ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 537.86;517.958

НОВЫЙ ТИП РЕЗОНАТОРА-НАКОПИТЕЛЯ ДЛЯ КОМПРЕССОРА ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ

© 2020 г. П. Н. Мележик^{*a*}, Ю. К. Сиренко^{*a*, *}

^а Институт радиофизики и электроники им. А.Я. Усикова Национальной академии наук Украины, ул. Академика Проскуры, 12, Харьков, 61085 Украина

> **E-mail: yks2002sky@gmail.com* Поступила в редакцию 12.06.2019 г. После доработки 20.06.2019 г. Принята к публикации 25.06.2019 г.

Изучена возможность использования резонатора-накопителя нового типа — открытого резонатора, рабочее колебание в котором формируется встречными поверхностными волнами открытого диэлектрического волновода, в активном компрессоре электромагнитных импульсов. Детально рассмотрена простейшая модель такого устройства, однако результаты, полученные при ее строгом электродинамическом анализе, позволяют сделать вывод о том, что данное устройство перспективно для использования при решении ряда актуальных задач физики и техники миллиметровых и субмиллиметровых волн.

DOI: 10.31857/S0033849420040063

введение

В работе [1] впервые были представлены и реализованы основные принципы модельного синтеза активных прямоточных компрессоров электромагнитных импульсов на отрезках регулярных круглых и коаксиальных волноводов. Дальнейшее развитие эти исследования получили в работах [2-6], в которых впервые строго рассчитаны динамические характеристики накопителей на отрезках прямоугольных и круглых волноводов; синтезированы замки, позволяющие эффективно, быстро и в нужное время сбрасывать накопленную энергию в отводящие волноводы и в свободное пространство; предложены новые схемы формирования и излучения мощных, коротких, направленных радиоимпульсов; рассмотрены ключевые вопросы, связанные с возможностью использования для накопления энергии открытых резонансных систем. Основной итог проведенных исследований заключается в демонстрации важности достоверного электродинамического моделирования, обоснованного численного анализа и оптимизации процессов, реализуемых в активных компрессорах. Было показано, что для создания устройств с заданными характеристиками, необходимо широкомасштабное моделирование, что позволяют значительно упростить и сделать гораздо менее затратным поиск оптимальных конструкций.

Метод точных поглощающих условий (Method of Exact Absorbing Conditions, EAC-метод) [2, 6–15] – его модели использовались в [1–6] – по-видимому, лучше других популярных методов вычислительной электродинамики, базирующихся на дискретизации начально-краевых задач [16, 17], пространство счета которых ограничивается приближенными или эвристическими поглощающими условиями [18-24], приспособлен для решения задач анализа и синтеза активных компрессоров и их функциональных узлов. Он достаточно быстрый и не искажает физику моделируемых процессов. Его вычислительные схемы устойчивы и практически без потерь в точности пробегают миллионы и десятки миллионов временных слоев, необходимость просмотра которых диктуется спецификой рассматриваемых задач [16]. ЕАС-метод мы используем и в данной работе. Ее основное содержание связано с моделированием и анализом компрессора с накопителем нового типа – открытым резонатором, рабочее колебание в котором формируется встречными поверхностными волнами открытого диэлектрического волновода. Такой компрессор можно было бы ориентировать на работу в миллиметровом диапазоне длин волн. Его тепловые потери значительно меньше, а дифракционные потери сравнимы с теми, которые характерны для компрессоров с резонатором-накопителем в виде отрезка регулярного металлического волновода. Важно также и то, что при стандартном способе подачи энергии в такой накопитель из питающего волновода через запредельную диафрагму в нем не возбуждаются колебания с поперечным индексом бо́льшим единицы – фактический спектр открытого резонатора даже с большим поперечным размером оказывается хорошо разреженным.

Мы используем систему СИ для всех физических параметров, за исключением "времени" *t*

Рис. 1. Геометрия задачи: структура симметрична относительно плоскости $\tilde{y} = a/2$; толщина диафрагмы, отделяющей резонансный объем от питающего волновода, равна 0.02; толщина зеркал и металлических стенок волновода – 0.1. На условных границах I...IV рассчитывается энергия, излучаемая в свободное пространство (в область $\Omega_{\text{внеш}}$).

(измеряется в метрах) — его величина определяется произведением истинного времени и скорости распространения света в вакууме. В статье размерности опущены, т.е. все результаты приведены для линейных размеров объектов и длин волн, заданных в метрах. Очевидно, что эти результаты при использовании стандартных методов масштабирования могут быть распространены и на любые другие геометрически подобные структуры.

