ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 534-14;534.2;535.421

ТЕМПЕРАТУРНЫЕ ЭФФЕКТЫ В АКУСТООПТИЧЕСКИХ МОДУЛЯТОРАХ ТЕРАГЕРЦЕВОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ СЖИЖЕННОГО ЭЛЕГАЗА¹

© 2021 г. А. К. Никитин^{*a*}, П. А. Никитин^{*a*}, *

^аНаучно-технологический центр уникального приборостроения РАН, ул. Бутлерова 15, Москва, 117342 Российская Федерация *E-mail: nikitin.pavel.a@gmail.com Поступила в редакцию 21.04.2021 г. После доработки 26.04.2021 г. Принята к публикации 01.06.2021 г.

Разработана модель квазиортогонального акустооптического взаимодействия в сжиженном элегазе, учитывающая влияние температуры элегаза на параметры, определяющие акустооптическую дифракцию: плотность, скорость звука, показатель преломления, коэффициенты поглощения излучения и ультразвука. Установлено, что оптимальными условиями для максимальной глубины модуляции терагерцевого излучения с длиной волны 119 мкм являются температура 0°С и давление 17 бар.

DOI: 10.31857/S0033849421100119

ВВЕДЕНИЕ

Акустооптические (АО) устройства находят широкое применение в области информационных технологий [1, 2]. Эти устройства используются для управления параметрами излучения инфракрасного, видимого и ультрафиолетового диапазонов. В последние годы возрос интерес к применению этих устройств для создания высокоскоростных линий связи, использующих излучение терагерцевого (ТГц) диапазона. К сожалению, при использовании материалов АО-ячейки, хорошо зарекомендовавших себя в ИК-диапазоне, глубина АО-модуляции ТГц-излучения составляет не более 0.01% на 1 Вт управляющей электрической мощности [3]. Этот факт обусловлен большим значением коэффициента поглощения α ТГц-излучения в материале АО-ячейки (для монокристаллического германия $\alpha \propto 1 \text{ см}^{-1}$ при длине волны $\lambda = 130$ мкм) [4]. Недавние исследования показали, что в качестве среды АО-взаимодействия может быть использован элегаз (гексафторид серы, SF_6), поскольку это вещество прозрачно для ТГц-излучения и характеризуется высоким значением коэффициента АО-качества из-за низкой скорости звука (около 300 м/с) [5, 6]. Благодаря этому глубина АО-модуляции возрастает на несколько порядков и может достигать 80% при значительной акустической мощности. Элегаз является коммерчески доступным веществом и, кроме этого, поставляется в сжиженном виде в баллонах, что позволяет наполнять экспериментальную кювету без использования насоса. Таким образом, на сегодняшний день данное вещество является аналогом парателлурита (TeO_2), который используется в качестве среды AO-взаимодействия в видимом диапазоне и также характеризуется рекордным значением коэффициента AO-качества [7].

Указанные выше экспериментальные исследования проводились при температурах, близких к комнатной. В работе [5] температура составляла 15°С, а в работе [6] – от 25 до 30°С. Авторами работы [6] установлено, что при температуре 24°С можно достичь примерно в два раза большей эффективности АО-дифракции, чем при 15°С, если использовать ту же акустическую мощность. Однако с повышением температуры среды и мощности ультразвука начинает сказываться эффект кавитации вблизи поверхности излучателя ультразвука, и эффективность лифракции резко палает. К сожалению, наша модель не учитывает эффекта кавитации и локального нагрева среды АО-взаимодействия вблизи излучателя ультразвука вследствие затухания ультразвукового пучка. Поэтому влияние мощности ультразвуковой волны на эффективность АО-дифракции можно определить только экспериментально, что было сделано, например, в [6].

Отметим, что экспериментальные результаты работ [5, 6] противоречат использованной в них

¹ Работа доложена на Четвертой Международной молодежной конференции "Информационные технологии и технологии коммуникации: современные достижения" (Астрахань, 5–8 октября 2020 г.).

модели, согласно которой эффективность дифракции слабо зависит от температуры. Поэтому нами предлагается усовершенствованная модель, учитывающая дополнительный фактор, а именно: зависимость прозрачности среды АО-взаимодействия от температуры. Расчеты выполнены для трех различных температур сжиженного элегаза (20, 0 и -40° C), для которых известны спектры пропускания элегаза.

