varphi$ и $-\varphi$ на $\varphi - \pi$ выражения (3), (6), (8) и (11) не меняются, то любой точке $N(f, \varphi)$ из областей φ_{OCB} или $\varphi_{\Pi CB}$ и точке $N_y(f, \pi - \varphi)$, симметричной точке N относительно оси y, соответствуют волны с *одинаковыми*

⁴ Имеется в виду точка минимума на кривой 5 рис. 26.

⁵ Напомним, что изочастотная зависимость волны представляет собой сечение дисперсионной поверхности волны $f(k_y, k_z)$ или $f(k, \varphi)$ плоскостью постоянной частоты f = const.Поскольку изочастотные зависимости ОСВ и ПСВ похожи на гиперболы (см., например, [17]), то эти зависимости характеризуются асимптотами. Подробнее термины "изочастотная зависимость" и "угол отсечки" обсуждаются в [17], а применительно к ОСВ – в [21]. Зависимость углов отсечки от частоты впервые получена для ПСВ в работе [24], а для ОСВ – в [21, 22], где в обеих работах в формуле для угла отсечки ОСВ, к сожалению, опечатка (ниже приведена корректная формула (32)).

⁶ Слагаемое π/2 появилось из-за отсчета углов относительно оси z. В литературе же выражение (18) обычно записывают без этого слагаемого [1, 4–6], поскольку при описании ПСВ углы принято отсчитывать от оси y.

Рис. 3. Зависимости углов $\phi_{3\kappact1} - \phi_{3\kappact4}$ (кривые 1–4), углов отсечки волнового вектора ОСВ $\phi_{otc1}^{OCB} - \phi_{otc4}^{OCB}$ (кривые 5–8) и углов отсечки волнового вектора ПСВ $\phi_{otc1}^{\PiCB} - \phi_{otc4}^{\PiCB}$ (кривые 9–12) от частоты волны *f*. Отрезки 13–16 соответствуют значениям углов максимальной невзаимности ОСВ $\phi_{R1} - \phi_{R4}$, а окружности 17, 18 и 19 соответствуют значениям частот $f_H = \omega_H/2\pi = 1029 \text{ M}\Gamma\mu$, $f_\perp = \omega_\perp/2\pi = 2539 \text{ M}\Gamma\mu$ и $f = (\omega_H + \omega_M/2)/2\pi = 3649 \text{ M}\Gamma\mu$. На диаграмме показаны области ϕ_{OCB} и ϕ_{\PiCB} , соответствующие множеству всех возможных ориентаций волнового вектора обратной и поверхностной волн в ферритовой пластине.

зависимостями амплитуды магнитного потенциала, т.е.

$$Ψ_0^{H}(x, f, φ) = Ψ_0^{H}(x, f, π - φ)$$

$$u Ψ_0^{H}(x, f, -φ) = Ψ_0^{H}(x, f, φ - π).$$
(19)

В то же время точке $N(f, \varphi)$ и точке $N_z(f, -\varphi)$, симметричной точке N относительно оси z, соответствуют волны с *разными*, *хотя и симметричными* (как показано в разделе 1) зависимостями амплитуд $\Psi_0^{\rm H}(x, f, \varphi)$ и $\Psi_0^{\rm H}(x, f, -\varphi)$.

Из симметрии зависимостей $\Psi_0^{\rm H}(x, f, \varphi)$ и $\Psi_0^{\rm H}(x, f, -\varphi)$ и равенств (19) следует, что соотношения между четырьмя зависимостями $\Psi_0^{\rm H}(x, \varphi)$, $\Psi_0^{\rm H}(x, \pi - \varphi)$, $\Psi_0^{\rm H}(x, -\varphi)$ и $\Psi_0^{\rm H}(x, \varphi - \pi)$ фиксированы, и этот факт позволяет найти отношение между амплитудами двух волн с противоположно направленными волновыми векторами (см. разд. 3).

