_____ АНТЕННО-ФИДЕРНЫЕ __ СИСТЕМЫ

УДК 621.3.095.222

ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДВУХДИАПАЗОННОЙ АНТЕННОЙ РЕШЕТКИ

© 2021 г. А. Ю. Гринев^{а,} *, А. А. Измайлов^{а, b,} **

^а Московский авиационный институт (национальный исследовательский университет), Волоколамское шоссе, 4, Москва, 125993 Российская Федерация ^b Научно-производственное объединение "Алмаз" им. акад. А.А. Расплетина, Ленинградский просп., 80, корп. 16, Москва, 125190 Российская Федерация

> *E-mail: grinevau@yandex.ru **E-mail: yustas 1993@yandex.ru Поступила в редакцию 15.07.2020 г. После доработки 14.11.2020 г. Принята к публикации 15.11.2020 г.

Предложена и исследована двухдиапазонная низкопрофильная трехслойная антенная решетка. На первом слое решетки расположен полосковый делитель мощности, в промежуточном слое – излучатели высокочастотного диапазона, а на верхнем слое метаструктура и излучатели низкочастотного диапазона. Проведено электродинамическое моделирование и экспериментальное исследование макета совмещенной антенной решетки с сопоставлением полученных результатов.

DOI: 10.31857/S0033849421110036

ВВЕДЕНИЕ

При решении задач радиолокационного землеобзора, помимо одночастотной аппаратуры наблюдения в коротковолновом (Х) диапазоне, существует обширный сегмент актуальных задач наблюдения в существенно разнесенных диапазонах Х, С, L и ультравысоких частот (УВЧ) ($f \approx 435$ МГц), очень высоких частот (OBЧ) ($f \approx 128$ МГц). Проникаюшая способность радиолокационного сигнала. возрастая по мере увеличения длины волны, позволяет в этих диапазонах выявлять и дешифрировать объекты различного назначения под маскирующими их покровами и в подповерхностном слое Земли. Высокая информационная отдача от применения радиолокационных данных, полученных в нескольких, существенно разнесенных диапазонах (в данном случае отношением частот 1:3) зондирующего излучения, убедительно подтверждена к настоящему времени [1-3].

Подходы к построению антенных решеток (AP) различных диапазонов, совмещенных в одной апертуре, рассмотрены, например, в [4–8]. В [4] приведены схемы совмещения и результаты анализа вибраторно-вибраторных и вибраторно-волноводных фазированных AP (Φ AP), однако не рассматривается возможность комплексирования AP с метаструктурами, обладающими свойствами искусственных магнитных проводников (ИМП), а также достоинства и особенности таких схем построения.

Спектр технических решений совмещения двух диапазонов антенн на основе ИМП со свойством частичного отражения для базовой станции 5G, WLAN и WiMAX предложен, например, в [5-7]. В двухдиапазонной двухполяризационной антенне базовой станции [5] для достижения необходимой развязки более 25 дБ между антеннами, работающими в полосах 0.69...0.96 ГГц (B₁) и 3.5...4.9 ГГц (В₂), расположена частотно-селективная поверхность, которая частично служит заземляющей плоскостью для антенны B₂-диапазона. Отмечается, что антенны обладают стабильными лиаграммами направленности и имеют низкие уровни кросс-поляризации при работе по отдельности. Однако при совмещении появляются искажения в диаграммах направленности, изоляция портов и согласование входного импеданса ухудшаются из-за взаимной связи между двумя антеннами, а кросс-поляризация возрастает до высокого уровня. Хотя антенные элементы В2-диапазона расположены над антенным элементом длинноволнового диапазона, общая высота профиля антенны 0.17 λ (λ – длина волны на центральной частоте длинноволнового диапазона). Совмещение слабонаправленных двух-поляризационных антенн с полосой 15.6% ($f_0 = 2.4$ ГГц) и 9.3% ($f_0 = 5.36$ ГГц) и высотой профиля 0.088λ₀ на 2.4 ГГц и коэффициентом усиления (КУ), равного 7.2 и 7.3 дБ соответственно, рассмотрено в [6]. Техническое ре-

Рис. 1. Схема построения совмещенной двухдиапазонной АР ОВЧ/УВЧ-диапазонов: УВЧ_{низ}||ОВЧ_{верх}.

