ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 551.463.621.391

ВЛИЯНИЕ ДЕКОРРЕЛЯЦИОННЫХ ФАКТОРОВ НА ПОГРЕШНОСТЬ ИЗМЕРЕНИЙ РАЗНОСТИ ФАЗ СИГНАЛОВ ИНТЕРФЕРОМЕТРИЧЕСКИМИ СИСТЕМАМИ

© 2020 г. В. И. Каевицер^{*a*}, В. М. Смольянинов^{*a*}, И. В. Смольянинов^{*a*}, *

^аФрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация *E-mail: ilia 159@mail ru

> Поступила в редакцию 25.03.2019 г. После доработки 26.06.2019 г. Принята к публикации 01.07.2019 г.

На основе общей модели сигналов, рассеянных шероховатой поверхностью морского дна, разработаны соотношения для оценки погрешностей измерения интерферометрическим гидролокатором бокового обзора (ИГБО) углов прихода эхо-сигналов, вызванных декорреляцией зондирующих сигналов с большой базой в каналах приема из-за пространственного разноса антенн. Полученные соотношения позволяют скорректировать алгоритмы обработки сигналов, принимаемых многоантенным интерферометром, для снижения влияния аддитивной помехи на точность измерений углов прихода эхо-сигналов.

DOI: 10.31857/S0033849420070062

введение

Вычисление углов прихода сигналов, основанное на измерении разности фаз между отсчетами комплексных колебаний в двух или более разнесенных в пространстве каналах приемника, используется в интерферометрических гидролокаторах бокового обзора (ИГБО) и системах позиционирования [1, 2]. Использование узкополосных зондирующих сигналов с большой базой позволяет снизить влияние аддитивных помех типа белого гауссовского шума путем обработки принятых сигналов с использованием методов согласованной фильтрации. Влияние аддитивных помех также снижается с ростом размера антенной базы, так как точность вычисления угла прихода обратно пропорциональна размеру антенной базы [3]. Однако расширение базы интерферометра, не согласованное с параметрами сигнальной посылки, увеличивает декорреляцию колебаний в каналах приемника, приводящую к ошибкам измерений [4].

Известные исследования в области измерительных интерферометрических систем [4] сориентированы в основном на измерительные системы, удовлетворяющие условию пространственно-временной узкополосности, которое ставит ограничение на размер антенной базы и ширину полосы сигналов. Модели колебаний в каналах приемника и алгоритмы их обработки при выполнении условия пространственно-временной узкополосности наиболее просты и потому привлекательны.

В данной работе на основании общей модели отраженных от шероховатой поверхности сигналов [5] изучаются погрешности измерения разности фаз в каналах ИГБО, вызванные декорреляционными факторами, и рассматриваются возможности корректировки моделей колебаний в каналах приемника и алгоритмов их обработки с целью повышения точности производимых оценок путем снижения влияния аддитивных системных помех, обусловленных моделью распределенного в пространстве объекта зондирования.

1. МОДЕЛЬ КОЛЕБАНИЙ В КАНАЛАХ ПРИЕМНИКА

Принцип измерения углов прихода сигналов с помощью интерферометрических систем описан в работах [1, 2]. Геометрия измерений представлена на рис. 1.

Для вычисления углов прихода сигналов с помощью интерферометрических систем используются, как минимум, две приемные антенны, которые условно будем называть опорной 1 и рабочей 2 (см. рис. 1).

Предполагается, что в качестве зондирующего используется сигнал с линейной частотной модуляцией (ЛЧМ) с центральной частотой f_0 , длитель-

ностью T_c и девиацией частоты ΔF . Колебания с выхода каждой из приемных антенн подаются на фильтры, согласованные с ЛЧМ-сигналом.

Источник сигнала описывается дальностью до него R и направлением φ на него. Дальность однозначно связана с запаздыванием $\tau = 2R/V$, где V – скорость распространения звука. Таким образом, источник (отражающая поверхность) описывается функцией $\varphi(\tau)$, которая в общем случае может быть многозначной.

