ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.396.96

СОВМЕСТНОЕ ИЗМЕРЕНИЕ ЧАСТОТНОГО И ВРЕМЕННОГО СДВИГОВ ШИРОКОПОЛОСНОГО СИГНАЛА В СИСТЕМАХ БЛИЖНЕЙ ЛОКАЦИИ

© 2020 г. Е. И. Шкелев^{*a*, *}, А. В. Ширкаев^{*a*, **}

^аНижегородский государственный университет им. Н.И. Лобачевского, просп. Гагарина, 23, Нижний Новгород, 603950 Российская Федерация *E-mail: shkelev@rf.unn.ru **E-mail: avshirkaev@mail.ru Поступила в редакцию 01.03.2019 г.

После доработки 17.06.2019 г. Принята к публикации 26.07.2019 г.

Представлен способ определения частотного и временного сдвигов фазоманипулированного по псевдослучайному закону сигнала в условиях многолучевого распространения и в присутствии доплеровской деформации. В основу положено последетекторное вычисление взаимной функции неопределенности по двухэтапной корреляционно-спектральной схеме, когда временные задержки определяются путем вычисления взаимной функции корреляции (ВФК) принимаемого и опорного, повторяющего закон модуляции, сигналов, а частотные сдвиги – по спектральным характеристикам вариаций ВФК в зависимости от сдвигового времени. Алгоритм вычислений рассчитан на работу в реальном времени и на реализацию средствами программируемой логики.

DOI: 10.31857/S0033849420050125

ВВЕДЕНИЕ

В системах гидро- и радиолокации широко применяются сложные дискретно-кодированные сигналы, что является эффективным средством обеспечения высокой разрешающей способности и помехозащищенности, устранения противоречия между разрешающей способностью и дальностью действия, а также обеспечения работоспособности в условиях многолучевого распространения (см., например, [1]). Однако широкополосный сигнал подвержен доплеровской деформации, из-за чего трудно однозначно определить задержку сигнала τ (задержка меняется со временем и требуется знать, какая именно часть сигнала используется) и сдвиг частот v в его спектре (различные частоты имеют разный сдвиг). Совместно временной τ и частотный V сдвиги можно определить, вычисляя взаимную функцию неопределенности (ВФН) для принятого сигнала и опорного, согласованного с принимаемым. По отношению к сложным широкополосным сигналам применима широкополосная ВФН [2, 3]. Известны также способы обработки, инвариантные относительно сжатия (расширения) сигналов [4].

Однако непосредственное применение упомянутых способов определения времячастотного сдвига технически трудно реализуемо и требует значительной вычислительной мощности. Поэтому существующие средства измерения т и v базируются преимущественно на сегментно-фильтровой обработке, когда сигнал большой длительности разбивается на сегменты, длительность которых такова, что набег фазы при максимальном доплеровском сдвиге частоты не превышает π [1, 5, 6]. По каждому из сегментов сначала вычисляется взаимная функция корреляции (ВФК) с соответствующим сегментом опорного сигнала, а затем выполняется быстрое преобразование Фурье (БПФ) полученного ряда значений ВФК.

В данной работе рассмотрены механизм действия и способ реализации измерителя времячастотного сдвига сигналов с периодической псевдослучайной фазовой манипуляцией в присутствии доплеровской деформации и в условиях многолучевого распространения. Способ измерения рассчитан на применение в когерентно-импульсных системах ближней локации с цифровой последетекторной (после синхронного детектирования) обработкой средствами программируемой логики. Задача совместного определения временного θ и частотного v сдвигов решается на основе предложенной авторами двухэтапной корреляционно-спектральной схемы вычисления ВФН для принимаемого сигнала и опорного, зондирующего сигнала, повторяющего закон модуляции. Представлены результаты численного моделирования измерителя. Дана оценка помехозащищенности и точности измерения θ и ν.

