ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 621.315.61

ПОВЫШЕНИЕ ТОЧНОСТИ ИЗМЕРЕНИЙ КОМПЛЕКСНЫХ ДИЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ ПРОНИЦАЕМОСТЕЙ В СВЕРХВЫСОКОЧАСТОТНОМ ДИАПАЗОНЕ ВОЛНОВОДНЫМ МЕТОДОМ

© 2020 г. М. П. Пархоменко^{а, *}, Д. С. Каленов^а, И. С. Еремин^а, Н. А. Федосеев^а, В. М. Колесникова^а, О. А. Дьяконова^а

^аФрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190, Российская Федерация *E-mail: pamikle@yandex.ru Поступила в редакцию 22.03.2019 г.

После доработки 24.12.2019 г. Принята к публикации 30.12.2019 г.

Рассмотрен улучшенный волноводный метод определения комплексных диэлектрической и магнитной проницаемостей материалов, не требующий измерения расстояния от плоскостей образца до плоскостей калибровки. Проведенная проверка этого метода и сравнение полученных результатов с классическим волноводным методом на примере образца из высокоомного кремния показали уменьшение ошибки в определении тангенсов углов диэлектрических и магнитных потерь, а также действительной составляющей комплексной магнитной проницаемости.

DOI: 10.31857/S0033849420080112

введение

Для определения электромагнитных параметров материалов широко используются резонаторные, волноводные методы и метод свободного пространства [1–9]. Резонаторные методы определяют параметры материалов на отдельных частотах. Основное преимущество волноводного метода заключается в том, что он позволяет определять электромагнитные параметры материалов в широкой полосе частот. Но существует ряд причин, которые ограничивают применение классического волноводного метода, главные из которых — это наличие воздушного зазора между образцом и стенками волновода (особенно между образцом и широкой стенкой волновода) и погрешность, связанная с неточностью определения фазы коэффициентов отражения и прохождения. Последняя обусловлена главным образом ошибкой в определении расстояний от границ образца до границ измерительной секции. Для уменьшения влияния на результаты измерений зазора между образцом и широкой стенкой волновода предложено заполнять его непроводящей пастой, составленной из мелкодисперсного медного порошка, перемешанного с вазелином [7, 9]. Другую погрешность, связанную с неточностью определения расстояний от границ образца до границ измерительной секции, можно уменьшить, используя секции-фланцы, длина которых равнялась бы длине исследуемого образца [9].

Однако существует *методическая* возможность уменьшения этой погрешности. Эта возможность базируется на том, что современные анализаторы цепей позволяют измерять все четыре *S*-параметра измерительной секции с образцом за один цикл (два коэффициента отражения и два коэффициента прохождения). Получаемое при этом число уравнений превышает число неизвестных. Это позволяет при определении комплексных диэлектрической и магнитной проницаемостей составить комбинацию уравнений, при решении которых отпадает необходимость определения указанных выше расстояний. Такая комбинация, определяющая *улучшенный* волноводный метод, рассмотрена в [10].

Цель данной работы — повышение точности измерений диэлектрической и магнитной проницаемостей в СВЧ-диапазоне с помощью волноводного методом.

1. ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИИЯ ЭЛЕКТРОМАГНИТНЫХ ПАРАМЕТРОВ МАТЕРИАЛОВ В КЛАССИЧЕСКОМ И УЛУЧШЕННОМ ВОЛНОВОДНЫХ МЕТОДАХ

В волноводном методе, который строится на базе использования в эксперименте *векторного* анализатора цепей, измеряются *комплексные* ко-

Рис. 1. Волноводная секция с исследуемым образцом: $a \times b$ – поперечные размеры волновода, \vec{E} – вектор напряженности электрического поля, L – длина образца; вид спереди (слева) и вид сбоку (справа).

эффициенты отражения и прохождения измерительной секции с образцом исследуемого материала (см. рис. 1). В этом случае при *отсутствии* воздушного зазора аналитическое решение задачи позволяет определить комплексные диэлектрическую и магнитную проницаемости этого материала [5, 6].

Классический волноводный метод основан на приведенных ниже формулах для комплексных коэффициентов отражения S_{11} и прохождения S_{21} на границах 1-го и 2-го образцов (см. рис. 1), т.е. он фактически использует только два *S*-параметра:

$$S_{11} = \frac{\Gamma(1 - P^2)}{1 - \Gamma^2 P^2},$$
 (1)

$$S_{21} = \frac{P(1 - \Gamma^2)}{1 - \Gamma^2 P^2},$$
 (2)

где Γ — коэффициент отражения в волноводе на границе воздух—образец (в случае образца *бесконечной* длины, т.е. при отсутствии интерференции в образце); *Р* — коэффициент распространения через материал образца в волноводе. Он определяется следующим соотношением:

$$P = \exp(-\gamma L) = \exp[-(\alpha + j\beta)L].$$
(3)

Здесь $\gamma = \alpha + j\beta$ постоянная распространения волны в волноводе, заполненном исследуемым материалом, которая складывается из постоянной затухания α [Нп/м] и фазовой постоянной β [м⁻¹], L – толщина образца.