шение основано на интеграции печатных антенн типа "бабочка" с ИМП на основе двухрезонансной печатной кольцевой периодической структуры. В [7] описана двухдиапазонная (2.4 и 5 ГГц) АР с расширенной полосой рабочих частот на основе метаструктуры со свойством частичного отражения и положительным градиентом изменения фазы коэффициента отражения (КО) в высокочастотном диапазоне. Экспериментально удалось реализовать полосы рабочих частот 7% и 11% с усилением 14.9 и 14.2 дБ в диапазонах 2.42...2.6 и 5.2...5.8 ГГц соответственно. В [8] использована ИМП-структура с целью сокращения толщины АР, в результате поперечный размер АР ОВЧ-диапазона составил 81 мм при f = 160 МГц ($\lambda = 187$ см), а в [9] рассмотрена низкопрофильная развязанная АР на основе поверхности с высоким импедансом, однако возможность совмещения таких АР с другими частотными диапазонами не обсуждается.

В [10] совмещены ОВЧ/УВЧ-диапазоны в одной апертуре с использованием ИМП (коэффициент отражения +1) для ОВЧ-диапазона. В свою очередь, для УВЧ-диапазона ИМП является металлическим экраном, при этом излучатели УВЧ-диапазона располагаются над экраном на расстоянии $\lambda_{yвч}/4$. Недостатком такого принципа являются противоречивые требования к ИМП, а также искажение диаграммы направленности (ДН) АР ОВЧ-диапазона и АР УВЧ-диапазона.

Отметим, что совмещение в одной апертуре двух диапазонов на основе метаструктур со свойством ИМП реализуется, как правило, для одиночных антенн диапазонов L/S, S/C, X/K_u. В случае совмещения многоэлементных AP с распределительным фидером взаимное влияние диапазонов оказывается более выраженным и проявляется в искажении ДН, ухудшении согласования, росте кросс-поляризации и возникновении ложных резонансов. Как в авиационных, так и в космических радиолокаторах одним из важных параметров является высота профиля AP. В авиационной технике это важно для сохранения аэродинамики носителя, в космической технике – для компактного размещения внутри обтекателя при выводе космического аппарата на орбиту.

Цель статьи — исследование совмещенной АР ОВЧ/УВЧ-диапазонов с метаструктурой со свойством ИМП.

1. КОНСТРУКЦИЯ ДВУХДИАПАЗОННОЙ АНТЕННОЙ РЕШЕТКИ

На рис. 1 представлена АР ОВЧ- и УВЧ-диапазонов. Для представленной АР введено обозначение УВЧ_{ни} ВОВЧ_{верх} по принципу расположения АР двух диапазонов друг над другом. Такая конструкция позволяет максимально снизить высоту профиля всей АР, при этом, однако, метаструктура должна быть прозрачной для излучателей УВЧ-диапазона.

В качестве примера рассмотрим АР со следующими параметрами: центральная частота АР ОВЧдиапазона $f_{OBY} = 128$ МГц, полоса рабочих частот 50 МГц (40%); центральная частота АР УВЧ-диапазона $f_{yBY} = 435 \text{ M}$ Гц, полоса рабочих частот 60 МГц (15%); поляризация ОВЧ и УВЧ АР линейная. Для реализации АР был проанализирован широкий спектр метаструктур со свойствами ИМП различной геометрии в комбинации с диэлектрическими слоями, размещенными на высоте *h*имп над металлическим основанием, описанных, в частности, в [12-15]. В качестве периодической ячейки ИМП выбрана структура, показанная на рис. 2а. ИМП представляет собой комбинацию внешнего металлического кольца шириной w₁, толщиной *s* и металлической пластины шириной w₂ (темным цветом показана металлизация); период ячейки ИМП – $d_{\rm ИМП}$.

Функционирование AP (см. рис. 1) предъявляет следующие требования к коэффициенту отражения Г:

$$\begin{aligned} -\pi/4 &\leq \arg \Gamma \leq +\pi/4 \quad \text{для} \quad \Delta F_{\text{OBY}}; \\ |\Gamma| &\leq 0.1 \quad \text{для} \quad \Delta F_{\text{УBY}}. \end{aligned} \tag{1}$$

Рис. 2. Периодическая ячейка ИМП (а); фазы коэффициента отражения ИМП структуры (б, в) и модуль коэффициента отражения для метаструктуры в свободном пространстве (г, д) при разных размерах металлического кольца: (б, г) $w_1 = 195$ (*I*), 210 (*2*), 235 (*3*), 250 мм (*4*), (в, д) $w_2 = 125$ (*I*), 140 (*2*), 155 (*3*), 170 мм (*4*).