1. ВЗАИМНАЯ ФУНКЦИЯ НЕОПРЕДЕЛЕННОСТИ МНОГОКОМПОНЕНТНОГО СИГНАЛА В ПРИСУТСТВИИ ДОПЛЕРОВСКОЙ ДЕФОРМАЦИИ

Будем полагать, что сигнал источника

$$s_0(t) = S_0(t) \exp(j2\pi f_0 t)$$
 (1)

(здесь и далее сигналы рассматриваются как аналитические) имеет несущую частоту f_0 и дискретно-кодированную огибающую

$$S_0(t) = \sum_{i=-\infty}^{\infty} \sum_{l=0}^{L-1} w_l A_0(t - (l + iL)\Delta_t) =$$

=
$$\sum_{i=-\infty}^{\infty} P_0(t - iL\Delta_t)$$
 (2)

в виде периодически повторяющейся бинарной М-последовательности (псевдослучайной последовательности, ПСП)

$$P_0(t) = \sum_{l=0}^{L-1} w_l A_0(t - l\Delta_t),$$
(3)

образованной импульсными дискретами $A_0(t)$ с длительностью Δ_t . Правило кодирования задается весовыми коэффициентами $W = \{w_i\}$ ($w_i = \pm 1$). Период повторения $T = L \Delta_t$, где $L - длина \Pi C \Pi$.

Если излученный сигнал распространяется в неоднородной, содержащей отражающие объекты среде, то в точку приема он приходит в виде многокомпонентного сигнала

$$s(t) = \sum_{n=1}^{N} s_n(t).$$

Число N и свойства составляющих $s_n(t)$ в s(t) зависят от условий распространения. В отсутствие помех каждая из принимаемых компонент имеет вид

$$s_n(t) = \tilde{s}_0(\gamma_n(t - \Delta t_n)), \qquad (4)$$

где знак тильда "~" над s_0 указывает на возможные искажения в приемо-передающей аппаратуре и на пути распространения, Δt_n (n = 1...N) – задержка сигнала от n-го отражающего объекта, $\gamma = \gamma_n$ – параметр доплеровской деформации ($\gamma = 1 + \beta$, $\beta = 2v/c$), $v = v_n$ – проекция вектора скорости n-го объекта на направление прихода, c – скорость распространения сигнала. При непрерывной периодической модуляции ни одна из задержек Δt_n не превышает длительности периода зондирования *T*. В случае, когда скорость v постоянна, форма составляющих принятого сигнала $s_n(t)$ повторяет форму зондирующего $s_0(t)$, и тогда

$$s_n(t) = s_0(\gamma_n(t - \Delta t_n)).$$

Подстановка (1) и (2) в (4) дает

$$s_n(t) = X_n(t, \Delta t_n, \gamma_n) \exp(j2\pi(f_0t + \Delta f_nt - f_0\gamma_n\Delta t_n)).$$

Здесь $\Delta f_n = f_0 \beta_n$ – частота Доплера,

$$X_n(t,\Delta t_n,\gamma_n) = \sum_{i=-\infty}^{\infty} P_n(\gamma_n(t-iL\Delta_t-\Delta t_n))$$

 модуль комплексной огибающей, образованный суммой

$$P_n(\gamma_n t) = \sum_{l=0}^{L-1} w_l A_n(\gamma_n (t - l\Delta_t))$$

периодически повторяющихся и задержанных на время Δt_n кодовых последовательностей с соответствующим (2) и (3) правилом кодирования дискретов $A_n(t)$. Таким образом, эффект Доплера в принятом сигнале имеет двоякое проявление: 1) изменяются длительность дискрета Δ_t модулирующей ПСП и период модуляции $T_c = T/\gamma$; 2) появляются вариации, обусловленные изменением мгновенной фазы $\Delta \varphi_n$ из-за частотного сдвига $\Delta f_n (\Delta \varphi_{n1} = 2\pi \Delta f_n t)$ и переменной задержки $\Delta t_n (\Delta \varphi_{n2} = 2\pi f_0 \gamma_n \Delta t_n)$:

$$\Delta \varphi_n = \Delta \varphi_{n1} - \Delta \varphi_{n2}.$$

В общем случае к этому нужно добавить возникающие в приемо-передающей аппаратуре и в среде распространения изменения формы дискретов $A_n(t)$, однако здесь влияние формы дискретов на результат измерений не рассматривается, а сами импульсы $A_n(t)$ считаются прямоугольными и имеющими амплитуду A_n .