1. КРАТКОЕ ОПИСАНИЕ РАССМАТРИВАЕМЫХ ОБЪЕКТОВ И ИХ ЭЛЕКТРОДИНАМИЧЕСКОЙ МОДЕЛИ

Анализ рассматриваемого модельного двумерного объекта — компактного в плоскости y0z и бесконечного, однородного в направлении x открытого резонатора с виртуальным питающим плоско-параллельным волноводом Ω_1 (рис. 1) проводится на основе численного решения начально-краевой задачи [3, 4, 6]:

$$\begin{bmatrix} -\varepsilon(g) \partial_t^2 - \eta_0 P + \partial_y^2 + \partial_z^2 \end{bmatrix} U(g,t) = 0;$$

$$t > 0, \quad g \in \Omega_{\text{внут}}$$

$$U(g,t)|_{t=0} = 0, \quad \partial_t U(g,t)|_{t=0} = 0;$$

$$g = \{y,z\} \in \Omega_{\text{внут}}$$

$$\vec{E}_{\text{tg}}(q,t) \quad \text{и} \quad \vec{H}_{\text{tg}}(q,t)$$

$$\text{ непрерывны при пересечении } \Sigma^{\varepsilon,\sigma},$$

$$\vec{E}_{\text{tg}}(q,t)|_{q=\{x,y,z\}\in\Sigma} = 0 \quad \text{и} \quad D[U(g,t)]|_{g\in\Gamma} = 0,$$

$$D_1 \left[U(g,t) - U_p^i(g,t) \right]_{g\in\Gamma_1} = 0, \quad t \ge 0.$$

$$(1)$$

Здесь в случае *Е*-поляризации поля ($\partial x \equiv 0$, $E_y = E_z = H_x \equiv 0$) неизвестная действительная функция $U(g,t) = E_x(g,t)$ И P[U] $\equiv \partial_t [\sigma(g,t)U(g,t)]$, а в случае *H*-поляризации $(\partial_x \equiv 0, H_y = H_z = E_x \equiv 0) - U(g,t) = H_x(g,t)$ и $P[U] \equiv \sigma(g,t)\partial_t U(g,t); \vec{E}(g,t) = \{E_x, E_y, E_z\}$ и $\vec{H}(g,t) = \{H_x, H_y, H_z\}$ – векторы напряженности электрического и магнитного поля соответственно; $\varepsilon(g)$ и $\sigma(g,t)$ (кусочно-постоянные функции пространственных координат) – относительная диэлектрическая проницаемость и удельная проводимость немагнитной и недисперсной среды распространения волн; $\eta_0 = (\mu_0 / \epsilon_0)^{1/2}$ – импеданс свободного пространства; ϵ_0 и μ_0 – электрическая и магнитная постоянные вакуума; $\Sigma = \Sigma_x \times [|x| \le \infty]$ и $\Sigma^{\varepsilon,\sigma} = \Sigma_x^{\varepsilon,\sigma} \times [|x| \le \infty]$ — поверхности идеальных проводников и поверхности разрыва функций $\varepsilon(g)$ и $\sigma(g,t)$; $\Omega_{{}_{\mathrm{BHVT}}}$ – область анализа задачи (1), ограниченная контурами Σ_x и виртуальными границами Γ_1 , Γ (см. рис. 1).

Резонатор возбуждается через виртуальную границу Γ_1 в поперечном сечении питающего волновода Ω_1 импульсной TE_{0p} - или TM_{0p} -волной

$$U_{p}^{\prime}(\tilde{g},t)=v_{p}(\tilde{z},t)\mu_{p}(\tilde{y}).$$

Здесь $\tilde{g} = {\tilde{y}, \tilde{z}} -$ локальная система координат, связанная с виртуальным волноводом Ω_1 (см. рис. 1); $v_p(\tilde{z}, t)$ – пространственно-временные амплитуды волны $U_p^i(\tilde{g}, t)$; $\mu_p(\tilde{y}) = \sqrt{2/a} \sin(\lambda_p \tilde{y})$ (p = 1, 2, 3, ...) в случае *E*-поляризации и $\mu_p(\tilde{y}) =$ $= \sqrt{\left(2 - \delta_0^p\right)/a} \cos\left(\lambda_p \tilde{y}\right) \ (p = 0, 1, 2, ...) в случае H$ $поляризации; <math>\lambda_p = p\pi/a; \delta_0^p -$ символ Кронекера.

Точные поглощающие условия $D[U(g,t)]|_{g\in\Gamma} = 0$ и $D_1[U(g,t) - U_p^i(g,t)]|_{g\in\Gamma_1} = 0$ на виртуальных границах Γ_1 и Γ являются ключевыми элементами корректно поставленной начально-краевой задачи (1). С их помощью классическая принципиально открытая задача, описывающая пространственно-временные трансформации электромагнитных волн в объектах, подобных рассматриваемым, превращается в эквивалентную закрытую задачу [6, 12], т.е. в задачу, которую можно решить численно стандартными сеточными методами [16, 17]. Соответствующие результаты f(t) легко конвертируются в не обходимые для анализа амплитудно-частотные характеристики $\tilde{f}(k)$ с использованием преобразования

$$\tilde{f}(k) = \int_{0}^{t} f(t) \exp(ikt) dt$$
 или $\tilde{f}(k) \leftrightarrow f(t).$

Здесь $k = 2\pi/\lambda$ — волновое число (λ — длина волны в свободном пространстве), $0 < T < \infty$ — верхний предел интервала времени наблюдения. Подробное изложение теории EAC-метода, приемов эффективного счета при его реализации, а также аналитическую форму точных поглощающих условий, представленных здесь интегро-дифференциальными операторами D[...] и $D_1[...]$, можно найти в работах [2, 6—15].