3. УГЛЫ МАКСИМАЛЬНОЙ НЕВЗАИМНОСТИ ОСВ ϕ_R

При возбуждении волн линейным преобразователем, может потребоваться осуществить эксперимент, в котором невзаимное свойство ОСВ проявляется в максимальной степени, т.е. когда на одной из поверхностей ферритовой пластины реализуется *наибольшее* отношение *R* амплитуд

потенциалов Ψ_0^{H} двух волн с противоположно направленными волновыми векторами. Для расчета таких геометрий возбуждения обозначим ампли-

туды потенциала Ψ_{20}^{H} при некоторых *произвольных* ориентациях волнового вектора φ и $\varphi - \pi$ точками *G* и *H* на поверхности пластины x = 0 и точками *K* и *L* на поверхности x = s (см. рис. 2 кривые *3* и *6*). Так как зависимости $\Psi_{0}^{\text{H}}(x, f, \varphi)$ и $\Psi_{0}^{\text{H}}(x, f, \varphi - \pi)$ центрально симметричны (для нечетных мод) либо зеркально симметричны (для четных мод), то

искомое отношение R для поверхностей x = 0 и x = s можно записать соответственно в виде⁷

$$R = \frac{\Psi_{20}^{\rm H}(G)}{\Psi_{20}^{\rm H}(H)} = \frac{\Psi_{20}^{\rm H}(x=0,\varphi)}{\Psi_{20}^{\rm H}(x=0,\varphi-\pi)},$$
(20)

$$\frac{1}{R} = \frac{\Psi_{20}^{\text{H}}(K)}{\Psi_{20}^{\text{H}}(L)} = \frac{\Psi_{20}^{\text{H}}(x = s, \varphi)}{\Psi_{20}^{\text{H}}(x = s, \varphi - \pi)}.$$
(21)

Отношение амплитуд Ψ_{20}^{H} при *ориентации* вектора \vec{k} под углом φ на поверхностях пластины x = 0 и x = s в соответствии с выражением (8) имеет вид

$$\frac{\Psi_{20}^{\rm H}(G)}{\Psi_{20}^{\rm H}(K)} = \frac{\Psi_{20}^{\rm H}(x=0,\phi)}{\Psi_{20}^{\rm H}(x=s,\phi)} = \\ = \left(\frac{1+\nu\sin\phi}{\alpha\mu}\sin(\alpha ks) + \cos(\alpha ks)\right)^{-1}.$$
 (22)

Для противоположной ориентации волнового вектора $\phi - \pi$ отношение амплитуд потенциала Ψ_{20}^{H} на поверхностях пластины x = s и x = 0 будет равно

$$\frac{\Psi_{20}^{H}(L)}{\Psi_{20}^{H}(H)} = \frac{\Psi_{20}^{H}(x = s, \varphi - \pi)}{\Psi_{20}^{H}(x = 0, \varphi - \pi)} =$$

$$= \frac{1 - v \sin \varphi}{\alpha \mu} \sin(\alpha k s) + \cos(\alpha k s).$$
(23)

Так как зависимости $\Psi_0^{H}(x, \varphi)$ и $\Psi_0^{H}(x, \varphi - \pi)$ симметричны, то левые части выражений (22) и (23) равны, а их разность равна нулю⁸, т.е.

$$\frac{\Psi_{20}^{H}(G)}{\Psi_{20}^{H}(K)} = \frac{\Psi_{20}^{H}(L)}{\Psi_{20}^{H}(H)}$$
(24)
IJIM
$$\frac{\Psi_{20}^{H}(x=0,\phi)}{\Psi_{20}^{H}(x=s,\phi)} = \frac{\Psi_{20}^{H}(x=s,\phi-\pi)}{\Psi_{20}^{H}(x=0,\phi-\pi)}.$$