1. МОДЕЛЬ АО-ВЗАИМОДЕЙСТВИЯ В ПОГЛОЩАЮЩЕЙ ЖИДКОЙ СРЕДЕ

Как известно, благодаря фотоупругому эффекту акустическая волна формирует в среде фазовую дифракционную решетку, перемещающуюся со скоростью звука. Если эта решетка является достаточно толстой, то будет наблюдаться только нулевой и плюс (или минус) первый дифракционные максимумы, что соответствует брэгговскому режиму дифракции (рис. 1). В этом случае явление АО-дифракции наблюдается только при выполнении условия фазового синхронизма для волновых векторов падающего \vec{k}_0 и дифрагированного $\vec{k}_{\pm 1}$ излучения, а также волнового вектора звука \vec{K} : $\vec{k}_0 \pm \vec{K} = \vec{k}_{\pm 1}$. В дальнейшем для определенности будем считать, что АО-дифракция излучения происходит в плюс первый порядок.

Если частота ультразвуковой волны невелика и $|\vec{K}| \ll |\vec{k}_0|$, то можно считать, что амплитуда дифрагированного излучения зависит только от одной координаты *x*. В общем случае интенсивность I_1 дифрагированного излучения нелинейно зависит от акустической мощности P_a , что усложняет анализ. Поэтому для исключения этого параметра мы ограничились рассмотрением режима малой эффективности дифракции ($I_1 \ll I_0$), когда интенсивность I_1 дифрагированного излучения линейно связана с мощностью ультразвука [6]:

$$I_{1} = [I_{0} \exp(-\alpha L)] \frac{\pi^{2}}{2\lambda^{2}} M_{2} \frac{L}{d} [P_{a} \exp(-\alpha_{s} l)], \qquad (1)$$

где I_0 – интенсивность падающего излучения, d и L – ширина и длина излучателя ультразвука соответственно, l – расстояние, на котором ТГц-пучок проходит от излучателя ультразвука, α_s – коэффициент затухания мощности ультразвуковой волны, α – коэффициент поглощения излучения, M_2 – коэффициент АО-качества среды.

Коэффициент АО-качества M_2 не зависит от мощности ультразвука P_a , интенсивности излучения I_0 и размеров излучателя ультразвука (d и L) и определяется лишь оптическими и акустическими свойствами среды. Поэтому коэффициент M_2 характеризует пригодность использования среды для реализации АО-взаимодействия. Для жидких

Рис. 1. Схема взаимодействия ТГц-излучения с ультразвуковым пучком, реализуемая в АО-модуляторах: *1* – пучок падающего излучения, *2* – ультразвуковой пучок, *3* – пучок дифрагированного излучения, *4* – пучок прошедшего излучения.

сред и газов коэффициент АО-качества M_2 и показатель преломления *n* можно рассчитать, используя модель Лоренц—Лорентца [5]:

$$M_2 = \left[\frac{(n^2 - 1)(n^2 + 2)}{6n}\right]^2 \frac{4}{\rho V^3}, \quad n = \sqrt{1 + \frac{2A\rho}{1 - 2A\rho/3}}, \quad (2)$$

где ρ – плотность среды, A – коэффициент пропорциональности, пропорциональный средней поляризуемости молекулы, V – скорость звука.

Таким образом, для расчета интенсивности I_1 дифрагированного излучения достаточно задать длину волны излучения λ , размеры d и L излучателя ультразвука, а также мощность ультразвука P_a и расстояние l. Значения же плотности ρ , скорости звука V, коэффициента поглощения излучения α и коэффициента затухания мощности ультразвуковой волны α_s зависят от температуры и давления сжиженного газа. Указанные зависимости достаточно сложные, и поэтому необходимо использовать большие объемы опубликованных данных и аппроксимировать их с помощью дробно-рациональных функций.