2. РЕЗОНАТОР-НАКОПИТЕЛЬ – ПРЕДВАРИТЕЛЬНЫЙ АНАЛИЗ

Пусть ширина d окна диафрагмы равна 0.3. Возбудим резонатор импульсной TE_{01} -волной (E-поляризация поля) со следующими характеристиками:

$$U_{1}'(\tilde{g},t): v_{1}(0,t) = 4\sin\left[\Delta k(t-\tilde{T})\right] \times \\ \times (t-\tilde{T})^{-1}\cos\left[\tilde{k}(t-\tilde{T})\right] \chi(\bar{T}-t) = F_{1}(t); \quad (2) \\ \tilde{k} = 4.0, \ \Delta k = 1.6, \ \tilde{T} = 75, \ \bar{T} = 150.$$

Здесь и дальше $\chi(...)$ – ступенчатая функция Хевисайда, \tilde{k} – центральная частота сигнала, \tilde{T} и \overline{T} – его время запаздывания и длительность. Параметр Δk определяет полосу частот $\tilde{k} - \Delta k \le k \le \tilde{k} + \Delta k$ (2.4 $\le k \le 5.6$) [2, 8], которую занимает волна (2). Для значений k из этой полосы из всех TE_{0n} -волн, отраженных в питающий волновод Ω_1 , одна только TE_{01} -волна $U_1^s(\tilde{g},t) = u_1(\tilde{z},t)\mu_1(\tilde{y})$ распространяется здесь без затуха-

Рис. 2. Спектральные амплитуды свободных симметричных колебаний поля в резонаторе, возбужденных широкополосным TE_{01} -импульсом (2). Стрелками показано положение величин $\operatorname{Re} \overline{k}$, отвечающих $H_{0.1,m}$ свободным колебаниям поля.

ния. Ее критическая частота $k_1^+ \approx 2.1254$. Критическая частота $k_2^+ \approx 4.2508 \ TE_{02}$ -волны также попадает в просматриваемый диапазон частот $2.4 \le k \le 5.6$ ($1.12 < \lambda < 2.62$), но эта волна не возбуждается вследствие симметрии структуры и первичной волны $U_1^i(\tilde{g},t)$. По этой же причине поля всех возбуждаемых в резонаторе колебаний симметричны относительно плоскости $\tilde{y} = a/2$. Диафрагма, связывающая резонансный объем и питающий волновод, остается запредельной до значения $k \approx 7.2263$.

Рассчитаем функцию $U(g,t), 0 < t \le T = 2000$ в точке $g = g_1$, лежащей в плоскости симметрии структуры на равных расстояниях от ее зеркал. Затем согласно [2, 8, 25-28] определим по резонансам на кривых $\underline{\tilde{U}}(g_1,k) \leftrightarrow U(g_1,t) \chi(t-\overline{T}) \chi(T-t)$ (рис. 2) действительные части комплексных собственных частот $\overline{k} = \operatorname{Re} \overline{k} + i \operatorname{Im} \overline{k}$ (2.4 $\leq \operatorname{Re} \overline{k} \leq 5.6$. Im $\overline{k} < 0$) резонатора, которым отвечают $H_{0.1.m}$ свободные колебания поля с нечетным значением индекса т (с нечетным числом вариаций поля вдоль оси z). Колебания $H_{0,n,m}$ с нечетным значением *n*, большим единицы, не возбуждаются в случае как нечетных, так и четных *m*. В этом заключается одно из основных отличий рассматриваемого резонатора от других подобных ему достаточно добротных резонаторов - конфокального и полуконфокального [2, 5, 28].

Остановимся подробней на анализе первых трех колебаний, которым на рис. 2 отвечают наибольшие спектральные амплитуды (спектральные амплитуды импульса $F_1(t)$ распределены на интервале $\tilde{k} - \Delta k \le k \le \tilde{k} + \Delta k$ практически равномерно [2, 8]). Действительные части их собственных частот равны соответственно Re $\overline{k_1} \approx 2.721$ (колебание

Рис. 3. Возбуждение резонатора импульсной волной (3). Конфигурация полей свободных колебаний (распределение значений $E_x(g,t) = U(g,t), g \in \Omega_{\text{внут}}, t = 800$) (а) и амплитуды функций $E_x(g_1,t) = U(g_1,t)$ (б).