Поделив выражения (20) и (21), с учетом соотношений (22)–(24), получим

V

$$R^{2} = \frac{(1 - v \sin \phi) \sin(\alpha ks) + \alpha \mu \cos(\alpha ks)}{(1 + v \sin \phi) \sin(\alpha ks) + \alpha \mu \cos(\alpha ks)} =$$

$$= \frac{1 - v \sin \phi + \alpha \mu \operatorname{ctg}(\alpha ks)}{1 + v \sin \phi + \alpha \mu \operatorname{ctg}(\alpha ks)}.$$
(25)

Найдя величину ctg(αks) из уравнения (5) и подставив ее в (25), имеем

$$R = \sqrt{\frac{1 - \mu - 2\nu\sin\phi + (\mu - \mu^2 + \nu^2)\sin^2\phi}{1 - \mu + 2\nu\sin\phi + (\mu - \mu^2 + \nu^2)\sin^2\phi}}.$$
 (26)

Вычислим угол ϕ_R , при котором $\partial R/\partial \phi = 0$. Дифференцируя выражение (26) по ϕ , приравнивая нулю числитель полученного выражения и приводя подобные, получим уравнение

$$1 - \mu - \left(\mu - \mu^{2} + \nu^{2}\right)\sin^{2}\varphi_{R} = 0, \qquad (27)$$

из которого, используя выражения для μ и V, можно вывести соотношения

$$\sin^{2} \varphi_{R} = \frac{1 - \mu}{\mu - \mu^{2} + \nu^{2}} = \frac{\omega_{H}}{\omega_{H} + \omega_{M}}$$
или $\cos^{2} \varphi_{R} = \frac{\omega_{M}}{\omega_{H} + \omega_{M}}.$
(28)

Решениями уравнения (28) являются четыре угла $\varphi_{R1}, \varphi_{R2} = \pi - \varphi_{R1}, \varphi_{R3} = \varphi_{R1} - \pi$ и $\varphi_{R4} = -\varphi_{R1}, r_{R4}$ величина φ_{R1} определяется выражениями

$$\varphi_{R1} = \arcsin \sqrt{\omega_H / (\omega_H + \omega_M)}$$

или $\varphi_{R1} = \arccos \sqrt{\omega_M / (\omega_H + \omega_M)}.$
(29)

Очевидно, что в силу справедливости соотношения (см. § 2.5.2.1.7 в [25])

$$\pi/2 - \operatorname{arctg} \sqrt{\theta} = \operatorname{arccos} \left[\theta / \sqrt{1 + \theta^2} \right],$$
 (30)

углы, определяемые выражениями (29) и (18), тождественны:

$$\varphi_{R1} \equiv \varphi_{\text{orcl}}^{\Pi \text{CB}}(f_{\perp}), \qquad (31)$$

причем при выбранных параметрах $\phi_{R1} = 23.9^{\circ}$.

Таким образом, показано, что на обеих поверхностях ферритовой пластины x = s и x = 0 отношение нормированных амплитуд потенциалов *двух волн*, характеризующихся *противоположно* направленными волновыми векторами, имеет точки экстремума при *максимальных углах отсечки* ПСВ $\phi_{\text{отс1}}^{\text{пСВ}}(f_{\perp}) \dots \phi_{\text{отс4}}^{\text{пСВ}}(f_{\perp})$, которые применительно к ОСВ можно кратко называть *углами максимальной невзаимности* $\phi_{R1} \dots \phi_{R4}$.

Отметим, что ранее [18] отмечалось следующее: "Вблизи критического угла⁹ α_c значение пространственной фазы объемных МСВ на верхней поверхности близко к значению $\pi/2$, при котором магнитостатический потенциал Ψ достигает своего макси-

⁷ В работе [13] отмечалось, что для отношения амплитуд потенциала на поверхностях ферритовой пластины (это отношение в [13] обозначено через α) справедливо соотношение

 $[\]alpha(\overline{-H_0}) = \alpha^{-1}(\overline{H_0})$, хотя формула для расчета величины α в [13] не приведена.