В реальной измерительной секции комплексные коэффициенты отражения S_{11}^* и прохождения S_{21}^* измеряются на границах измерительной

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 8 2020

волноводной секции (см. рис. 1) и связаны с коэффициентами S_{11} и S_{21} формулами

$$S_{11} = \frac{S_{11}^*}{R_1^2},\tag{4}$$

$$S_{21} = \frac{S_{21}^*}{R_1 R_2}.$$
 (5)

Здесь $R_1 = \exp(-\gamma_0 L_1)$ и $R_2 = \exp(-\gamma_0 L_2)$, где

$$\gamma_0 = j \sqrt{\left(rac{2\pi}{\lambda_0}
ight)^2 - \left(rac{2\pi}{\lambda_c}
ight)^2} -$$

постоянная распространения в волноводе с воздушным заполнением, λ_0 — длина волны в свободном пространстве, λ_c — критическая длина волны в волноводе. В выражения для R_1 и R_2 входят величины L_1 и L_2 , которые надо измерять с достаточной точностью.

Соотношения для определения комплексных диэлектрической ε и магнитной μ проницаемостей в *классическом* волноводном методе находятся в такой последовательности. На первом этапе из системы уравнений (1) и (2) выражаем P и Γ через известные величины S_{11} и S_{21} [6]:

$$\Gamma = \frac{S_{11}^2 - S_{21}^2 + 1}{2S_{11}} \pm \sqrt{\frac{\left(S_{11}^2 - S_{21}^2 + 1\right)^2}{4S_{11}^2}} - 1,$$
 (6)

$$P = \frac{S_{21} + S_{11} - \Gamma}{1 - (S_{21} + S_{11})\Gamma}.$$
(7)

Далее, используя дисперсионное уравнение для волновода с заполнением (є и µ — параметры материала заполнения) [11] и выражение для коэффициента отражения Г на границе воздух—исследуемый образец, находим искомые соотношения для определения комплексных диэлектрической ε и магнитной μ проницаемостей исследуемого материала:

$$\mu = -\frac{1+\Gamma}{1-\Gamma}\frac{1}{\gamma_0 L} [\ln|P| + j(\varphi - 2\pi k)], \qquad (8)$$

$$\varepsilon = \frac{\lambda_0^2}{\mu} \left\{ \frac{1}{\lambda_c^2} - \left(\frac{1}{2\pi L} \right)^2 \left[\ln \left| P \right| + j \left(\varphi - 2\pi k \right) \right]^2 \right\}, \quad (9)$$

где $\varphi = \arg P, k = 0, 1, 2,$ Значение *k* определяется путем анализа группового времени задержки сигнала в образце [6].

Теперь обратимся к улучшенному волноводному методу, который позволяет исключить погрешность, связанную с неточностью определения размеров L_1 и L_2 . В реальной измерительной установке, измеряя комплексные коэффициенты отражения S_{11}^* , S_{22}^* и прохождения S_{21}^* , S_{12}^* на границах измерительной волноводной секции, получаем систему из трех уравнений (при двух неизвестных *P* и Г) [10]:

$$S_{11}^{*} = R_{1}^{2} \left(\frac{\Gamma(1 - P^{2})}{1 - \Gamma^{2} P^{2}} \right),$$
(10)

$$S_{22}^{*} = R_{2}^{2} \left(\frac{\Gamma(1 - P^{2})}{1 - \Gamma^{2} P^{2}} \right), \tag{11}$$

$$S_{21}^{*} = S_{12}^{*} = R_1 R_2 \left(\frac{P(1 - \Gamma^2)}{1 - \Gamma^2 P^2} \right).$$
(12)

Используя эту систему, можно составить комбинацию уравнений, которая не зависит от размеров L_1 и L_2 [10]:

$$S_{11}^* S_{22}^* - S_{21}^* S_{12}^* =$$

= exp[-2\gamma_0 (L_{BO3H} - L)] $\left(\frac{\Gamma^2 - P^2}{1 - \Gamma^2 P^2}\right)$, (13)

$$\frac{S_{21}^{*} + S_{12}^{*}}{2} = \exp\left[-\gamma_{0}\left(L_{\text{возд}} - L\right)\right] \frac{P\left(1 - \Gamma^{2}\right)}{1 - \Gamma^{2}P^{2}}, \quad (14)$$

где $L_{\text{возд}} = L_1 + L_2 + L$ — длина измерительной секции, которая может быть измерена с хорошей точностью (см. рис. 1).