Отражающую поверхность будем считать шероховатой. Для такой поверхности в [5] дана в общем виде модель отраженных сигналов. Используя результаты этой работы, для комплексных огибающих $Z_1(t)$ и $Z_2(t)$ на выходе согласованных фильтров в случае однозначной поверхности, находящейся в дальней зоне, можно получить следующие соотношения:

$$Z_{1}(t) = \int h(\tau)\rho_{s}(t-\tau) \exp\{-j2\pi f_{0}\tau\}d\tau,$$

$$Z_{2}(t) = \int h(\tau)\rho_{s}\left[t-\tau + \frac{\Delta x}{V}\beta(\tau)\right] \times$$
(1)

$$\times \exp\left\{-j2\pi f_{0}\left[\tau - \frac{\Delta x}{V}\beta(\tau)\right]\right\}d\tau,$$

где Δx – расстояние между антеннами.

В случае многозначных поверхностей (источников) будем иметь сумму нескольких интегралов. Пределы интегрирования в (1) от τ_0 до ∞ , где τ_0 — минимальная задержка. Учитывая свойства подынтегральных функций, пределы интегрирования можно сократить.

В соотношении (1) $\rho_s(t)$ есть нормированная автокорреляционная функция (АКФ) комплексной огибающей зондирующего сигнала, т.е. энергия излучаемого колебания полагается равной единице. Ее отличие от единицы учитывается коэффициентом пропорциональности в $h(\tau)$, характеризующего отражающие свойства поверхности и дополнительные эффекты, возникающие при распространении звуковых волн.

Для шероховатой поверхности функция $h(\tau)$ полагается [5] реализацией комплексного нормального случайного процесса с нулевым средним и со следующими корреляционными свойствами:

$$\langle h(\tau_1)h^*(\tau_2)\rangle = \sigma_h^2(\tau_1)\delta(\tau_2 - \tau_1), \langle \operatorname{Re}\{h(\tau_1)\}\operatorname{Im}\{h(\tau_2)\}\rangle = 0,$$

$$(2)$$

где усреднение производится по ансамблю.

Функция $\sigma_h^2(\tau)$ полагается медленно изменяющейся. Функция $\beta(\tau)$ в соответствии с рис. 1 равна

$$\beta(\tau) = \sin[\theta - \phi(\tau)]. \tag{3}$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 8 2020

Рис. 1. Геометрия измерений интерферометрических систем.

При сделанных предположениях относительно функции $h(\tau)$ колебания $Z_1(t)$ и $Z_2(t)$ будут реализациями гауссовского случайного процесса с нулевым средним и дисперсиями:

$$\sigma_z^2(t) = \langle |Z_i(t)|^2 \rangle = \int \sigma_h^2(\tau) |\rho_s(t-\tau)|^2 d\tau \cong$$

$$\equiv \sigma_h^2(t) \int |\rho_s(\mathbf{v})|^2 d\mathbf{v},$$
(4)

где знак приближения отражает предположение о постоянстве $\sigma_h^2(\tau)$ на длительности главного лепестка автокорреляционной функции зондирующего сигнала. При этом учтено, что функция $|\rho_s(v)|^2$ за пределами главного лепестка ($|v| \le 1/\Delta F$) много меньше единицы.

Для дальнейшего важны соотношения, вытекающие из принятой модели отраженного сигнала:

$$\operatorname{Re}\{Z_i(t)\}\operatorname{Im}\{Z_i(t)\}\rangle = 0, \tag{5}$$

$$\rho_{12}(t_1, t_2) = \frac{\langle Z_1(t_1) Z_2^*(t_2) \rangle}{\sigma_z^2(t_1)} =$$

$$= \exp\left\{-j2\pi \frac{\Delta x}{\lambda} \beta(t_1)\right\} p(t_1, t_2)\},$$
(6a)

где

$$= \int \rho_{S}(\mathbf{v}) \rho_{S}^{*}[\mathbf{v} + t_{2} - t_{1} + \Delta x/V \beta(t_{1} - \mathbf{v})] \times \\ \times \exp\{-j2\pi \Delta x/\lambda [\beta(t_{1} - \mathbf{v}) - - \beta(t_{1})]\} d\mathbf{v} / \int |\rho_{S}(\mathbf{v})|^{2} d\mathbf{v}$$
(66)

 $p(t_1, t_2) =$

декорреляционный коэффициент.