⁸ Это можно доказать и математически, для чего надо вычесть правые части выражений (22) и (23), привести их к общему знаменателю и, найдя величину $ctg(\alpha ks)$ из уравнения (5), подставить ее в результирующее выражение.

⁹ В работе [18] угол $φ_{\text{отс1}}^{\Pi \text{CB}}(f_{\perp})$, описываемый формулой (18), обозначен через α_с.

Рис. 4. Отношение нормированных амплитуд потенциала *R* двух ОСВ, характеризующихся противоположно направленными волновыми векторами, на поверхности x = 0 в зависимости от ориентации φ волнового вектора для следующих значений частоты: f = 2450 (*1*), 2350 (*2*), 2000 (*3*), $f_R = 1393.6$ (*4*), 1150 МГц (*5*). Углы максимальной невзаимности: $\varphi_{R1} = 23.9^{\circ}$ (*6*) и $\varphi_{R4} = -23.9^{\circ}$ (*7*). Значения, соответствующих частот, отмечены на кривых кружочками.

мума. Это соответствует наибольшей невзаимности (т.е. наибольшей асимметрии распределения функции Ψ по толщине пленки)". Эти утверждения не совсем корректны: на поверхности пленки маг-

нитостатический потенциал Ψ_0^{H} достигает своего максимума для первой моды ОСВ в интервале углов $0 \le \phi \le \phi_{\mbox{\tiny ЭКСТ1}}$ (см. рис. 2а), а для второй моды при угле $\phi = \phi_{3\kappa c\tau 1}$ (см. рис. 2в), но не при $\phi = \phi_{R1}$ (как утверждают авторы [18]); наибольшая асимметрия распределения функции $\Psi_0^{\text{н}}$ имеет место не "вблизи", а точно при $\phi = \phi_{R1}$. В аннотации же работы [18] написано, что "направление волнового вектора ..., которое совпадает с углом отсечки для поверхностных МСВ, ... соответствует наибольшей асимметрии распределения магнитостатического потенциала по толщине пленки". Поскольку в работе [18] это утверждение не доказано, то следует считать его предположением, которое, тем не менее, оказалось справедливым и доказано в данной работе.

Вернемся к обсуждению полученных результатов. Как видно из рис. 3, отрезки 13-16, соответствующие углам $\varphi_{R1}...\varphi_{R4}$, пересекают кривые 5-8, описывающие углы отсечки ОСВ $\varphi_{\text{отс1}}^{\text{ОСВ}}...\varphi_{\text{отс4}}^{\text{ОСВ}}$, на некоторой граничной частоте f_R . Очевидно, возникают следующие вопросы: чему равна величина f_R и имеет ли зависимость $R(\varphi)$ точки экстремума на частотах, меньших значения f_R . Ответить можно, анализируя зависимости $R(\varphi)$, рассчитанные по формулам (20) и (26) при различных значениях частоты f (рис. 4): для частот $f > f_R$ зависимости $R(\varphi)$ (кривые 1 - 3) имеют максимум при $\varphi = \varphi_{R1} = 23.9^\circ$ и минимум при $\varphi = \varphi_{R4} = -23.9^\circ$. Однако с уменьшением f интервал углов, в котором существуют ОСВ, тоже уменьшается и при $f = f_R$ зависимость $R(\varphi)$ имеет экстремумы при значениях φ , равных одновременно углам φ_{R1} , φ_{R4} и уг-

лам отсечки ОСВ $\phi_{\text{отс1}}^{\text{ОСВ}}$, $\phi_{\text{отс4}}^{\text{ОСВ}}$ (см. рис. 4 кривая 4), описываемым выражениями [21]

Таким образом, из условия $\varphi_{R1} = \varphi_{otc1}^{OCB}$ легко вычислить значение граничной частоты f_R . Приравнивая выражения (29) и (32) найдем

$$\omega_R = 2\pi f_R = \omega_H \sqrt{1 + \frac{\omega_M}{\omega_H + \omega_M}}.$$
 (33)

При используемых параметрах пластины и поля получим $f_R = 1393.6 \text{ M}$ Гц.