Теперь выражения для *P* и Г находим из вновь полученной системы:

$$P = \frac{x+1}{2y} \pm \sqrt{\left(\frac{x+1}{2y}\right)^2 - 1},$$
 (15)

$$\Gamma = \pm \sqrt{\frac{x - P^2}{xP^2 - 1}},\tag{16}$$

где

$$x = \left(S_{21}^* S_{12}^* - S_{11}^* S_{22}^*\right) \exp\left[2\gamma_0 \left(L_{\text{возд}} - L\right)\right]$$

И

$$y = \left(\frac{S_{21}^{*} + S_{12}^{*}}{2}\right) \exp[\gamma_{0} \left(L_{\text{возд}} - L\right)].$$

Заметим, что в этом случае P и Γ уже не зависят от L_1 и L_2 . Из (15) выбираются те решения, при которых выполняется условие $|P| \le 1$.

Для правильного выбора знака в (16) получим коэффициент отражения Γ другим путем. Обозначим его Γ_1 и выразим из (10):

$$\Gamma_{1} = \frac{\alpha \left(P^{2} - 1\right) \pm \sqrt{\alpha^{2} P^{4} + 2P^{2} \left(2S_{11}^{*2} - \alpha^{2}\right) + \alpha^{2}}}{2S_{11}^{*} P^{2}}, (17)$$

где $\alpha = \exp(-2\gamma_0 L_1).$

Знак плюс или минус в выражении (17) выбирают исходя из условия $|\Gamma_1| \le 1$, а знак в выражении (16) – из условия $\Gamma \approx \Gamma_1$.

Далее, по методике, описанной выше, получаем выражения (8) и (9) для определения ε и μ , в которых *P* и Γ задаются соотношениями (15) и (16). Ниже приведены экспериментальные результаты по определению комплексных диэлектрических и магнитных проницаемостей высокоомного кремния, полученные по обеим методикам, и проведено их сравнение.

2. ИЗМЕРЕНИЕ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ВЫСОКООМНОГО КРЕМНИЯ

Экспериментальная проверка описанных выше волноводных методик проводилась на высокоомном кремнии. Из заготовки кремния с удельным сопротивлением около $\rho = 1.1$ кОм см изготавливали образец с поперечными размерами 22.72 × 10.09 мм² и длиной 15.98 мм, который вставляли в волноводную секцию с поперечными размерами волновода $a \times b = 22.86 \times 10.16$ мм². Для волны типа H_{10} в прямоугольном волноводе критическая длина $\lambda_c = 2a$. Длина волноводной секции была равна 50.07 мм. Воздушный зазор между образцом и широкой стенкой волновода, который не превышал 0.07 мм, заполняли непроводящей пастой, составленной из мелкодисперсного медного порошка, перемешанного с вазелином. Измерения проводили в полосе частот 8.2...12.4 ГГц, а обработку результатов измерений — двумя приведенными выше способами. Полученные зависимости действительной составляющей ε_1 и тангенса угла диэлектрических потерь tgb_г кремния от частоты представлены на рис. 2а, 2б.

Проведем анализ полученных результатов. Как известно, в рассматриваемом частотном диапазоне действительная составляющая ε_1 диэлектрической проницаемости кремния не обнаружи-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 65 № 8 2020

Рис. 2. Частотные зависимости ε_1 (а) и tg δ_{ε} (б) для образца кремния (поперечные размеры – 22.72 × 10.09 мм², длина – 15.98 мм), полученные экспериментально классическим волноводным методом (квадратики) и улучшенным волноводным методом (кружочки); расчет по формуле (18) для образца с $\rho = = 1.13$ кОм см и $\varepsilon_1 = 11.6$ (сплошная кривая на рис. 26).

вает дисперсии и равняется 11.6. Вычисленные значения ε_1 в нашем случае находятся в пределах от 11.5 до 11.56, т.е. погрешность не превышает 1%. Что касается тангенса угла диэлектрических потерь, то их частотные зависимости заметно отличаются (см. рис. 2б). При обработке классическим методом полученная зависимость отображается волнообразной кривой. В улучшенном волноводном методе экспериментальная зависимость тангенса угла диэлектрических потерь от частоты достаточно хорошо описывается уравнением (18). Этому есть объяснение. В высокоомном кремнии решеточные потери существенно ниже потерь на свободных носителях, а тангенс угла потерь на свободных носителях уменьшается с ростом частоты по закону [12]:

$$tg\delta_{\varepsilon} = 1/(\varepsilon\varepsilon_0\omega\rho), \qquad (18)$$

где ω — круговая частота электромагнитной волны, ρ — удельное сопротивление материала, ϵ —

Рис. 3. Частотные зависимости μ_1 (а) и tg δ_{μ} (б) для образца кремния (поперечные размеры образца – 22.72 × 10.09 мм², длина – 15.98 мм), полученные экспериментально классическим волноводным методом (квадратики) и улучшенным волноводным методом (кружочки).