Рис. 2. Зависимость ошибки измерения разности фаз от соотношения сигнал помеха.

При Re{ $p(t_1, t_2)$ } = 1 и Im{ $p(t_1, t_2)$ } = 0 в отсутствие помех измеренная разность фаз между $Z(t_1)$ и $Z(t_2)$ соответствовала бы точному значению

$$\varepsilon(t_1) = \frac{2\pi\Delta x}{\lambda}\beta(t_1),$$

где λ — длина волны, соответствующая центральной частоте f_0 . Отличие от единицы приводит к погрешности измерений.

Целью обработки является оценка величины $\varphi(t_1)$. Для этого сначала с помощью измерения разности фаз оцениваем величину $\varepsilon(t_1)$, затем путем деления на $2\pi \frac{\Delta x}{\lambda}$ – величина $\beta(t_1)$, и, наконец, с помощью преобразования обратного (3) оцениваем величину $\varphi(t_1)$. При переходе от $\varepsilon(t_1)$ к $\beta(t_1)$ возникает неоднозначность, которая может быть устранена разными способами, один из которых был представлен в работе [6]. Если $\varepsilon(t_1)$ оценена со среднеквадратической ошибкой σ_{ε} , то для среднеквадратической ошибки σ_{β} и σ_{ϕ} будем иметь

$$\sigma_{\beta} = \frac{\sigma_{\varepsilon}}{2\pi \frac{\Delta x}{\lambda}}, \quad \sigma_{\varphi} = \frac{\sigma_{\beta}}{|\beta'(\varphi)|} = \frac{\sigma_{\beta}}{|\cos(\theta - \varphi)|}.$$
 (7)

На входе приемника кроме отраженных колебаний присутствуют аддитивные помехи, которые предполагаются независимыми реализациями белого гауссова шума. На выходе согласованных фильтров с переносом частоты будем иметь комплексные колебания $n_1(t)$ и $n_2(t)$ с автокорреляционными свойствами, соответствующими спектральной плотности зондирующего сигнала. Согласно [7] нетрудно показать, что

$$\langle |n_i(t)|^2 \rangle = \sigma_n^2, \quad \langle \operatorname{Re}\{n_i(t)\} \times \operatorname{Im}\{n_i(t)\} \rangle = 0.$$
 (8)

2. ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ РАЗНОСТИ ФАЗ

При выполнении условий (4), (5), (8) и $\sigma_h^2(t_1) = \sigma_h^2(t_2)$ два отсчета, $Y_1(t_1) = Z_1(t_1) + n_1(t_1)$ и $Y_2(t_2) = Z_2(t_2) + n_2(t_2)$, эквивалентны двум отсчетам Y_1 и Y_2 из стационарного нормального случайного процесса, взятым в разные моменты времени. Свойства этих отсчетов изучены в [7], в частности, получено одномерное распределение разности фаз є в виде

$$W(\varepsilon) = \frac{1 - \rho_0^2}{2\pi} \left[\frac{1}{1 - y^2} + y \frac{\pi/2 + \arcsin(y)}{(1 - y^2)^{3/2}} \right], \quad (9a)$$

где $y = \rho_0 \cos(\varepsilon - \theta_0), |\varepsilon| \le \pi, \rho_0 = \sqrt{\operatorname{Re}^2\{\rho\} + \operatorname{Im}^2\{\rho\}},$ $\theta_0 = \operatorname{arctg}\left(\frac{\operatorname{Im}\{\rho\}}{\operatorname{Re}\{\rho\}}\right),$ $\rho = \frac{\langle Y_1 Y_2^* \rangle}{\langle Y_2 \rangle}.$ (95)

$$p = \frac{\sigma_Y^2}{\sigma_Y^2}$$
.
В случае, когда сигнальные составляющие от-