 $H_{0,1,9}$), Re $\overline{k_2} \approx 3.251 (H_{0,1,11})$ и Re $\overline{k_3} \approx 3.778 (H_{0,1,13})$. Конфигурацию поля и добротность $Q = \text{Re } \overline{k}/2 |\text{Im } \overline{k}|$ этих колебаний определяем, возбуждая резонатор узкополосным гауссовским импульсом:

$$U_{1}^{i}(\tilde{g},t):v_{1}(0,t) = \exp\left[-\left(t-\tilde{T}\right)^{2}/4\tilde{\alpha}^{2}\right] \times \\ \times \cos\left[\tilde{k}(t-\tilde{T})\right]\chi(\bar{T}-t) = F_{2}(t); \qquad (3)$$

$$\tilde{k} = \operatorname{Re}\bar{k}, \quad \tilde{\alpha} = 40, \quad \tilde{T} = 150, \quad \bar{T} = 150, \\ T = 800.$$

После выключения источника в поле резонатора доминирует колебание, действительная часть собственной частоты \overline{k} которого задает центральную частоту \tilde{k} сигнала $F_2(t)$, а поведение модуля огибающей $A \exp[\mathrm{Im} \,\overline{k} \, (t - \overline{T})]$ функции

Таблица 1. Часть спектральных характеристик резонатора с шириной *d* окна диафрагмы, равной 0.3

Колебание	Собственная частота	Добротность
$H_{0,1,9}$	$\overline{k_1} \approx 2.721 - i0.0004863$	$Q_1 \approx 2798$
$H_{0,1,11}$	$\overline{k}_2 \approx 3.251 - i0.001057$	$Q_2 \approx 1537$
$H_{0,1,13}$	$\overline{k}_3 \approx 3.778 - i0.001933$	$Q_3 \approx 977$

 $U(g_1,t)\chi(t-\overline{T})\chi(T-t), \quad \overline{T} < t \le T$ однозначно определяет величину Іт \overline{k} (рис. 3, см. также работы [2, 8, 25–28]). Результаты, полученные в описанных выше экспериментах, приведены в табл. 1.

Способность резонатора накапливать энергию при использовании в качестве рабочего одного из трех рассмотренных колебаний будем оценивать в рамках следующего вычислительного эксперимента (рис. 4). Возбуждаем структуру длинным квазимонохроматическим импульсом

$$U_{1}^{t}(\tilde{g},t):v_{1}(0,t) = P(t)\cos[\tilde{k}(t-\tilde{T})] = F_{3}(t);$$

$$\tilde{k} = \operatorname{Re}\bar{k}, \quad \tilde{T} = 0.5, \quad P(t;0.01,5,4995,5000),$$
(4)

где $P(t;T_1,T_2,T_3,T_4)$ — трапециевидная огибающая, равная единице при $T_2 < t < T_3$ и нулю при $t < T_1$ и $t > T_4 = \overline{T}$. Динамика реализуемого физического процесса достаточно полно характеризуется [1–3] следующими факторами:

— поведением пространственно-временных амплитуд $u_1(0,t)$ TE_{01} -волны, отраженной в питающий волновод;

— параметрами роста амплитуд функции $U(g_1,t) = E_x(g_1,t)$ — напряженности поля в пучности поля рабочего колебания;

- изменением функции $\eta_{\text{накоп}}(t) = \left[W^{i}(t;0) - W^{s}(t;0) - W^{^{изл}}(t;0) \right] / W^{i}(t;0)$ - мгновенной эффективности накопления подводимой энергии в поле рабочего колебания;

Рис. 4. Возбуждение резонатора длинным квазимонохроматическим импульсом (4). Амплитуды $v_1(0,t)$ первичной волны при мелком и крупном временном шаге (а), функции $u_1(0,t)$, $E_x(g_1,t) = U(g_1,t)$ и $\eta_{\text{накоп}}(t)$, характеризующие процесс накопления энергии на временном интервале $0 < t \le 5000$ и в трех различных свободных колебаниях поля: $\tilde{k} = 2.721$ (6), $\tilde{k} = 3.251$ (в) и $\tilde{k} = 3.778$ (г).

 достигнутым к моменту времени *t* уровнем напряженности поля в пучности поля рабочего колебания

$$\alpha(t) = \max_{0 \leq \tau \leq t} |U(g_1, \tau)| / \max_{\tau > 0} |U(g_1, \tau)|.$$

Здесь $W^{i}(t_{2};t_{1}), W^{s}(t_{2};t_{1})$ и $W^{u_{33}}(t_{2};t_{1}) = W^{u_{33}}_{1}(t_{2};t_{1}) + W^{u_{33}}_{11}(t_{2};t_{1}) + W^{u_{33}}_{11}(t_{2};t_{1}) + W^{u_{33}}_{11}(t_{2};t_{1}) - энергия, подведенная к накопителю через виртуальную границу <math>\Gamma_{1}$, отведенная через эту

же границу в питающий волновод Ω_1 и излученная в свободное пространство через условные границы I...IV за промежуток времени $t_1 \le t \le t_2$. Все эти величины определяются интегрированием по *t* в интервале $t_1 \le t \le t_2$ значений мгновенных мощностей, "переносимых" через соответствующие границы (см. работы [1–3] и рис. 1).