относительная диэлектрическая проницаемость,

 $\varepsilon_0 = 8.85 \times 10^{-12} \Phi/M - диэлектрическая постоян$ ная (на рис. 26 эта зависимость показана сплошной кривой). Заметим, что формула (18) позволяет уточнить значение удельного сопротивления $кремния, которое составило <math>\rho = 1.13$ кОм см. Мы видим, что с учетом поправки на удельное сопротивление отклонение экспериментальной зависимости от расчетной минимально, т.е. не превышает 7 × 10⁻⁴ (см. рис. 26). При обработке классическим методом отклонение на порядок больше и достигает величины 5 × 10⁻³.

Кремний — немагнитный материал, поэтому при обработке результатов измерений мы полагали $\mu_1 = 1$, $\mu_2 = 0$. Изложенные выше волноводные методы позволяют определять комплексную магнитную проницаемость материала. Найденные зависимости для μ_1 и tg δ_μ показаны на рис. 3а, 3б. Значения μ_1 , полученные разными методами, примерно совпадают. Наблюдаемые на графиках выбросы в значении μ_1 и tg δ_{μ} объясняются приборной погрешностью измерений значений коэффициента отражения в точках его минимумов на частотах, определяемых условием $l = k \lambda_{\rm B}/2$ ($k = 1, 2, 3..., \lambda_{\rm B}$ – длина волны в волноводе на заданной частоте минимума коэффициента отражения). В нашем эксперименте в полосе частот 8.2...12.4 ГГц располагаются два минимума – на частотах 8.5 и 11.2 ГГц – и выбросы при обработке по улучшенному волноводному методу меньше. В окрестностях максимума коэффициента отражения в районе частоты 10 ГГц результаты, полученные обоими способами, примерно одинаковы.

Что касается тангенса угла магнитных потерь, то здесь преимущество улучшенного волноводного метода очевидно: значение $tg\delta_{\mu}$ в окрестностях максимума коэффициента отражения, определенное по улучшенному методу, равняется 1×10^{-3} а в классическом методе оно принимает отрицательную величину с порядком 10^{-2} .

ЗАКЛЮЧЕНИЕ

Представлены два способа определения комплексных диэлектрической и магнитной проницаемостей материалов волноводным методом. Экспериментальная проверка на примере образца из высокоомного кремния показала, что при обработке улучшенным волноводным методом уменьшается ошибка в определении тангенсов углов диэлектрических $tg\delta_{\epsilon}$ и магнитных $tg\delta_{\mu}$ потерь, а также действительной составляющей μ_1 комплексной магнитной проницаемости.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена за счет бюджетного финансирования в рамках государственного задания по теме 0030-2019-0014.

СПИСОК ЛИТЕРАТУРЫ

- Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз, 1963.
- 2. *Chen L.F., Ong C.K., Neo C.P. et al.* Microwave Electronics: Measurement and Materials Characterization. Chichester: John Wiley & Sons, Ltd., 2004.
- Пархоменко М.П., Калёнов Д.С., Федосеев Н.А. и др. // РЭ. 2017. Т. 62. № 7. С. 651.
- 4. *Parkhomenko M.P., Kalenov D.S., Fedoseev N.A. et al.* // Phys. Wave Phenomena. 2015. V. 23. № 3. P. 202.
- 5. *Nicolson A.M., Ross G.F.* // IEEE Trans. 1970. V. IM-19. № 4. P. 377.
- 6. Weir W.B. // Proc. IEEE. 1974. V. 62. № 1. P. 33.
- Пархоменко М.П., Калёнов Д.С., Ерёмин И.С. и др. // Журн. Радиоэлектроники. 2018. № 9. http://jre.cplire.ru/jre/sep18/6/text.pdf.
- Пархоменко М.П., Савельев С.В., фон Гратовски С.В. // РЭ. 2017. Т. 62. № 3. С. 276.
- 9. Parkhomenko M.P., Kalenov D.S., Eremin I.S. et al. // Phys. Wave Phenomena. 2019. V. 27. № 4. P. 299.
- Baker-Jarvis J., Janezic M.D., Grosvenor J.H., Jr., Geyer R.G. Transmission/Reflection and Short-Circuit Line of Methods for Measuring Permittivity and Permeability. NIST Technical Note 1355-R. Boulder: NIST, 1993. 124 p. https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1355r.pdf.
- 11. Лебедев И.В. Техника и приборы СВЧ. Т. 1. М.: Высш. шк., 1970.
- 12. Гарин Б.М., Копнин А.Н., Пархоменко М.П. и др. // Письма в ЖТФ. 1994. Т. 20. № 21. С. 56.