Для частот $f < f_R$ зависимость $R(\varphi)$ не имеет точек экстремума (кривая 5 на рис. 4) и величина R принимает наибольшее и наименьшее значения при углах близких к углам отсечки ОСВ $\varphi \rightarrow \varphi_{\text{отс}}^{\text{OCB}}$.

Таким образом, как видно из рис. 4, отношение *R* нормированных амплитуд потенциалов двух волн с противоположными ориентациями волновых векторов ϕ_{R1} и $\phi_{R1} - \pi$ максимально, а при ориентациях ϕ_{R4} и $\phi_{R4} - \pi$ – минимально. Для сравнения на зависимостях *R*(ϕ) отмечены значе-

ния $R(\varphi_{3\kappa c \tau 1})$ и $R(\varphi_{3\kappa c \tau 4})$, при которых величина Ψ_0^{H} на одной из поверхностей ферритовой пластины максимальна (см. рис. 4, кружочки). Как видно, для частот, лежащих вблизи начальной частоты спектра OCB $f_{\perp} = \omega_{\perp}/2\pi$, значения углов $\varphi_{3\kappa c \tau 1}$, $\varphi_{3\kappa c \tau 4}$ и φ_{R1} , φ_{R4} близки (что видно из сравнения кривых 1-4 и 13-16).

4. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И ВОЗМОЖНОСТИ ИХ ПРАКТИЧЕСКОГО ИСПОЛЬЗОВАНИЯ

Полученные выше результаты могут быть использованы на практике для возбуждения в ферритовой пластине ОСВ с определенными свойствами. Поэтому рассмотрим кратко *особенности* возбуждения спиновых волн линейным преобразователем. Пусть на поверхности пластины x = 0 расположен линейный преобразователь, у кото-

рого одна (любая) из нормалей параллельна¹⁰ волновому вектору \vec{k} и наклонена к вектору $\vec{H_0}$ под углом φ . Как известно, лишь часть СВЧ-энергии, подводимая к преобразователю, расходуется на возбуждение "полезной" волны с ориентацией вектора \vec{k} под углом φ , другая же часть энергии тратится на возбуждение "побочной" волны с противоположной ориентацией вектора \vec{k} под углом $\varphi - \pi$.

На практике важно уметь определять направления распространения полезной и побочной волн. Из рис. 2 видно, что волнам, у которых абсолютное значение амплитуды потенциала на поверхности x = 0 больше, чем на поверхности x = s(т.е. $|\Psi_0^{H}(x=0,f,\phi)| > |\Psi_0^{H}(x=s,f,\phi)|$), соответствуют точки области ϕ_{OCB} , лежащие *выше* оси *z* на рис. 3. Очевидно, что если на поверхности x = 0расположить линейный преобразователь, то возбуждаемой им полезной волне на рис. 3 будут соответствовать именно эти точки области фосв, а побочной волне – точки, лежащие ниже оси z. При этом ориентации ф, описывающие полезную волну, лежат в интервалах значений $0 < \phi < \phi_{\text{orcl}}^{\text{OCB}}$ и $\phi_{\text{отс2}}^{\text{ОСВ}} < \phi < \pi$, а ориентации ϕ , описывающие побочную волну — в интервалах значений — $\pi < \phi <$ $< \phi_{\text{отс3}}^{\text{ОСВ}}$ и $\phi_{\text{отс4}}^{\text{ОСВ}} < \phi < 0$. Точно также волнам, у которых амплитуда на поверхности x = s *больше*, чем на поверхности x = 0 (т.е. $|\Psi_0^{H}(x = s, f, \varphi)| >$ > $|\Psi_0^{\rm H}(x=0, f, \phi)|$), соответствуют точки области $\phi_{\rm OCB}$, лежащие *ниже* оси *z* на рис. 3. Очевидно, что если возбуждать OCB со стороны поверхности x = s, то все будет наоборот: полезной волне будут соответствовать точки области фосв, лежащие ниже оси z, а побочной – точки, лежащие выше оси z на рис. 3 (и соответствующие интервалы значений ф, лежащие ниже или выше оси z).