На рис. 4 приведены данные о трех характеристиках из четырех перечисленных выше: функции $u_1(0,t)$ отражают основные мгновенные потери

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 4 2020

Таблица 2. Часть спектральных характеристик резонатора с шириной *d* окна диафрагмы, равной 0.22

Колебание	Собственная частота	Добротность	
$H_{0,1,9}$	$\overline{k_1} \approx 2.7245 - i0.0001122$	$Q_1 \approx 12132$	
<i>H</i> _{0,1,11}	$\overline{k}_2 \approx 3.2555 - i0.0002355$	$Q_2 \approx 6910$	
<i>H</i> _{0,1,13}	$\overline{k}_3 \approx 3.784 - i0.0004186$	$Q_3 \approx 4520$	

подводимой энергии, связанные с возбуждением отраженных в питающий волновод ТЕ₀₁-волн; функции $U(g_1, t) = E_x(g_1, t)$ предопределяют мгновенный уровень амплитуды сигнала, на который можно выйти в результате компрессии, скорость нарастания этого уровня и его предельные значения. Вместе функции $\eta_{\text{накоп}}(t)$ и $U(g_1, t)$ позволяют судить о том, в какой момент времени следует останавливать процесс накопления и определяют длительность \overline{T} возбуждающего импульса, превысив которую мы существенно понизим эффективность устройства, не добившись значительного роста амплитуды сжатого импульса. Четвертая характеристика, $\alpha(t)$, — вспомогательная (не приводится здесь), значения соответствующих функций полностью определяются поведением (наблюдаемым и прогнозируемым) огибающих функций $U(g_1, t)$.

При фиксированной добротности резонаторанакопителя (при фиксированном размере окна связи и конкретном выборе рабочего колебания) эффективность накопления зависит только от длительности накачки, а характер этой (достаточно сложной) зависимости практически одинаков для резонаторов с большей и меньшей добротностью (см. рис. 4 и работы [2, 3, 6]). Повышение добротности приводит к удлинению временного интервала, необходимого для выхода на то же значение η_{накоп} и к росту предельного значения амплитуды формируемого в накопителе сигнала.

Как видно, вариантов, которые необходимо критически оценить при модельном синтезе компрессоров, достаточно много, но без такого исследования создание эффективно работающих устройств невозможно. Первый и важный шаг в этом направлении, как подсказывает сравнение рассмотренных характеристик и характеристик накопителей на отрезках закрытых волноводов [2, 3, 6], должен обеспечить существенное повышение добротности рабочего колебания в резонаторе-накопителе на встречных поверхностных волнах диэлектрического волновода. Нужный результат можно получить, изменяя параметр d – ширину окна диафрагмы или ширину окна связи резонансного объема с питающим волноводом. Положим d = 0.22 (диафрагма остается запредельной до значения $k \approx 9.8541$). Электродинамические характеристики структуры приведены в табл. 2 и на рис. 5. Представленные данные позволяют остановиться на варианте резонатора-накопителя с d = 0.22 и перейти к анализу физических особенностей в процессах, связанных не только с компрессией энергии длинных монохроматических импульсов, но и с ее излучением в коротких мощных радиоимпульсах. Для этого используем простейшие модели, которые в дальнейшем при решении задач синтеза можно будет сделать более реалистичными, отвечающими конкретным требованиям, вытекающим из предполагаемых условий эксплуатации создаваемых устройств.

3. ФОРМИРОВАНИЕ И ИЗЛУЧЕНИЕ МОЩНЫХ КОРОТКИХ РАДИОИМПУЛЬСОВ

Предположим, что зеркало А резонатора-накопителя (см. рис. 1) выполнено не из идеального металла, а из материала, относительная диэлектрическая проницаемость которого равна единице, а удельная проводимость $\sigma(g,t)$, равная 57 000 при 0 < $t \leq \overline{T}$ и нулю при $t \geq \overline{T} + 1$, линейно убывает в моменты времени $\overline{T} \leq t \leq \overline{T} + 1$. Собственные частоты резонатора-накопителя и добротность отвечающих им свободных колебаний при такой модификации зеркала изменятся незначительно: новые значения Re \overline{k} для колебаний $H_{0,1,9}$, $H_{0,1,11}$ и $H_{0,1,13}$ равны соответственно Re $\overline{k_1} = 2.7213$, Re $\overline{k_2} = 3.2517$ и Re $\overline{k_3} = 3.7795$.