2. ЗАВИСИМОСТЬ ФИЗИЧЕСКИХ СВОЙСТВ ЭЛЕГАЗА ОТ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ

Несмотря на то, что свойства сжиженного элегаза достаточно хорошо изучены, данные по его прозрачности в ТГц-диапазоне ($\lambda = 119$ мкм) известны лишь при следующих температурах и давлениях:

1)
$$t = -40^{\circ}$$
С, $p = 11$ бар, $\alpha = 0.036$ см⁻¹ [8];

2)
$$t = 0^{\circ}$$
C, $p = 17$ Gap, $\alpha = 0.027$ cm⁻¹ [8];

3) $t = 20^{\circ}$ C, p = 26 6ap, $\alpha = 0.17$ cm⁻¹ [5].

Поэтому остальные физические характеристики элегаза рассчитывали именно для этих трех пар давления и температуры, предполагая, что давление измеряется в барах, а температура — в градусах Цельсия.

Как показано в работе [9], при фиксированном давлении зависимость плотности ρ сжиженного элегаза от температуры *t* можно представить в виде дроби с коэффициентами a_n , являющимися функциями от давления *p*:

$$\rho = \frac{a_1 + a_2 t + a_3 t^2 + a_4 t^3}{1 + a_5 t} \, \kappa r / M^3.$$
(3)

Аппроксимируя методом наименьших квадратов (МНК) экспериментальные данные работы [9] для диапазона температур 0...50°С, были получены следующие выражения для коэффициентов a_n из (3) для диапазона давлений 12.5...20.0 бар:

$$a_1 = 1.38p + 1.54 \times 10^3, \tag{4}$$

$$a_2 = 12.2 \times 10^{-3} p^2 - 0.101 p - 28.5, \tag{5}$$

$$a_3 = 0, \ a_4 = 0,$$
 (6)

$$a_5 = 10.3 \times 10^{-6} p^2 - 194 \times 10^{-6} p - 12.1 \times 10^{-3}$$
, (7)
и для диапазона 26...35 бар:

din dianasona 20...55 oap.

$$a_1 = 1.32p + 1.54 \times 10^3, \tag{8}$$

$$a_2 = 22.0 \times 10^{-3} p^3 - 2.21 p^2 + 74.2 p - 880, \qquad (9)$$

$$a_{3} = -0.126 \times 10^{-9} p^{3} + + 12.2 \times 10^{-3} p^{2} - 0.391 p + 4.27,$$
(10)

$$a_4 = -1.11 \times 10^{-6} p^3 + 12.2 \times 10^{-3} p^2 -$$

- 4.51×10⁻³ p + 56.8×10⁻³, (11)

$$a_5 = -13.6 \times 10^{-6} p^3 - 1.36 \times 10^{-3} p^2 + + 46.0 \times 10^{-3} p - 0.543.$$
(12)

При вычислении показателя преломления с помощью (1) можно считать, что коэффициент *A*, пропорциональный средней поляризуемости молекулы, не зависит от температуры и давления. Это косвенно подтверждается данными работы [10] для другой неполярной жидкости (гексан, C_6H_{14}), согласно которой при изменении температуры в диапазоне –25...100°С поляризуемость молекулы изменялась не более, чем на 1%, а при изменении давления в диапазоне 0...1900 бар – не более чем на 10%. В ТГц-диапазоне показатель преломления n = 1.241 сжиженного элегаза измерен лишь для длины волны $\lambda = 119$ мкм при давлении $p_0 = 26$ бар и температуре $t_0 = 20$ °С [5]. Решая уравнение (2) относительно коэффициента A и подставляя значения n и р при p_0 и t_0 , было получено следующее значение A:

$$A = \frac{3}{2\rho} \frac{n^2 - 1}{n^2 + 2} \Big|_{(t_0, p_0)} = 1.64 \text{ M}^3 / \text{Kr}.$$
(13)

Зависимость затухания ультразвука в сжиженном элегазе от температуры была измерена в работе [5] для частоты ультразвука $F_0 = 300$ кГц. Как известно, для жидкостей коэффициент затухания ультразвука квадратично возрастает с частотой: $\alpha_s \propto F^2$ [11]. Учитывая этот факт, а также используя МНК, было получено следующее соотношение для коэффициента затухания ультразвука:

$$\alpha_s = (F/F_0)^2 \times$$
× [0.1061exp(0.04527t) + 0.1167] cm⁻¹. (14)