Совместно частотный и временной сдвиги можно найти, вычисляя взаимную функцию не-определенности

$$R(\theta, v) = \int_{-\infty}^{\infty} s(t - \theta) s_0^*(t) \exp(-j2\pi v t) dt$$
 (5)

принимаемого s(t) и опорного $s_0(t)$ сигналов, для чего обычно используются цифровые методы вычислений, требующие значительных вычислительных ресурсов, особенно применительно к задачам реального времени. При когерентно-импульсной локации требованию реального времени можно удовлетворить, если цифровую обработку выполнять после синхронного детектирования. Тогда вместо (5) будем иметь дело с функцией неопределенности

$$Q(\theta, \mathbf{v}) = \int_{-\infty}^{\infty} S(t - \theta) S_0^*(t) \exp(-j2\pi \mathbf{v} t) dt$$
 (6)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 6 2020

для комплексных амплитуд принимаемого сигнала —

$$S(t) = \sum_{n=1}^{N} S_n(t),$$

содержащего N составляющих -

$$S_n(t) = \kappa_n X_n(t, \Delta t_n, \gamma_n) \exp(j2\pi(\Delta f_n t - f_0 \gamma_n \Delta t_n)),$$

и опорного сигнала –

$$S_0(t) = P_0(t).$$

Последний соответствует одному периоду T модулирующей ПСП. Коэффициент κ_n показывает изменение амплитуды после детектирования. Если ВФН вычислять, используя "скользящее" по сигналу S(t) временное окно с длительностью T, то вместо (6) будем иметь

$$Q(\theta, \mathbf{v}) = \sum_{n=1}^{N} \int_{0}^{T} S_n(t-\theta) S_0^* \exp(-j2\pi \mathbf{v}t) dt.$$

Задержка Δt ($\Delta t = \Delta t_1, \Delta t_2, \Delta t_3, ..., \Delta t_N$) сигналов от находящихся в зоне обзора объектов изменяется от некоторого начального значения Δt_0 ($\Delta t_{01}, \Delta t_{02}, \Delta t_{03}, ..., \Delta t_{0N}$) до текущего $\Delta t_0 - \beta t$ ($\beta = \beta_1, \beta_2, \beta_3, ..., \beta_N$). Вследствие этого изменяется мгновенная фаза

$$\Delta \varphi_n = \varphi_n + 2\pi \Delta f_n \gamma_n t,$$

и тогда функцию неопределенности можно представить в виде

$$Q(\theta, \mathbf{v}) = \sum_{n=1}^{N} \exp(-j(\varphi_n + 2\pi f_0 \gamma_n \Delta t_n)) \times \\ \times \kappa_n \int_0^T [X_n(t - \theta, \Delta t_n, \gamma_n) \exp(j(2\pi \Delta f_n \gamma_n(\theta - t)))] \times$$
(7)
$$\times S_0^* \exp(j2\pi (\Delta f_n - \mathbf{v})t) dt,$$

где $\varphi_n = 2\pi f_0 \gamma_n \Delta t_{0n}$.

За период опорного сигнала T задержка Δt_n каждой из N составляющих в S(t) получит приращение

$$\beta T = 2vT/c = T_c - T,$$

которое зависит от свойственных этим составляющим периодов $T_c = T_{c1}, T_{c2}, T_{c3}, ..., T_{cN}$, где $T_{cn} = 2v_nT/c$ (v_n – радиальная скорость *n*-го отражающего объекта). При этом наибольший набег фазы за один период зондирования не превысит значения

$$\Delta \varphi \cong 2\pi T/T_D \ (|\Delta \varphi| \ll 2p).$$

Вследствие этого интеграл в (7) можно вычислять, полагая, что в пределах интегрирования экспоненциальные множители $\exp(j2\pi\Delta f_n\gamma_n(\theta - t))$ постоянны, а их изменения происходят лишь при изменении сдвигового времени на $\Delta \theta \ge T$. Присутствие начальных фаз φ_n в (7) не влияет на ре-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 6 2020

зультат, поскольку вычисление ведется в режиме непрерывного перемещения сигнала S(t) относительно фиксированных пределов интегрирования 0...*T*, и в установившемся режиме (при $\theta \ge T$) можно принять $\phi_n = 0$.