Выбранная целевая функция для оптимизации параметров ИМП имеет вид:

$$\Phi(d_{\rm HM\Pi}, w_1, w_2, s, h_{\rm HM\Pi}) = |\arg \Gamma(f_1)| + \sum_{f_2}^{f_3} \alpha \left(|\arg \Gamma| - \pi/4\right)^2 + \sum_{f_n}^{\Delta F_{\rm YB^{\rm H}}} \beta |\Gamma|^2 + G,$$
(2)

где α,β – весовые коэффициенты, $f_m (m = 1,2,3)$ – средняя и крайние частоты в полосе $\Delta F_{\text{ОВЧ}}$, $f_n (n = 1,2,3)$ – средняя и крайние частоты в полосе $\Delta F_{\text{УВЧ}}$, $G(d_{\text{ИМП}},w_1,w_2,s,h_{\text{ИМП}})$ – штрафная функция. При этом решение находится из условия минимизации:

$$(d_{\rm HM\Pi}, w_1, w_2, s, h_{\rm HM\Pi})_{\rm off} = \{ (d_{\rm HM\Pi}, w_1, w_2, s, h_{\rm HM\Pi}): \min \left[\Phi(d_{\rm HM\Pi}, w_1, w_2, s, h_{\rm HM\Pi}) \right] \}$$
(3)

при заданных $d_{\rm ИМП}$ и $h_{\rm ИМП}$. На рис. 2а показана периодическая ячейка ИМП, а также результаты моделирования фазы коэффициента отражения структуры (рис. 26, 2в) и модуля коэффициента отражения для метаструктуры без металлического экрана (рис. 2г, 2д).

Анализ характеристик (см. рис. 2) показывает:

 изменение размера металлического кольца w₁ при фиксированном w₂ существенно влияет на поведение фазы коэффициента отражения (см. рис. 26) ИМП в полосе частот ОВЧ-диапазона от 100 до 150 МГц;

— изменение фазы на 360 град (см. рис. 2в, 2г) на частоте 300 МГц характеризует условие $|\Gamma| \approx -1$;

изменение размера металлической пластины
 w₂ при фиксированном w₁ позволяет обеспечить

 $|\Gamma| \approx 0$ (см. рис. 2д) в полосе частот УВЧ-диапазона от 400 до 470;

Соответственно, получаем основные параметры выбранной структуры, отвечающие условию (1):

 $d_{\text{имп}} = 0.1 \lambda_{\text{OBY}} = 234.3 \text{ мм},$ $w_1 = 0.097 \lambda_{\text{OBY}} = 227.8 \text{ мм},$ $w_2 = 0.065 \lambda_{\text{OBY}} = 153.75 \text{ мм},$ $s = 0.009 \lambda_{\text{OBY}} = 21.2 \text{ мм},$ $h_{\text{имп}} = 0.093 \lambda_{\text{OBY}} = 217.97 \text{ мм}.$

2. МОДЕЛИРОВАНИЕ ДВУХДИАПАЗОННОЙ АНТЕННОЙ РЕШЕТКИ УВЧ_{низ} ОВЧ_{верх}

На рис. За приведен общий вид двухдиапазонной АР. Антенная решетка ОВЧ-диапазона представляет собой два печатных вибраторных излучате-

Рис. 3. Двухдиапазонная АР УВЧ_{низ}||ОВЧ_{верх} (а) и делитель мощности двухдиапазонной АР (б): *1* – проводящий экран; *2* – метаструктура; *3* – излучатели ОВЧ-диапазона; *4* – излучатели УВЧ-диапазона; *5* – Н-образные щели для возбуждения излучателей УВЧ-диапазона; *6* – коаксиальная система питания ОВЧ-диапазона; *7* – выходы на коаксиалы излучателей ОВЧ-диапазона; *8* – фильтрующий элемент на связанных линиях.

ля, запитываемых синфазно и разнесенных в Нплоскости на расстояние $D \approx \lambda_{OBY}/2$ для устранения резонансов метаструктуры и асимметрии в диаграмме направленности. АР УВЧ-диапазона представляет собой АР, которая состоит из восьми (4 × 2) печатных элементов и расположена на металлическом основании. ИМП при такой схеме построения в УВЧ-диапазоне должен быть "прозрачен", в то время как в ОВЧ-диапазоне реализуется коэффициент отражения +1 (см. рис. 2). Обе АР построены на диэлектрической подложке Rogers RT6002 толщиной t = 1.52 мм, $\varepsilon = 2.94$. Габариты промоделированной двухдиапазонной антенной решетки: $L = 0.86\lambda_{OBY} = 2016$ мм, $W = 0.8\lambda_{OBY} = 1875$ мм.