Данные по скорости звука в сжиженном элегазе для широкого диапазона температур (-40...60°С) и давлений (20...600 бар) приведены в работе [12]. Авторы использовали следующую дробную функцию для аппроксимации результатов:

$$V^{2} = \frac{\sum_{j=0}^{3} \sum_{k=0}^{2} a_{jk} (p - p_{0})^{j} (t - t_{0})^{k}}{\sum_{l=0}^{3} \sum_{m=0}^{2} b_{lm} (p - p_{0})^{l} (t - t_{0})^{m}} \left[M^{2} / c^{2} \right], \quad (15)$$

где значения $p_0 = 100$ бар, $t_0 = -23$ °С выбраны для минимизации коэффициентов a_{jk} и b_{lm} . Нами установлено, что в значениях этих коэффициентов допущена опечатка, так как расчетные данные отличались от измеренных более чем на 10%, в то время как согласно авторам отличие должно быть менее 1%. Проведенная нами аппроксимация с помощью МНК дала следующие значения для a_{jk} и b_{lm} (коэффициент b_{11} нормирован на единицу):

$$a_{jk} = \begin{pmatrix} 258 \times 10^3 & 40.6 \times 10^3 & 1.83 \times 10^3 & 20.9 \\ -4.29 \times 10^3 & -382 & 8.58 & 0.549 \\ 20.1 & 0.715 & -0.104 & 1.53 \times 10^{-3} \end{pmatrix},$$
 (16)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 11 2021

1142

$$b_{lm} = \begin{pmatrix} 1 & 0.130 & 3.73 \times 10^{-3} & -0.513 \times 10^{-6} \\ -2.07 \times 10^{-3} & 401 \times 10^{-6} & 73.5 \times 10^{-6} & 0.476 \times 10^{-6} \\ -14.2 \times 10^{-6} & 1.17 \times 10^{-6} & 0.415 \times 10^{-6} & 44.0 \times 10^{-12} \end{pmatrix}.$$
 (17)

Приведенные в данном разделе соотношения позволяют рассчитать зависимость таких параметров сжиженного элегаза, как коэффициент АО-качества, а также коэффициент затухания ультразвука и коэффициент поглощения излучения, от температуры и давления. Таким образом, становится возможным оценить оптимальные условия эксперимента для достижения максимальной интенсивности дифрагированного излучения.

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для удобства мы использовали безразмерный параметр $\xi = I_1/I_0$, пропорциональный интенсивности дифрагированного излучения, и его значение ξ_0 при $F_0 = 300 \text{ к}\Gamma\mu$, $t_0 = 20^{\circ}\text{C}$ и $p_0 = 26$ бар. Поэтому значение отношения ξ/ξ_0 показывает, во сколько раз изменяется интенсивность дифрагированного излучения при изменении условий проведения эксперимента:

$$\frac{\xi}{\xi_0} = \frac{\left[M_2 \exp(-\alpha L) \exp(-\alpha_s l)\right]|_{(p,l)}}{\left[M_2 \exp(-\alpha L) \exp(-\alpha_s l)\right]|_{(p_0,l_0)}}.$$
(18)

Параметр ξ/ξ_0 не зависит от мощности ультразвука P_a , длины волны излучения λ и размеров излучателя ультразвука (*d* и *L*) и учитывает только влияние температуры *t* и давления *p* сжиженного элегаза. Результаты расчета приведены на рис. 2.

Как видно из рис. 2, при понижении температуры от 20 до 0°С интенсивность дифрагированного излучения возрастает примерно в пять раз при использовании ультразвука с частотой F = 300 кГц. Казалось бы, это противоречит тому, что коэффициент АО-качества M_2 убывает с понижением температуры, причем примерно в два раза в указанном интервале температур. Однако при понижении температуры от 20 до 0°С существенно уменьшаются коэффициент α_s затухания ультразвука (примерно в два раза) и коэффициент α поглощения излучения (примерно в шесть раз). Именно это и обусловливает возрастание интенсивности дифрагированного излучения с понижением температуры.