2. ИЗМЕРЕНИЕ ВРЕМЕННОГО СДВИГА ПРИ ЗАДАННОМ ОПОРНОМ СИГНАЛЕ

Времячастотный сдвиг определяется по положению главных максимумов тела неопределенности $|Q(\theta, v)|$, сосредоточенных в малых областях

$$\Delta \theta < \Delta_t$$
 и $\Delta v \ll 1/T$

вблизи $\theta = \Delta t + kT_c$ (k = 0, 1, 2, 3, ...) и $v = \Delta f$ ($\Delta f = \Delta f_1, \Delta f_2, \Delta f_3, ..., \Delta f_N$) на плоскости (θ, v). При этом измеряемая задержка τ соответствует пиковым значениям распределения $Q(\theta, v)$ в его сечении плоскостями $v = \Delta f_n$, т.е. максимумам модуля $|Q(\theta, v = \Delta f_n)|$. Если доплеровские частоты $\Delta f_n \ll 1/T$, то определение τ можно свести к вычислению ВФК, которая представляет собой сумму взаимных функций корреляции для каждой из N составляющих сигнала S(t), с весовыми множителями $\tilde{\kappa}_n(\theta) = \kappa_n \exp(j2\pi\Delta f_n\gamma_n\theta)$:

$$\mathbf{K}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \mathbf{K}_{n}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \tilde{\kappa}_{n}(\boldsymbol{\theta}) \int_{0}^{T} X_{n}(t-\boldsymbol{\theta}, \Delta t_{n}, \gamma_{n}) S_{0}^{*} dt.$$
(8)

Задержка т определяется по расположению пиковых значений ВФК относительно верхних границ, периодически повторяющихся по сдвиговому времени θ интервалов *T*. Это позволяет отобразить алгоритм вычисления ВФК (8) на параллельно работающие процессорные элементы, которые выполняют простые циклически повторяющиеся операции накопления под управлением опорного сигнала $S_0(t)$ [7]. Число процессорных элементов зависит от размера окна *T*, определяемого длиной *L* и числом приходящихся на один дискрет Δ_t отсчетов опорной ПСП. Реализовать такой вычислитель ВФК можно на одной, обладающей соответствующими ресурсами программируемой логической интегральной схеме (ПЛИС).

3. ОЦЕНКА ТОЧНОСТИ И ПОМЕХОЗАЩИЩЕННОСТИ СПОСОБА ИЗМЕРЕНИЯ ВРЕМЕННОГО СДВИГА

В отсутствие эффекта Доплера, когда $\Delta f = 0$ и $\Delta t = \text{const}$, принимаемый сигнал стационарен, а функции $X_n(t, \Delta t_n, \gamma_n)$ периодичны с периодом *T*. С тем же периодом, но по сдвиговому времени θ повторяются главные максимумы модуля ВФК

$$K_{ni} = \left| K_n(\theta = \theta_{\max i}) \right| = A_n L \left| \tilde{\kappa}_n(\theta = \theta_{\max i}) \right|$$

в точках $\theta = \theta_{\max i}$ (*i* – порядковый номер максимума). Это иллюстрирует рис. 1а, где на нескольких

Рис. 1. Распределение $\text{Re}[K(\theta)]$ при v = 0 (а) и при v > 0 (б).

кадрах (периодах T) сдвигового времени θ показано полученное путем численного моделирования распределение К(θ) для однокомпонентного сигнала (N = 1). Возможные помехи в расчет не принимались. Здесь и далее время измеряется в отсчетах, следующих с частотой дискретизации f_{π} ; частота — в единицах, отнесенных к f_{π} ; на рисунках по вертикальным осям откладываются значения измеряемых величин, отнесенные к масштабному коэффициенту, задаваемому при графическом отображении. Для модуляции и в качестве опорного сигнала $S_0(t)$ использовалась ПСП, имеющая длину L = 31, длительность дискрета $\Delta = 5$ и период T = 155. Измеряемая задержка τ соответствует положению максимума ВФК относительно верхней границы текущего кадра (пунктирные линии на рис. 1); точность δτ измерения τ определяется полушириной дискрета Δ $(\delta \tau \approx \Delta/2).$

Если зондируемый объект движется с постоянной скоростью, то повторяемость пиковых значений ВФК по θ сохраняется, но изменяется период повторения $T_c = T/\gamma$ и появляются периодические с частотой Доплера вариации квадратурных составляющих ВФК (реальной Re[K(θ)] и мнимой Im[K(θ)] частей). Кроме того, доплеровская деформация приводит к появлению боковых лепестков, уровень которых возрастает по мере роста |v|. В условиях, когда сжатие/расширение сигнала S(t) не превышает длительности дискрета Δ , отношение h_{ni} максимальных значений модуля ВФК к уровню боковых лепестков для каждой из *n* составляющих в S(t) можно оценить по формуле

$$h_{ni} \approx \frac{\mathbf{K}_{ni}(1 - 0.25\beta_{n}\mathbf{K}_{ni}\Delta)}{0.5\Delta\sum_{m=1}^{N}\beta_{m}\mathbf{K}_{mi}}.$$
(9)

Ширина пиковых значений ВФК примерно в h_{ni} раз увеличивается, из-за этого в h_{ni} раз уменьша-

ется разрешающая способность по сдвиговому времени.