Отмеченные выше свойства ОСВ наглядно отображает также рис. 16, где волновые векторы \vec{k} и соответствующие им векторы групповой скорости \vec{V} , изображенные жирными стрелками, описывают полезные волны, возбуждаемые преобразователями Пр1 и Пр2. Напомним, что для приема волн в анизотропных средах именно в направлении вектора \vec{V} следует располагать приемный преобра-

зователь, но ориентировать его необходимо так же, как возбуждающий преобразователь.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 3 2020

Следует также отметить, что в соответствии с работой [16], отношение амплитуд полезной и побочной волн $R_{_{ЭКСП}}$ в эксперименте примерно равно¹¹ отношению амплитуд магнитного потенциала этих волн R на поверхности ферритовой пластины, где расположен преобразователь.

Таким образом, из сказанного следует, что, например, для первой моды OCB с частотой f == 2000 МГц при ориентации преобразователя под углом $\phi = \phi_{R1} = 23.9^{\circ}$ кроме полезной волны (соответствующей ориентации волнового вектора (ϕ_{R1}) возбудится еще и побочная волна с ориентацией волнового вектора $\phi - \pi = \phi_{R3} = -156.1^{\circ}$, причем отношение амплитуд полезной и побочной волн должно быть примерно равно отношению нормированных амплитуд их потенциалов $R(\varphi_{R1} = 23.9^{\circ}) = \Psi_0^{\scriptscriptstyle H}(G) / \Psi_0^{\scriptscriptstyle H}(H) = 0.865 / 0.298 = 2.9$ (см. рис. 2 и кривую *3* на рис. 4). Для частоты ОСВ $f = 2450 \text{ M}\Gamma$ ц и той же ориентации преобразователя получим $R(\varphi_{R1} = 23.9^\circ) = 7.5$ (см. рис. 4 кривая *1*). То есть можно осуществлять возбуждение ОСВ с различным отношением амплитуд полезной и побочной волн или же с разной степенью невзаимности.

Кроме того, на практике может возникнуть необходимость передать энергию ОСВ с возбуждающего преобразователя на приемный при минимальных потерях. Пусть, для определенности, ОСВ возбуждается со стороны поверхности x = 0. В этом случае для первой моды ОСВ при изменении угла φ от 0 до угла отсечки φ_{отс1}^{ОСВ} амплитуда побочной волны $\Psi_0^{\rm H}(x=0,\phi-\pi)$ уменьшается (см. рис. 26 кривые *I*, 5–7), тогда как аналогичная амплитуда *полезной* волны $\Psi_0^{H}(x = 0, \phi)$ максимальна в интервале углов $0 \le \phi \le \phi_{\operatorname{экст1}}$ (см. рис. 2а кривые *1*-4). То есть если сориентировать преобразователь под углом $\phi = \phi_{3\kappa ct1}$, то амплитуда возбуждающейся полезной волны на поверхности x = 0 будет *макси*мальна, а амплитуда побочной волны – достаточно мала. Например, для первой моды ОСВ при частоте f = 2450 МГц получим $R(\phi_{3\kappa c \tau^1}) = 7.3$ (см.

¹⁰Здесь предполагается, что линейный преобразователь является синфазным возбудителем и возбуждает спиновую волну, у которой волновой вектор ориентирован нормально линии преобразователя. В действительности это предположение справедливо лишь приближенно (подробнее об этом см. раздел 9 в [26]).