Основные геометрические параметры АР ОВЧ- и УВЧ-диапазонов:

$$\begin{split} l_d &= 0.31 \lambda_{\rm OBY} = 726.5 \text{ mm}, \\ D_{\rm OBY} &= 0.36 \lambda_{\rm OBY} = 843.75 \text{ mm}, \\ w_{d1} &= 0.01 \lambda_{\rm OBY} = 23.5 \text{ mm}, \\ w_{d2} &= 0.048 \lambda_{\rm OBY} = 112.5 \text{ mm}, \\ h_{\rm OBY} &= 0.098 \lambda_{\rm OBY} = 229.7 \text{ mm}, \\ D_{\rm YBY} &= 0.61 \lambda_{\rm YBY} = 420.7 \text{ mm}, \\ l_p &= 0.43 \lambda_{\rm YBY} = 296.55 \text{ mm}, \\ h_{\rm YBY} &= 0.093 \lambda_{\rm OBY} = 64.1 \text{ mm}. \end{split}$$

На рис. Зб приведена геометрия делителя мощности двухдиапазонной АР. Делитель выполнен в виде полосковой линии на печатной плате Rogers RT6002 толщиной t = 1.52 мм с диэлектрической проницаемостью $\varepsilon = 2.94$ и располо-

жен под металлическим экраном. Делитель мощности AP OBЧ-диапазона представляет собой трехдецибельный делитель, выходы которого нагружены на вертикальные возбуждающие коаксиальные линии. В делителе мощности AP УВЧдиапазона также используются связанные линии для создания фильтрующих свойств: в диапазоне частот 103...153 МГц коэффициент отражения от входа фидера ≥ -0.5 дБ, а в диапазоне частот 405...465 МГц ≤ -25 дБ.

Совмещение АР двух диапазонов в одной апертуре приводит к их взаимному влиянию и некоторым отличиям их характеристик от изолированных АР. Эти отличия АР ОВЧ-диапазона могут быть обусловлены узкополосными фидерными резонансами за счет трансформирующих свойств фидера и отличием фазы коэффициента отражения ИМП от +1 на центральной частоте ОВЧ-диапазона из-за переотражений элементами АР УВЧдиапазона. В свою очередь, отличие характеристик АР УВЧ-диапазона при комплексировании может быть обусловлено влиянием АР ОВЧ-диапазона и питающих ее коаксиальных кабелей и возможными резонансами в области ИМП.

Расчет двухдиапазонной АР проводился двумя методами электродинамического моделирования: методом конечных разностей во временной области (МКРВО) и методом конечных элементов (МКЭ).

На рис. 4а, 4б приведены соответственно зависимости коэффициента отражения $|\Gamma|$ от входа АР ОВЧ-диапазона и развязки между АР ОВЧ- и УВЧ-диапазонов в ОВЧ-диапазоне. Величина коэффициента отражения равна $|\Gamma| < -9$ дБ (по

Рис. 4. Коэффициент отражения (а), *S*-параметры (б) и коэффициент усиления (в) совмещенной двухдиапазонной АР в ОВЧ-диапазоне: кривая *1* – КРВО, кривая *2* – КЭ.

уровню коэффициента стоячей волны (КСВ) <2.5), при этом рабочая полоса решетки составляет 40%. Значение развязки в рабочем диапазоне 103...153 МГц не превышает минус 40 дБ. Использование делителя мощности с фильтрами в АР УВЧ-диапазона обеспечило значение развязки 40 дБ между АР ОВЧ- и УВЧ-диапазонов в ОВЧ-диапазоне. Кроме того, использование указанного делителя позволило частично устранить узкополосные "фидерные" резонансы, возникающие в ОВЧ-диапазоне, которые обусловлены трансформирующими свойствами традиционного делителя мощности, построенного на трехдецибельных делителях. Следует отметить, что на частоте $f \approx 155 \text{ M}\Gamma\mu$ (см. рис. 4a) наблюдается резонансный эффект, вызванный конечным размером экрана АР и затеканием токов на краях апертуры АР УВЧ-диапазона при работе АР ОВЧлиапазона.