Возбудим структуру длинным квазимонохроматическим импульсом $U_1^i(\tilde{g},t): v_1(0,t) = F_3(t)$, $\tilde{k} = \text{Re}\,\bar{k},\,\tilde{T} = 0.5,\,P(t;0.01,5,\bar{T}-5,\bar{T})$ (см. формулу (4)) и продлим время наблюдения Т до $T = \overline{T} + 100$. В момент времени $t = \overline{T} + 1$ зеркало А компрессора полностью "откроется" и накопленная энергия должна выброситься в свободное пространство (в основном, через условную границу II) в виде мощного короткого радиоимпульса. Пространственная длительность такого импульса обычно лишь ненамного превышает удвоенную электрическую длину ($2b\sqrt{\varepsilon} \approx 23.2$) резонаторанакопителя [1–4, 6]. Время \overline{T} , исходя из результатов, представленных на рис. 5, выберем равным $\overline{T} = 10\,000$. Результаты вычислительных экспериментов представлены на рис. 6-8.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 4 2020

Рис. 5. Возбуждение резонатора-накопителя с шириной окна связи d = 0.22 импульсом (4). Функции $u_1(0,t)$, $E_x(g_1,t) = U(g_1,t)$ и $\eta_{\text{накоп}}(t)$, характеризующие процесс накопления энергии в трех различных свободных колебаниях поля: $\tilde{k} = 2.7245$ (a), $\tilde{k} = 3.2555$ (б) и $\tilde{k} = 3.7840$ (в).

Левый ряд рисунков характеризует процесс накопления энергии, а правый – процесс ее излучения в свободное пространство. Длительность $\overline{T}^s \approx 24$ и амплитуды главной части излученных импульсов практически одинаковы для всех трех рассмотренных случаев (для компрессоров с отличающимися типами рабочих колебаний). За главными частями излученных импульсов следуют резко убывающие по амплитуде послеимпульсы такой же длительности, на которые в сумме приходится меньше 4% энергии, излученной в свободное пространство через границу II. Появление этих послеимпульсов связано с отражением от конца диэлектрического волновода вытекающих из накопителя волн в плоскости, в которой в течение всего процесса накопления располагалось металлическое зеркало. Излученный импульс сконцентрирован вблизи плоскости симметрии структуры — в большей степени для более высокой рабочей частоты компрессора.

При практически одинаковой степени компрессии $\beta = \overline{T}/\overline{T}^s \approx 417$ значительно различаются показатели, характеризующие энергетическую эффективность устройства с накопителем, который использует в качестве рабочих разные свободные колебания поля (см. табл. 3; здесь рабочая частота $k_{\rm pab} = \operatorname{Re} \overline{k}$, эффективность накопления сора – $\eta = W_{II}^{\text{изл}} \left(\overline{T} + 3\overline{T}^s; \overline{T} \right) / W^i(\overline{T}; 0)$, усиление по мощности – $\theta = \beta \eta$). Очевидно (см. рис. 6–8), что при работе на более длинных интервалах времени накопления $0 < t \le \overline{T}$ компрессор с колебаниями H_{0111} и H_{0113} может поднять амплитуды излучаемых импульсов лишь незначительно и только за

Рис. 6. Компрессор электромагнитных импульсов на колебании $H_{0,1,9}$ ($\tilde{k} = \operatorname{Re} \bar{k}_1 = 2.7213$). Функции $u_1(0,t)$, $E_x(g_1,t) = U(g_1,t)$ и $\eta_{\text{накоп}}(t)$, характеризующие процесс накопления энергии (а). Амплитуды излученного импульса $U(g,t) = E_x(g,t)$ в точках $g = g_j$, j = 2,3,4 (б). Распределение значений $U(g,t) = E_x(g,t)$, $g \in \Omega_{\text{внут}}$ в поле рабочего колебания в момент времени t = 10000 (в).

счет значительного снижения показателей, характеризующих его энергетическую эффективность. У компрессора с рабочим колебанием *H*_{0.1,9} перспективы в этом отношении гораздо более благоприятные. Это подтверждают и результаты вычислительного эксперимента, приведенные на

Колебание	Рабочая частота	Эффективность накопления	Энергетическая эффективность компрессора	Усиление по мощности
H _{0,1,9}	2.7213	0.744	0.71	296
$H_{0,1,11}$	3.2517	0.62	0.592	247
$H_{0,1,13}$	3.7795	0.4	0.38	158

Таблица 3. Характеристики компрессора

Рис. 7. Компрессор электромагнитных импульсов на колебании $H_{0,1,11}$ ($\tilde{k} = \text{Re } \bar{k}_2 = 3.2517$). Функции $u_1(0,t)$, $E_x(g_1,t) = U(g_1,t)$ и $\eta_{\text{накоп}}(t)$, характеризующие процесс накопления энергии (а). Амплитуды излученного импульса $U(g,t) = E_x(g,t)$ в точках $g = g_j$, j = 2,3,4 (б). Распределение значений $U(g,t) = E_x(g,t)$, $g \in \Omega_{\text{внут}}$ в поле компрессора с "открытым" зеркалом А в момент времени t = 10010 (в).