Моделировалась ситуация, когда зондируемый объект двигался в сторону приемника с постоянной скоростью, при которой параметр $\gamma =$ = 1.01. В этом случае распределение модуля K(θ) (рис. 16) выглядит как периодическая последовательность импульсов, подобная той, что изображена на рис. 1а, но с меньшим, чем *T*, периодом *T_c*. Пиковые значения Re[K(θ)] изменяются с частотой Доплера по закону, близкому к синусоидальному (см. рис. 16).

Измеряемая задержка τ зависит как от доплеровской деформации, так и от изменения задержки сигнала Δt , вызванного движением объекта. При $v \neq 0$ на каждом периоде T опорного сигнала τ получает приращение $d\tau = \beta \theta_{max} (\tau = \tau + d\tau)$, где $\theta_{max} - c$ двиговое время, соответствующее пиковому значению $|\mathbf{K}(\theta)|$ в предшествующем кадре ВФК. Из-за этого постепенно от периода к периоду T экстремумы ВФК смещаются в сторону нарастающих или уменьшающихся в зависимости от знака скорости v значений θ . Для представленного на рис. 16 случая (v > 0), измеряемая задержка τ уменьшалась от 45 до 11. По наблюдаемым приращениям $d\tau$ можно определить знак доплеровского сдвига v.

В присутствии шумовой помехи отношение сигнал/помеха для каждой *n*-й составляющей сигнала на выходе коррелятора равно отношению значений модулей реальной части ВФК K_{ni} в точ-ках экстремумов $\theta = \theta_{max i}$ к дисперсии $\sigma_{вых}$ помеховой составляющей:

$$r_{\text{BMX}ni} = K_{ni}/\sigma_{\text{BMX}}$$
.

Вклад в $\sigma_{\text{вых}}$ дают помеха на входе коррелятора и помехи, связанные с вычислением ВФК. Для шумовой помехи со случайным гауссовым распределением и дисперсией $\sigma_{\text{вх}}$ дисперсия шума на вы-

Рис. 2. Вариации Re[K(θ)] для двухкомпонентного сигнала $S = s_1 + s_2$; *1* и 2 – зависимость пиковых значений ВФК для составляющих s_1 и s_2 с параметрами доплеровской деформации $\gamma_1 = 1.0005$ и $\gamma_2 = 1.00041$ соответственно.

ходе коррелятора равна $\sigma_{\text{вых}} \approx \sigma_{\text{вх}} \sqrt{L}$ [8, 9], а отношение сигнал/шум для *n*-й составляющей имеет вид *S*(*t*) *r*_{вх n} = $\kappa_n A_n / \sigma_{\text{вх}}$.

При отсутствии эффекта Доплера в установившемся режиме ВФК не содержит боковых лепестков и $K_{ni} = |\kappa_n| A_n L = \text{const.}$ Поэтому выигрыш в отношении сигнал/помеха на выходе коррелятора по сравнению с тем же отношением на входе составляет величину

$$Q_{ni} = r_{\text{BMX}\,ni} / r_{\text{BX}\,n} \approx \sqrt{L}$$
.

Вызванные эффектом Доплера периодические изменения ВФК приводят к появлению боковых лепестков в Re[K_n(θ)] и Im[K_n(θ)], уровень которых растет при увеличении модуля скорости |v|. В этом случае дисперсия помех на выходе коррелятора $\sigma_{\text{вых}}$ зависит от суммарного вклада боковых лепестков ВФК для каждой составляющей S_n(t) в S(t). С учетом (9) получаем

$$\sigma_{\rm beix} \approx \sigma_{\rm bx} + 0.5\Delta \sum_{m=1}^N \beta_m K_{mi}$$

и выходное отношение сигнал/помеха для *n*-й составляющей —

$$r_{\text{BMX }n} \approx \frac{\max(\mathbf{K}_{ni})}{\sigma_{\text{BMX}}\sqrt{L}},$$
 (10)

где max(K_{ni}) находится по максимальному из относящихся к точкам экстремумов $\theta = \theta_{max i}$ значению модуля реальной части ВФК.