На рис. 4в приведена зависимость КУ ($G(\theta = 0^{\circ})$) от частоты. В рабочем диапазоне частот, величина КУ ≥ 9 дБ. Падение КУ вблизи частоты 100 МГц, обусловлено конечным размером экрана АР (L и W на рис. 3), а в районе 145 МГц — фазочастотными свойствами ИМП. На рис. 5 приведены ДН АР ОВЧ-диапазона в *E*- и *H*-плоскостях на центральной частоте 128 МГц. Наличие в конструкции метаструктуры приводит к искажению ДН в первую очередь из-за фазочастотных свойств ИМП.

На рис. 6а, 6б приведены соответственно зависимости коэффициента отражения |Г| от входа АР УВЧ-диапазона и развязки между АР ОВЧ- и УВЧ-диапазонов в УВЧ-диапазоне. При этом рабочая полоса решетки по уровню КСВ <2 составляет 18%. Значение развязки в рабочем диапазоне 400...470 МГц не превышает -20 дБ.

На рис. 6в приведена зависимость КУ от частоты. В рабочем диапазоне частот, КУ ведет себя стабильно без заметных провалов и резонансов, при этом величина КУ ≥ 15 дБ.

На рис. 7 приведены сечения ДН АР УВЧ-диапазона в *E*- и *H*-плоскостях на центральной частоте 435 МГц.

В табл. 1 приведены сравнительные характеристики двух схем совмещения АР ОВЧ/УВЧдиапазонов. Видно, что применение схемы УВЧ_{низ}||ОВЧ_{верх} дает выигрыш в толщине АР по сравнению со схемой совмещения ОВЧ_{низ}||УВЧ_{верх} [10].

Рис. 5. Диаграмма направленности двухдиапазонной АР в ОВЧ-диапазоне в *E*- (а) и *H*-плоскости (б): кривая *1* – КРВО, кривая *2* – КЭ.

Рис. 6. Коэффициент отражения (а), *S*-параметры (б) и коэффициент усиления (в) двухдиапазонной АР в УВЧ-диапазоне: кривая *1* – КРВО, кривая *2* – КЭ.

Рис. 7. Диаграмма направленности двухдиапазонной АР в ОВЧ-диапазоне в: *Е*-плоскости (а); *Н*-плоскости (б): кривая *1* – КРВО, кривая *2* – КЭ.

ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Типы схем совмещения	Высота профиля АР	<i>G</i> , дБ		$\Delta\omega_{3-\mathrm{g}\mathrm{b}},\%$	Развязка, дБ
ОВЧ _{низ} УВЧ _{верх}	0.17λ _{овч} =398.4 мм	ОВЧ	≥9	30	$S_{21} \leq -50$
		УВЧ	≥15	18	$S_{12} \leq -25$
УВЧ _{низ} ОВЧ _{верх}	0.098λ _{ОВЧ} =229.7 мм	ОВЧ	≥9	40	$S_{21} \leq -40$
		УВЧ	≥15	18	$S_{12} \leq -20$

Таблица 1. Сравнение двух схем совмещения АР на основе искусственного магнитного проводника

3. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Фотография макета совмещенной в одной апертуре двухдиапазонной АР по схеме $VBY_{Hus} OBY_{Bepx}$ с печатными вибраторными излучателям(1 × 2) в OBY-диапазоне и печатными элементами (4 × 2) УВЧ-диапазоне приведена на рис. 8. Для такой АР в [16] введено обозначение $B H_{HU3} \| H H_{Bepx}$. размеры АР и рабочие частоты выбраны с использованием принципа электродинамического подобия (с соотношения частот 1 : 3). Для центральной частоты ОВЧ-диапазона $f_{OBY} = 128$ МГц частота подобия

Рис. 8. Макет совмещенной двухдиапазонной АР ВЧ_{низ}||НЧ_{верх}: печатные платы (а), макет в сборе (б), вид сбоку (в); 1 – печатные платы; 2 – излучатели НЧ АР; 3 – излучатели ВЧ АР; 4 – полосковая фидерная система возбуждения; 5 – метаструктура; 6 – коаксиальная система питания ОВЧ-диапазона; 7 – крепежные винты; 8 – разъемы питания.