рис. 9. Здесь при $k_{\text{раб}} = \text{Re } \overline{k_1}$ и повышении времени накопления до $\overline{T} = 15000$ (степени компрессии до $\beta = \overline{T}/\overline{T^s} \approx 625$) максимальная напряженность поля в накопителе выросла на 21%, амплитуды главной части излученного импульса — на 22.5%, а усиление по мощности — на 46% (до $\theta \approx 432$). Эффективность накопления понизилась лишь на 2.4% (до $\eta_{\text{накоп}}(\overline{T}) \approx 0.726$), а энергетическая эффективность компрессора — на 2.5% (до $\eta \approx 0.692$). В общем, эти характеристики компрессора даже выше тех, которые фиксировались в случае резонаторов-накопителей на отрезках регулярных прямоугольных и круглых волноводов [2, 3, 6].

4. ВОЗМОЖНЫЕ СПОСОБЫ ИЗМЕНЕНИЯ ХАРАКТЕРИСТИК ИМПУЛЬСА, "ВЫБРОШЕННОГО" КОМПРЕССОРОМ

От послеимпульсов в излученном из компрессора поле, обусловленных отражением от конца диэлектрического волновода при "открытом" зеркале А, можно избавиться, изменив материальные параметры и геометрию (см. рис. 10, фрагмент б) модельной структуры следующим образом. Удельная проводимость $\sigma(g,t)$ открывающегося в моменты времени $\overline{T} \le t \le \overline{T} + 1$ зеркала А, как и раньше, изменяется на этом временном интервале от значения 57000 до нуля. Но его относительная диэлектрическая проницаемость $\varepsilon(g)$ теперь

Рис. 8. Компрессор электромагнитных импульсов на колебании $H_{0,1,13}$ ($\tilde{k} = \operatorname{Re} \bar{k}_3 = 3.7795$). Функции $u_1(0,t)$, $E_x(g_1,t) = U(g_1,t)$ и $\eta_{\text{накоп}}(t)$, характеризующие процесс накопления энергии (а). Амплитуды излученного импульса $U(g,t) = E_x(g,t)$ в точках $g = g_j$, j = 2,3,4 (б). Распределение значений $U(g,t) = E_x(g,t)$, $g \in \Omega_{\text{внут}}$ в поле компрессора с "открытым" зеркалом А в момент времени t = 10020 (в).

равна единице только на крыльях, выступающих за диэлектрический волновод. В центральной части зеркала, примыкающей к торцу диэлектрического волновода, $\varepsilon(g) = 2.1$. За зеркалом А диэлектрический волновод "продолжается" таким же диэлектрическим клином, длина которого равна 4.9. Таким образом, при открытом зеркале А (в режиме сброса накопленной энергии) мы получаем классический штыревой излучатель [2] в виде сужающейся на конце диэлектрической пластины, общая длина которого равна 8 + 0.1 + 4.9 = 13. Накачивая модифицированный таким образом компрессор длинным квазимонохроматическим импульсом ($\tilde{k} = k_{\text{раб}} = \text{Re } \bar{k}_1$, $\bar{T} = 15000$), приходим к результатам, представленным на рис. 10. После импульсы в излученном компрессором поле исчезли; направленность излучения улучшилась (сравнение характера убывания предельных амплитуд функций U(g,t) в точках $g = g_j, j = 6...9$ на рис. 10 и в точках $g = g_j, j = 2...5$ на рис. 9 позволяет говорить о заметном выравнивании фронта излученной волны); электромагнитное поле из объема накопителя практически полностью излу-

Рис. 9. Характеристики компрессора электромагнитных импульсов на колебании $H_{0,1,9}$ ($k_{\text{раб}} = \tilde{k} = \text{Re } \bar{k}_1 = 2.7213$, $\bar{T} = 15000$). Функции $u_1(0,t)$, $E_x(g_1,t) = U(g_1,t)$ и $\eta_{\text{накоп}}(t)$, характеризующие процесс накопления энергии (а). Амплитуды излученного импульса $U(g,t) = E_x(g,t)$ в точках $g = g_i$, j = 2-5 (б).

чается за время, равное удвоенной электрической длине резонатора и пространственной длительности \overline{T}^s излученного импульса (см. нижние фрагменты рис. 10: распределение значений $E_x(g,t) = U(g,t), g \in \Omega_{\text{внут}}$ в моменты времени t = 15000, t = 15010 и t = 15020).

ЗАКЛЮЧЕНИЕ

Таким образом, показано, что открытые резонаторы, свободные колебания поля в которых формируются встречными поверхностными волнами диэлектрических волноводов, могут быть испрессоров электромагнитных импульсов миллиметрового и субмиллиметрового диапазонов длин волн. Результаты получены в вычислительных экспериментах с упрощенными, идеализированными моделями, на которых изучены принципиальные для реальных устройств особенности процессов накопления энергии, формирования и направленного излучения мощных коротких радиоимпульсов. Предполагается, что все функционально значимые детали создаваемых устройств будут включаться в расчетные модели на этапе их оптимизации.