4. МЕХАНИЗМ ИЗМЕРЕНИЯ ЧАСТОТНОГО СДВИГА

В соответствии с (7) доплеровский сдвиг v находится путем вычисления спектральной характеристики ВФН $Q(\theta, v = \Delta f)$ как функции сдвигового времени θ . Для этого в ВФН необходимо выделить связанные с эффектом Доплера вариации. Это можно сделать, если на каждом периоде *T* сдвигового времени θ принимать во внимание только

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 6 2020

средние за каждый из периодов T значения ВФК $K(\theta)$, т.е. вычислять

$$\Re(\Delta f_n) = \sum_{m=1}^{H} \exp(-j2\pi\Delta f_n mT) \frac{1}{T} \int_0^T \mathbf{K}(\theta + mT) d\theta =$$

$$= \sum_{m=1}^{H} \exp\left(-j2\pi\frac{\Delta f_n}{f_T}m\right) \overline{\mathbf{K}}(m),$$
(11)

перейдя таким образом к дискретным значениям $\theta = mT$ (m = 0, 1, 2, 3, ... - порядковый номер периода T), H - число принимаемых в расчет периодов $T, f_T = 1/T$, а

$$\overline{\mathbf{K}}(m) = \frac{1}{T} \int_{0}^{T} \mathbf{K}(\theta + mT) d\theta.$$

Если $\Delta f_n \ll f_T$, то

$$\overline{\mathbf{K}}(m) \cong \sum_{n=1}^{N} \overline{\mathbf{K}}_{n}(m) = \frac{1}{T} \sum_{n=1}^{N} \int_{0}^{T} \mathbf{K}_{n}(\theta + mT) d\theta.$$
(12)

Из (11) и (12) следует, что доплеровские сдвиги Δf_n входящих в *s*(*t*) составляющих *s_n*(*t*) можно находить посредством дискретного преобразования Фурье

$$\Re(f) = \sum_{m=1}^{H} \exp\left(-j2\pi \frac{f}{f_T}m\right) \overline{K}(m)$$

реализуемого по алгоритму БПФ. Размерность БПФ подбирается исходя из требуемой разрешающей способности и числа H учитываемых периодов T опорного сигнала.

На рис. 2 и 3 представлен результат численного моделирования для случая, когда s(t) содержит две компоненты $s_1(t)$ и $s_2(t)$ с параметрами доплеровской деформации $\gamma_1 = 1.0005$ и $\gamma_2 = 1.00041$, с амплитудами A_1 и $A_2 = 1.5A_1$, с начальными задержками $\Delta t_{01} = 125$ и $\Delta t_{02} = 175$. Времячастотный сдвиг составляющих $s_1(t)$ и $s_2(t)$ определяется по следующим с частотой дискретизации f_{π} цифровым отсчетам сигнала S(t) на выходе синхронного детектора. Выбор частоты дискретизации влияет как на точность измерения времячастотного сдвига, так и на параметры доплеровской деформации. Кроме того, от f_{π} зависит число отсчетов, приходящихся на дискрет Δ и на период T. По-

Рис. 3. Амплитудно-частотная характеристика вариаций Re[K(θ)] двухкомпонентного сигнала $S = s_1 + s_2$ после дискретизации в базовой полосе частот: 1 и 2 – спектральные линии составляющих s_1 и s_2 с параметрами доплеровской деформации $\gamma_1 = 1.0005$ и $\gamma_2 = 1.00041$ соответственно.

следнее важно с точки зрения реализации способа измерения как программными (например, с применением цифровых процессоров сигналов), так и аппаратными (например, с применением ПЛИС) средствами. В рассматриваемом примере параметры γ_1 и γ_2 после дискретизации в базовой полосе частот выросли до $\gamma_1 = 1.005$ и $\gamma_2 = 1.0041$, и это позволило для модуляции и в качестве опорной использовать ПСП с относительно небольшим числом отсчетов на период *T*: *T* = 310 при *L* = = 31 и Δ = 10.