¹¹ В разделе 3 работы [16] отмечалось, что потери на возбуждение (или прием) полезной ОСВ (по измерениям коэффициента передачи по мощности) при f = 2350 МГц, $\phi = -21.5^{\circ}$ и приведенных выше параметрах ферритовой пленки составили $\delta = -6.53$ дБ, тогда как потери на возбуждение побочной ОСВ (при $\phi = 159.5^{\circ}$) составили $\delta = -19.43$ дБ. Отсюда находим измеренное отношение амплитуд двух этих волн $R_{\rm эксп} = 10^{-6.53/20}/10^{-19.43/20} = 4.415$, что примерно (с точностью ~10%) соответствует отношению амплитуд потенциала этих волн для данной частоты R = 4.89 на поверхности x = 0 (см. [16] рис. 4б, 4в, кривые 2 и 5). Кроме того, при $\phi = 0^{\circ}$ оба указанных отношения были равны единице. Очевидно, что отношения амплитуд полезной и побочной волн могут быть рассчитаны более точно на основе вычисления для каждой из волн интеграла перекрытия, который будет зависеть от параметров преобразователя и от распределения потенциала волны по толщине ферритовой пластины. Однако вычисление таких интегралов выходит за рамки данной работы.

рис. 4 кружочек на кривой *1*), вдобавок к этому получим минимальные потери при передаче энергии полезной волны.

Таким образом, в ферритовой пластине, как и в случае с ПСВ (см., например, [6, рис. 6.14]), можно реализовать *невзаимное* возбуждение ОСВ с противоположно направленными волновыми векторами, причем степень невзаимности, определяемая величиной *R*, существенно зависит от ориентации преобразователя φ .

ЗАКЛЮЧЕНИЕ

Исследованы невзаимные свойства мод обратной спиновой волны, распространяющейся в касательно намагниченной ферритовой пластине. В частности, предложена нормировка амплитуд магнитного потенциала, при которой зависимости $\Psi_0^{\rm H}(x, \phi)$ и $\Psi_0^{\rm H}(x, -\phi)$, рассчитанные при ориен-

сти $\Psi_0^{H}(x, \phi)$ и $\Psi_0^{H}(x, -\phi)$, рассчитанные при ориентациях волнового вектора под углами ϕ и – ϕ , симметричны для всех мод волны. Рассмотрено, как на поверхности ферритовой пластины изме-

няются амплитуды потенциала $\Psi_0^{\scriptscriptstyle H}(x, \varphi)$ и

 $\Psi_0^{\rm H}(x, \varphi - \pi)$ двух волн с противоположно направленными волновыми векторами, ориентированными под углами φ и $\varphi - \pi$. Установлено, что отношение *R* амплитуд потенциалов этих двух волн существенно зависит от величины φ , причем экстремальные значения величины *R* для всех мод волны имеют место при значениях $\varphi_{R1} \dots \varphi_{R4}$, равных максимальным углам отсечки поверхностной

спиновой волны $\varphi_{\text{отс1}}^{\Pi \text{CB}}(f_{\perp}) \dots \varphi_{\text{отс4}}^{\Pi \text{CB}}(f_{\perp})$. Найдено, что если на одной поверхности пластины отношение *R* максимально, то на другой поверхности пластины это отношение минимально и равно 1/*R*. Обнаружено, что существует значение частоты f_R , которое делит диапазон существования обратных спиновых волн на два частотных интервала: в интервале $f_H < f < f_R$ зависимость $R(\varphi)$ является монотонной (т.е. величина *R* принимает максимальное и минимальное значения при углах, близких к углам отсечки волнового вектора), а в интервале $f_R <$ $< f < f_{\perp}$ зависимость $R(\varphi)$ имеет точки экстремума

(максимум и минимум). Получено аналитическое выражение для ориентации $\phi_{_{3kcr1}}$ волнового вектора, при которой на распределении амплитуды