счетов Y_1 и Y_2 отличаются только фазовым сдвигом ($Y_1 = Z + n_1$, $Y_2 = Z \exp(j\varphi) + n_2$), погрешность измерения обусловлена только аддитивными помехами и параметры распределения (96) имеют вид

$$\rho_0 = \frac{q}{1+q}, \quad q = \frac{\sigma_z^2}{\sigma_n^2}, \quad \theta_0 = -\phi$$

Распределение имеет максимум при $\varepsilon = \theta_0$ и симметрично относительно этого значения [7]. Поэтому оценка будет не смещенной с дисперсией $\sigma_{\varepsilon}^2 = \langle (\varepsilon - \theta_0)^2 \rangle.$

На рис. 2 представлена полученная расчетным путем (9а) зависимость ошибки измерения разности фаз от соотношения сигнал помеха (кривая *I*).

Для $1 \le q \le 10^6$ хорошей аппроксимацией этой зависимости является кривая 2. Эта аппроксимация соответствует зависимости

$$\sigma_{\epsilon}^{2}(q) = 0.4q^{-13/15}$$

Для качественных выводов удобной является более грубая аппроксимация, (см. рис. 2, кривая *3*):

$$\sigma_{\varepsilon}^2(q) = 3q^{-1}.$$
 (10)

В случае отсутствия аддитивных помех погрешность измерения обусловлена только декорреляцией отсчетов. Пусть $Y_1 = Z_1$ и $Y_2 = Z_2 \exp(j\varphi)$, где φ – истинный угол. Тогда параметры распределения будут иметь вид

$$\rho = \frac{\langle Z_1 Z_2^* \rangle}{\sigma_z^2} \exp(-j\varphi) = p \exp(-j\varphi), \quad \rho_0 = |p|,$$

$$\theta_0 = \operatorname{arctg} \frac{\operatorname{Im}\{p\}}{\operatorname{Re}\{p\}}.$$
(11)

То есть оценка в этом случае будет смещенной на величину θ_0 , а случайная составляющая погрешности измерений будет эквивалентна погрешности за счет аддитивных помех с эквивалентным отношением сигнал-помеха:

$$q_{\mathfrak{s}} = \frac{|p|}{1 - |p|}.$$
 (12)

Эквивалентное представление отсчетов Y_1 и Y_2 имеет вид

$$Y_1 = Z_{\mathfrak{I}} + n_{\mathfrak{I}\mathfrak{I}}, \quad Y_2 = Z_{\mathfrak{I}} \exp(-j(\varphi - \theta_0)) + n_{2\mathfrak{I}}$$
$$\langle |Z_{\mathfrak{I}}|^2 \rangle = |p| \, \sigma_z^2.$$

Из рассмотренного следует, что погрешность измерения глубины интерферометрическим ГБО в отсутствие аддитивных помех определяется коэффициентом (6б), характеризующим декорреляцию отсчетов $Z_1(t_1)$ и $Z_2(t_2)$. Декорреляция зависит от выбора момента взятия отсчета t_2 в рабочем канале относительно момента t_1 взятия отсчета в опорном канале и от поведения разности $\beta(t_1 - \nu) - \beta(t_1)$ в зависимости от ν в показателе экспоненты. Декорреляцию за счет первого фактора будем условно называть временной декорреляцией, а за счет второго фактора — фазовой. Проанализируем по отдельности влияние этих факторов на погрешность измерений.

3. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ИЗ-ЗА ВРЕМЕННОЙ ДЕКОРРЕЛЯЦИИ

В чистом виде временная декорреляция имеет место при $\beta(t_1 - \nu) = \beta(t_1)$ для ν , по крайней мере, на длительности главного лепестка автокорреляционной функции ($|\nu| \le 1/\Delta F$). Функция $p(t_1, t_2)$ при этом равна

$$p(t_1, t_2) = \rho_{ss}(\Delta t),$$

где $\rho_{ss}(\Delta t)$ — нормированная АКФ зондирующего сигнала, а $\Delta t = t_1 - t_2 - \frac{\Delta x}{V}\beta(t_1)$. Функция $\rho_{ss}(\tau)$ пропорциональна обратному преобразованию Фурье от четвертой степени спектральной плотности зондирующего сигнала. Для ЛЧМ-сигнала

Рис. 3. Зависимость стандартного отклонения σ_{ϵ} погрешности измерения разности фаз из-за временной декорреляции.

с достаточно большой базой энергетический спектр близок к прямоугольному, и тогда имеем

$$p(t_1, t_2) = \rho_{ss}(\Delta t) \cong \frac{\sin(\pi u)}{\pi u},$$
(13)

где $u = \Delta F \Delta t$.

При | $\Delta t |< 1/\Delta F$ оценка $\varepsilon(t_1)$ будет не смещенной, а случайная погрешность будет равна погрешности при аддитивной помехе с эквивалентным отношением сигнал-помеха (12). Для получения качественных выводов функцию (13) для |u| < 1/2 можно аппроксимировать выражением $(\pi u)^2$ 6

$$1 - \frac{(\pi u)^2}{6}$$
, и $q_{\mathfrak{s}} \cong \frac{6}{(\pi u)^2} - 1.$

На рис. 3 представлена зависимость погрешности измерения разности фаз, рассчитанная по соотношениям (10), (12), (13) (кривой *I*) и с использованием указанной аппроксимации (кривая *2*). Из рис. 3 видно, что обе кривые близки до значений $u \le 1/2$ и, соответственно, $\sigma_{\varepsilon} \le \pi/2$. Кроме того, можно отметить, что обе зависимости до этих значений близки к линейной (кривая *3*).

Заданная точность измерения угла прихода отраженного сигнала может быть обеспечена, если |u| не превосходит некоторую величину u_{max} :

$$|u| \le u_{\max}.\tag{14}$$

В предположении пространственно временной узкополосности членом $\frac{\Delta x}{V}\beta(t-v)$ в аргументе функции ρ_s пренебрегают и для измерения разности фаз используют синхронные отсчеты в каналах приемника ($t_1 = t_2$). Реально $\frac{\Delta x}{V}\beta(t)$ отлично от нуля, что обусловливает погрешности измерений, соответствующие значению

$$u = \Delta F \frac{\Delta x}{V} \beta(t) = \frac{\Delta F}{f_0} \frac{\Delta x}{\lambda} \beta(t).$$

При этом условие (14) с учетом того, что $|\beta(t)|$ может достигать единицы, переходит в ограничение на размер антенной базы или полосу сигнала (база сигнала):

$$\frac{\Delta x}{\lambda} \le u_{\max} \frac{f_0}{\Delta F}.$$
(15)

4. ПОГРЕШНОСТИ, ОБУСЛОВЛЕННЫЕ ФАЗОВОЙ ДЕКОРРЕЛЯЦИЕЙ

Положим в выражении (6б)

$$t_2 = t_1 - \frac{\Delta x}{V} \beta(t_1). \tag{16}$$

Тогда разность $\beta(t_1 - \nu) - \beta(t_1)$ будет иметь место как в показателе экспоненты, так и в аргументе функции ρ_s под интегралом. Предположим, что $\frac{\Delta x}{V} |\beta(t - \nu) - \beta(t)|$ при $|\nu| \le 1/\Delta F$ — малая по сравнению с $1/\Delta F$ величина и ей можно пренебречь в аргументе функции ρ_s под интегралом. Тогда

$$p = p[t_1, t_1 - \frac{\Delta x}{V}\beta(t_1)] \cong$$
$$\equiv \frac{\int |\rho_S(\mathbf{v})|^2 \exp\left\{-j2\pi \frac{\Delta x}{\lambda}[\beta(t_1 - \mathbf{v}) - \beta(t_1)]\right\} d\mathbf{v}}{\int |\rho_S(\mathbf{v})|^2 d\mathbf{v}}.$$
 (17)

То есть декорреляционный эффект будет связан лишь с вариацией показателя экспоненты.