пользованы в качестве накопителей активных ком-

Рис. 10. Излучение короткого мощного радиоимпульса компрессором с модифицированной геометрией ($k_{\text{раб}} = \tilde{k} = \text{Re } \bar{k}_1 = 2.7213$, $\bar{T} = 15000$). Амплитуды излученного импульса $U(g,t) = E_x(g,t)$ в точках $g = g_j$, j = 6-9 (a). Распределение значений $U(g,t) = E_x(g,t)$, $g \in \Omega_{\text{внут}}$ в поле компрессора с "открытым" зеркалом А в моменты времени t = 15000 (6), t = 15010 (в) и t = 15020 (г).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kuzmitchev I., Melezhyk P., Pazynin V. et al.* // Радиофизика и электроника. 2008. Т. 13. № 2. С. 166.
- 2. *Кравченко В., Сиренко Ю., Сиренко К.* Преобразование и излучение электромагнитных волн открытыми резонансными структурами. М.: Физматлит, 2011.
- Sirenko K., Pazynin V., Sirenko Y., Bagci H. // Progress in Electromagnetics Research. 2011. V. 116. P. 239.
- 4. *Sirenko K., Pazynin V., Sirenko Y., Bagci H. //* Progress in Electromagnetics Research. 2011. V. 116. P. 271.
- Burambayeva N., Sautbekov S., Sirenko Y., Vertiy A. // Telecommunications and Radio Engineering. 2015. V. 74. № 1. P. 29.

- 6. Electromagnetic Waves in Complex Systems: Selected Theoretical and Applied Problems / Eds. Sirenko Y., Velychko L. N.Y.: Springer, 2016.
- 7. Sirenko K., Sirenko Y. // Computational Mathem. Mathem. Phys. 2005. V. 45. № 3. P. 490.
- Sirenko Y., Strom S., Yashina N. Modeling and Analysis of Transient Processes in Open Resonant Structures. New Methods and Techniques. N.Y.: Springer, 2007.
- 9. Modern Theory of Gratings. Resonant Scattering: Analysis Techniques and Phenomena / Eds. Sirenko Y., Strom S. N.Y.: Springer, 2010.
- 10. Sirenko K., Pazynin V., Sirenko Y., Bagci H. // Progress in Electromagnetics Research. 2011. V. 111. P. 331.
- 11. Shafalyuk O., Sirenko Y., Smith P. Simulation and Analysis of Transient Processes in Open Axially-Symmetri-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 4 2020

cal Structures: Method of Exact Absorbing Boundary Conditions. Rijeka: InTech, 2011. P. 99.

- 12. Shafalyuk O., Smith P., Velychko L. // Progress in Electromagnetics Research B. 2012. V. 41. P. 231.
- 13. *Sautbekov S., Sirenko Y., Velychko L, Vertiy A.* // Intern. J. Antennas and Propagation. 2014. V. 2014. ID 745413.
- 14. *Orazbekova M., Pazynin V., Sautbekov S. et al.* // Физ. основы приборостроения. 2014. Т. 3. № 4. С. 40.
- Пазынин В., Сиренко К., Сиренко Ю., Яшина Н. // Физ. основы приборостроения. 2017. Т. 6. № 4. С. 4.
- 16. *Taflove A., Hagness S.* Computational Electrodynamics: the Finite-Difference Time-Domain Method. Boston: Artech House, 2000.
- 17. *Jin J*. The Finite Element Method in Electromagnetics. N.Y.: John Wiley & Sons, 2002.
- 18. *Engquist B., Majda A.* // Mathematics of Computation. 1977. V. 31. № 139. P. 629.
- 19. *Mur G.* // IEEE Trans. 1981. V. EC-23. № 4. P. 377.

- 20. *Tirkas P., Balanis C., Renaut R. //* IEEE Trans. 1992. V. AP-40. № 10. P. 1215.
- 21. *Mei K., Fang. J.* // IEEE Trans. 1992. V. AP-40. № 9. P. 1001.
- 22. Berenger J. // J. Comput. Phys. 1994. V. 114. № 1. P. 185.
- 23. *Berenger J.* // J. Comput. Phys. 1996. V. 127. № 2. P. 363.
- 24. Sacks Z., Kingsland D., Lee R., Lee J. // IEEE Trans. 1995. V. AP-43. № 12. P. 1460.
- 25. Сиренко Ю., Сухаревский И., Сухаревский О., Яшина Н. Фундаментальные и прикладные задачи теории рассеяния электромагнитных волн. Харьков: Крок, 2000.
- Sirenko Y., Velychko L., Erden F. // Progress in Electromagnetics Research. 2004. V. 44. P. 57.
- 27. Velychko L., Sirenko Y., Velychko O. // Progress in Electromagnetics Research. 2006. V. 61. P. 1.
- Velychko L., Sirenko Y. // Progress in Electromagnetics Research, B. 2009. V. 16. P. 85.