магнитного потенциала *m*-й моды волны $\Psi_0^{H}(x)$ в сечении ферритовой пластины возникает *m*-я точка экстремума, лежащая на одной из поверхностей пластины. Найдено, что для *первой моды* волны амплитуда потенциала максимальна на поверхности пластины при ориентациях волнового вектора, лежащих в интервале значений $0 \le \phi \le \phi_{3\kappa crl}$. Сформулированы рекомендации по практическому использованию полученных результатов при возбуждении обратных спиновых волн с невзаимными свойствами.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена за счет бюджетного финансирования в рамках государственного задания по теме № 0030-2019-0014.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Damon R.W., Eshbach J.R.* // J. Phys. Chem. Sol. 1961. V. 19. № 3/4. P. 308.
- 2. Лакс Б., Баттон К. Сверхвысокочастотные ферриты и ферромагнетики. М.: Мир, 1965.
- 3. *Вапнэ Г.М.* СВЧ устройства на магнитостатических волнах. Сер. 1, Электроника СВЧ. 1984. Вып. 8.
- 4. Данилов В.В., Зависляк И.В., Балинский М.Г. Спинволновая электродинамика. Киев: изд. Либідь, 1991.
- Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во Сарат. ун-та, 1993.
- 6. *Гуревич А.Г., Мелков Г.А.* Магнитные колебания и волны. М.: Наука, 1994.
- Stancil D.D., Prabhakar A. Spin Waves: Theory and applications, Business Media. N.-Y.: Springer Science, 2009.
- Topics in Applied Physics. V. 125. Magnonics: From Fundamentals to Applications / Ed. S.O. Demokritov, A.N. Slavin. Berlin; Heidelberg: Springer-Verlag, 2013.
- 9. Шавров В.Г., Щеглов В.И. Магнитостатические волны в неоднородных полях. М.: Физматлит, 2016.
- Вашковский А.В., Гречушкин К.В., Стальмахов А.В., Тюлюкин В.А. // Письма в ЖТФ. 1986. Т. 12. № 8. С. 487.
- 11. Вашковский А.В., Валявский А.Б., Стальмахов А.В., Тюлюкин В.А. // РЭ. 1987. Т. 32. № 11. С. 2450.
- Валявский А.Б., Вашковский А.В., Стальмахов А.В., Тюлюкин В.А. // ЖТФ. 1989. Т. 59. № 6. С. 51.
- 13. Вугальтер Г.А., Коровин А.Г. // Письма в ЖТФ. 1989. Т. 15. № 21. С. 73.
- 14. Анненков А.Ю., Герус С.В. // ЖТФ. 1999. Т. 69. № 1. С. 82.
- 15. Локк Э.Г. // РЭ. 2003. Т. 48. № 12. С. 1484.
- Вашковский А.В., Локк Э.Г. // Успехи физ. наук. 2006. Т. 176. № 4. С. 403.
- 17. Локк Э.Г. // Успехи физ. наук. 2008. Т. 178. № 4. С. 397.
- 18. Анненков А.Ю., Герус С.В. // Изв. РАН. Серия физическая. 2010. Т. 74. № 10. С. 1416.
- 19. Вашковский А.В., Локк Э.Г. // РЭ. 2012. Т. 57. № 5. С. 541.
- 20. Локк Э.Г. // РЭ. 2015. Т. 60. № 1. С. 102.
- 21. Локк Э.Г. // РЭ. 2018. Т. 63. № 8. С. 350.
- 22. Локк Э.Г. // Изв. РАН. Серия физическая. 2018. Т. 82. № 8. С. 1034.
- 23. Annenkov A.Yu., Gerus S.V., Lock E.H. // EPJ Web of Conf. 2018. V. 185. P. 02006.
- 24. Беспятых Ю.И., Зубков В.И., Тарасенко В.В. // ЖТФ. 1980. Т. 50. № 1. С. 140.
- 25. Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Наука, 1986.
- 26. Локк Э.Г. // Успехи физ. наук. 2012. Т. 182. № 12. С. 1327.