При анализе разности $\beta(t - v) - \beta(t)$ каждой точке отсчета *t* будем сопоставлять плоский отражающий участок (см. рис. 1) размером, соответствующим разрешающей способности сигнала ($|v| \le 1/\Delta F$). Отражающий участок находится на расстоянии *R* от антенн, под углом ξ к горизонтали и характеризуется угловым $\Delta \phi$ и линейным Δy размерами, которые для $|\xi - \phi| \ge 2\sqrt{\lambda f_0/R\Delta F}$ имеют вид

$$\Delta \varphi \cong \frac{\lambda}{R} \frac{f_0}{\Delta F} \frac{1}{\operatorname{tg} |\varphi - \xi|}, \quad \Delta y \cong \lambda \frac{f_0}{\Delta F} \frac{1}{\sin |\varphi - \xi|},$$

а при $\phi = \xi$ —

$$\Delta \phi = 2 \sqrt{\frac{\lambda}{R} \frac{f_0}{\Delta F}}, \quad \Delta y = 2 \sqrt{\lambda R \frac{f_0}{\Delta F}}.$$

Поведение разности $\beta(t - v) - \beta(t)$ зависит от разности $\xi - \phi$.

Для углов

$$|\xi - \varphi| \ge 2\sqrt{\frac{\lambda}{R} \frac{f_0}{\Delta F}} \tag{18}$$

можно получить

$$\beta(t - \nu) - \beta(t) \cong \frac{\nu V}{2R} \operatorname{ctg}(\varphi - \xi) \cos(\theta - \varphi),$$

$$|\nu| \le \frac{1}{\Delta F},$$
(19)

где знак приближения связан с условием (18) и предположением малости величины $f_0\lambda/2\Delta FR$ по сравнению с единицей.

Отметим, что с увеличением дальности (глубины) условие (18) ослабляется, допуская меньшую разность углов. Кроме того, уменьшается разность (20), т.е. исключение этой разности из аргумента функции ρ_s под интегралом (6б) становится более оправданным.

Для получения качественных выводов при вычислении декорреляционного коэффициента p (19) функцию $p_s^2(v)$ аппроксимируем прямоугольником шириной $|v| \le 1/\Delta F$. Тогда коэффициент p будет иметь вид (13) при

$$u = \frac{\Delta x}{2R} \frac{f_0}{\Delta F} \operatorname{ctg}(\varphi - \xi) \cos(\theta - \varphi).$$

Оценка разности фаз є при |u| < 1 будет не смещенной, а случайная погрешность будет равна погрешности измерения в аддитивном шуме с эквивалентным отношением сигнал—помеха, примерно равным $6/u^2 - 1$.

Заданное качество батиметрии достигается при выполнении условия (14). Величина *и* зависит от угла φ и разности $\xi - \varphi$, и ее модуль достигает максимума, когда в (18) выполняется равенство $\varphi = \theta$. С учетом этого (14) переходит в ограничение

$$\frac{\Delta x}{\lambda} < 4u_{\max} \sqrt{\frac{\Delta F}{f_0}} \frac{R}{\lambda}.$$
(20)

Сопоставление соотношений (20) и (15) показывает, что при одновременном взятии отсчетов в опорном и рабочем каналах допустимый размер антенной базы не зависит от дальности и сокращается с увеличением полосы сигнала ΔF . Коррекция момента взятия отсчета в рабочем канале, в соответствии с (16), позволяет увеличить допустимый размер антенной базы как с ростом ΔF , так и с ростом дальности (глубины).