Для обоснования немонотонности зависимости $I_1(t)$ мы сравнили параметры M_2 , α_s и α для этой температуры (-40°С) и для температуры 0°С: коэффициент АО-качества уменьшился в три раза, а коэффициент затухания ультразвука в два раза. Поэтому ожидалось, что интенсивность I_1 будет больше при -40°С, чем при 0°С. Но согласно данным работы [8] прозрачность сжиженного элегаза для ТГц-излучения с длиной волны $\lambda = 119$ мкм резко падает при понижении температуры до столь низких значений: коэффициент поглощения излучения α увеличивается примерно в 1.5 раза по сравнению с температурой 0°С. Поэтому интенсивность I_1 дифрагированного излучения при -40°С меньше, чем при 0°С. Таким образом, условия t = 0°С и p = 17 бар являются оптимальными для получения наибольшей глубины AO-модуляции. Например, глубина AO-модуляции при частоте ультразвука F = 200 кГц и температуре t = 0°С ожидается на порядок больше, чем при F = 300 кГц и t = 20°С.

Зависимость интенсивности I_1 дифрагированного излучения от частоты F ультразвука для различных температур t имеет следующий вид: 1) интенсивность I_1 больше при использовании более низкой частоты F ультразвука; 2) чем выше температура t, тем более сильной является зависимость I_1 от F. Эту зависимость можно качественно

Рис. 2. Зависимость нормированной интенсивности дифрагированного излучения от температуры при различных частотах ультразвука: F = 200 (1), 300 (2), 400 (3) и 500 КГц (4); каждому значению температуры соответствует определенное значение давления: $t = -40^{\circ}$ C, p = 11 бар; $t = 0^{\circ}$ C, p = 17 бар; $t = 20^{\circ}$ C, p = 26 бар.

1143

объяснить следующим образом. С одной стороны, коэффициент затухания ультразвука α_s возрастает с частотой *F*. Поэтому интенсивность I_1 должна убывать с ростом частоты *F*, что подтверждается приведенным графиком. С другой стороны, коэффициент затухания ультразвука α_s возрастает с температурой. Поэтому различие в интенсивностях I_1 для различных частот *F* (например, 200 и 300 кГц) должно возрастать с температурой.

ЗАКЛЮЧЕНИЕ

Установлено, что зависимость интенсивности дифрагированного терагерцевого излучения от температуры и давления является немонотонной: при понижении температуры от 20 до 0°С она возрастает, а при дальнейшем понижении температуры до -40° С она убывает. Таким образом, оптимальными условиями для модуляции терагерцевого излучения являются давление 17 бар и температура 0°С. Результаты работы можно использовать для проектирования энергоэффективных акустооптических модуляторов терагерцевого излучения.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министирства образования и науки Российской Федерации (государственное задание № 0057-2019-0006).

СПИСОК ЛИТЕРАТУРЫ

- 1. Yavorsky M.A., Vikulin D.V., Barshak E.V. et al. // J. Physics: Conf. Ser. 2019. V. 1368. № 2. P. 022067.
- Liu F., Gu L., Xie S., He X. et al. // J. Lightwave Technology. 2018. V. 36. № 16. P. 3465.
- 3. *Vogel T., Dodel G.* // Infrared Phys. 1985. V. 25. № 1/2. P. 315.
- 4. *Kaplunov I.A., Kolesnikov A.I., Kropotov G.I. et al.* // Optics and Spectroscopy. 2019. V. 126. № 3. P. 191.
- Durr W. // Int. J. Infrared and Millimeter Waves. 1986.
 V. 7. № 10. P. 1537.
- 6. *Nikitin P.A., Knyazev B.A., Voloshinov V.B. et al.* // IEEE Trans. 2020. V. TST-10. № 1. P. 44.
- 7. Mantsevich S.N., Kupreychik M.I., Balakshy V.I. // Optics Express. 2020. V. 28. № 9. P. 13243.
- Rosenberg A., Birnbaum G. // J. Chem. Phys. 1970. V. 52. № 2. P. 683.
- 9. Keramati B., Wolgemuth C.H. // J. Chem. and Engineering Data. 1976. V. 21. № 4. P. 423.
- Scaife W.G., Lyons C.G. // Berichte der Bunsengesellschaft f
 ür Physikalische Chemie. 1990. V. 94. № 7. P. 758.
- 11. Claes L., Hülskämper L.M., Baumhögger E. et al. // Techniches Messen. 2019. V. 86. № S1. P. S2.
- 12. Vacek V., Zollweg J.A. // Fluid Phase Equilibria. 1993. V. 88. P. 219.