Чтобы проверить помехозащищенность способа измерения времячастотного сдвига к сигналу S(t) на выходе детектора была добавлена помеха n(t) в виде шума со случайным гауссовым распределением. Мощность помехи равнялась мощности составляющей $S_1(t)$. Полученное распределение Re[K(θ)] представлено на рис. 2.

Выделяются две аддитивные составляющие 1 и 2, пиковые значения которых изменяются по закону, близкому к синусоидальному, с амплитудами $B_1, B_2 \approx 1.5B_1$. Частоты этих составляющих определялись по амплитудному спектру вариаций $\overline{K}(m)$, для чего было применено БПФ размерностью $N_{\text{БПФ}} = 128$ при числе выборок H = 64 (см. рис. 3). На рисунке видны две спектральные линии 1 и 2, соответствующие частотам Доплера Δf_1 и Δf_2 двух составляющих сигнала S(t). Значения частоты даны в цифровом представлении: $F_1 = \Delta f_1 / f_T$ и $F_2 = \Delta f_2/f_T$. Точность измерения частотного сдвига близка к $dv \approx f_T/N_{\text{БПФ}}$. Присутствие шума n(t) в шумоподобном сигнале S(t) мало отразилось на ВФК $K(\theta)$ и на спектре профиля усредненных значений $\overline{\mathrm{K}}(m)$ и привело лишь к незначительному увеличению помеховой составляющей при значительном ее превышении пиковыми значениями ВКФ, что подтверждает справедливость оценки (10).

ЗАКЛЮЧЕНИЕ

Таким образом, в работе изложен способ совместного измерения временного и частотного сдвигов в многокомпонентном псевдослучайном сигнале с известным периодическим законом модуляции, основанный на двухэтапной последетекторной корреляционно-спектральной обработке в условиях. когда принимаемый сигнал подвержен доплеровской деформации. Способ сочетает непрерывное (на каждом шаге дискретизации) вычисление взаимной функции корреляции сигнала после синхронного детектора и спектральную обработку вариаций ВФК по сдвиговому времени посредством БПФ. По пиковым значениям и вариациям ВФК определяются временная задержка τ и динамика изменения τ. По амплитудно-частотной характеристике вариаций ВФК находится частотный сдвиг V; направление сдвига V определяется исходя из динамики изменения временного сдвига т.

Также дана оценка помехоустойчивости способа измерения с учетом возникающего при доплеровской деформации вклада боковых лепестков ВФК в отношение сигнал/помеха.

Посредством численного моделирования показана работоспособность способа в условиях значительной доплеровской деформации, в присутствии помех и в условиях многолучевого распространения сигнала от источника до точки приема.

Преимущество способа состоит в возможности измерения частотно-временного сдвига без перехода в режим поиска и без применения средств слежения, а также в возможности компактной аппаратной реализации с использованием программируемой логики.

Способ рассчитан на применение в системах ближней активной радио-, гидро- и эхолокации, а также в мобильных системах связи и в каналах связи с многолучевым распространением сигнала.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гантмахер В.Е., Быстров Н.Е., Чеботарев Д.В. Шумоподобные сигналы. Анализ, синтез, обработка. СПб.: Наука и техника, 2005.
- 2. Гоголев И.В. // Изв. вузов России. Радиоэлектроника. 2018. № 1. С. 13.
- 3. Гоголев И.В., Яшин Г.Ю. // Изв. вузов России. Радиоэлектроника. 2018. № 3. С. 15.
- 4. *Павликов С.Н., Убанкин Е.И.* // Телекоммуникации и транспорт. 2014. Т. 8. № 14. С. 18.
- 5. *Марычев Д.С., Морозов О.А., Лупов С.Ю. //* Изв. вузов России. Радиофизика. 2014. Т. 57. № 12. С. 1.
- 6. *Ершов Р.А., Морозов О.А., Фидельман В.Р. //* Изв. вузов России. Радиофизика. 2017. Т. 60. № 7. С. 139.
- 7. Шкелев Е.И., Ширкаев А.В. // ПТЭ. 2018. № 4. С. 25.
- 8. Варакин Л.Е. Системы связи с широкополосными сигналами. М.: Радио и связь, 1985.
- Зверев В.А., Стромков А.А. Выделение сигналов из помех численными методами. Н. Новгород: ИПФ РАН, 2011.