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 8 2020

Для отражающего участка, перпендикулярного направлению на антенны ($\xi = \phi$), когда условие (18) не выполняется, имеет место неоднозначность, так как положительным и отрицательным угловым приращениям ф соответствуют положительные приращения по дальности. Возникает сумма двух интегралов по v от 0 до $1/\Delta F$ с разностью в показателе экспоненты:

$$\beta(t+\nu) - \beta(t) \cong$$
$$\cong \frac{\nu V}{2R} \sin(\theta - \varphi) \pm \sqrt{\frac{\nu V}{R}} \cos(\theta - \varphi)$$

При этом один знак соответствует положительному угловому прирашению. другой — отрицательному.

Аппроксимируя функцию $\rho_{s}^{2}(v)$ прямоугольником, получаем

$$p = \int_{0}^{1} \exp\{-ja_{1}\xi\}\cos(a_{2})\sqrt{\xi}d\xi,\qquad(21)$$

где $a_1 = \pi \frac{\Delta x}{R} \frac{f_0}{\Delta F} \sin(\theta - \phi),$ $a_2 = 2\pi \frac{\Delta x}{\lambda} \times \sqrt{\frac{f_0}{\Delta F} \frac{\lambda}{R}} \cos(\theta - \phi).$

При выполнении условия (20) и достаточно большой дальности величина *a*₁ ≪ 1 и экспоненту под интегралом можно разложить в ряд Тейлора с удержанием только первых двух членов. В этом случае интегрирование (21) легко осуществляется. При этом $Im\{p\}$ имеет тот же порядок, что и величина a_1 , а для Re{p} можно получить простое соотношение:

$$\operatorname{Re}\{p\} = 2\frac{a_2 \sin(a_2) - 1 + \cos(a_2)}{a_2^2}.$$
 (22)

Величина |a₂| при выполнении условия (20) может изменяться от 0 до $8\pi u_{\text{max}}$. При этом Re{*p*} может принимать как положительные, так и отрицательные значения, что обусловливает большие погрешности вычисления дальности.

ЗАКЛЮЧЕНИЕ

На основе общей модели отраженных от шероховатой поверхности сигналов [4] разработаны простые соотношения, позволяющие производить оценку погрешностей измерения разности фаз в каналах интерферометрических систем, обусловленных декорреляцией колебаний в опорном и рабочем каналах. Уточнена верхняя граница на полосу зондирующего сигнала и базу антенн, при которой допустимо измерение разности фаз одновременно взятых отсчетов из колебаний в опорном и рабочем каналах. Показано, что в пределах этой границы, погрешности вычисления углов прихода сигналов практически не зависят от размера антенной базы в отсутствие аддитивных помех.

Полученные оценки позволяют проводить дальнейшее совершенствование алгоритмов обработки сигналов в интерферометрических системах с целью повышения точности измерения углов прихода отраженных сигналов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по государственному заданию ИРЭ им. В.А. Котельникова РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Каевицер В.И., Разманов В.М., Кривцов А.П. и др. // Радиотехника. 2008. № 8. С. 35.
- 2. Каевицер В.И., Кривцов А.П., Смольянинов И.В., Элбакидзе А.В. // Журнал радиоэлектроники. 2018. № 11. http://jre.cplire.ru/
- 3. Долотов С.А., Каевицер В.И., Смольянинов И.В. // Навигация и гидрография. 1996. № 3. С. 100.
- 4. Xavier Lurton // IEEE J. Oceanic Eng. 2000. V. 25. № 3. P. 351.
- 5. Фалькович С.Е., Пономарев В.И., Шарко Ю.В. Оптимальный прием пространственно-временных сигналов в каналах с рассеянием. М.: Радио и связь, 1989.
- 6. Лифанов Е.М., Козлов В.И., Горкин В.Б. // Радиотехника. 1991. Т. 2. С. 3.
- 7. Левин Б.Р. Теоретические основы статистической радиотехники. М.: Сов. радио, 1969.