Рис. 9. Зависимость коэффициента отражения $|\Gamma|$ от частоты: НЧ-диапазон (а); ВЧ-диапазон (б); развязка между каналами (в), (г): кривая 1 – полноволновое моделирование; кривая 2 – эксперимент.

НЧ была выбрана $f_{\rm HY} = 2$ ГГц, для центральной частоты УВЧ-диапазона $f_{\rm YBY} = 435$ МГц частота подобия ВЧ составила $f_{\rm BY} = 6$ ГГц. Для крепления печатных плат между собой использованы нейлоновые винты МЗ 7. Питание НЧ- и ВЧ-антенн осуществляется через разъемы 8, тип SMA-РПМП-X-1-078-1.М.

На рис. 9а, 9б представлены зависимости коэффициента отражения $|\Gamma|$ от частоты для НЧ АР и ВЧ АР, полученные в результате электродинамического моделирования методом КЭ, а также при экспериментальном измерении с помощью анализатора цепей Agilent E5072A серии ENA.

В рабочей полосе частот коэффициент отражения $|\Gamma|$ электродинамической модели AP не превышает значения -10 дБ (КСВ < 2). При экспериментальном измерении произошло ухудшение качества согласования (смещение кривой $|\Gamma|$ на 5...10 дБ), которое возможно из-за отклонения расстояния между платами от заданного (на 0.5...1 мм), а также точности фрезеровки топологии и электрических параметров печатных плат. На рис. 9в, 9г представлены зависимости параметров S_{12} , S_{21} , характеризующих развязку между НЧ и ВЧ АР. Как видим из рисунков, рассчитанная развязка не превышает $-35 \, \text{дБ}$ в НЧ-диапазоне и $-25 \, \text{дБ}$ в ВЧ-диапазоне соответственно. Измеренное значение развязки между НЧ и ВЧ АР не превышает $-32 \, \text{дБ}$ в НЧ-диапазоне и $-22 \, \text{дБ}$ в ВЧ-диапазоне.

Измерения ДН макета двухдиапазонной низкопрофильной АР, представленные на рис. 10, проводили с помощью автоматизированного измерительно-вычислительного комплекса ТМСА1.0-40.0Б056 методом ближнего поля в частотной области, а электродинамическое моделирование — методом КЭ.

Частотная зависимость коэффициента усиления ($G(\theta = 0^{\circ})$) макета AP приведена на рис. 11а, 11б. Отличие результатов моделирования и эксперимента обусловлено технологическими причинами, а падение KУ в диапазоне 5.55...5.8 ГГц плохим согласованием (см. рис. 96) AP ВЧ-диапазона.

Рис. 10. Диаграммы направленности макета совмещенной двухдиапазонной АР для *Е*-плоскости (а, в) и *Н*-плоскости (б, г) на частоте: $f_{\rm HY} = 2 \Gamma \Gamma_{\rm U}$ (а, б); $f_{\rm BY} = 6 \Gamma \Gamma_{\rm U}$ (в, г): кривая 1 – полноволновое моделирование, кривая 2 – эксперимент.

Рис. 11. КУ совмещенной двухдиапазонной АР: НЧ диапазон (а); ВЧ диапазон (б): кривая *1* – моделирование; кривая *2* – эксперимент.

ЗАКЛЮЧЕНИЕ

В результате численного моделирования показано, что построение совмещенной на одном полотне АР ОВЧ/УВЧ-диапазонов с отношением частот 1 : 3 и использованием метаструктуры со свойством искусственного магнитного проводника позволяет снизить высоту профиля $0.098\lambda_{OB4}$ (на 62% по сравнению с классическим случаем сов-

мещения вибраторно-вибраторных антенных систем) и уменьшить взаимовлияние диапазонов. Результаты экспериментальных исследований макета совмещенной АР ВЧ/НЧ-диапазонов, изготовленной в соответствии с принципом электродинамического подобия, подтверждают обоснованность предложенного технического решения для совмещенной АР с сохранением основных радиотехнических характеристик.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 12 2021

СПИСОК ЛИТЕРАТУРЫ

- 1. Space Antenna Handbook / Ed. W. Imbriale, S. Gao, L. Boccia. Chichester: John Wiley & Sons, 2012.
- Информационно-измерительные и управляющие радиоэлектронные системы и комплексы/ Под ред. В.С. Вербы. М.: Радиотехника, 2020.
- 3. Справочник по радиолокации. В 2 кн. / Под ред. М.И. Сколника. М.: Техносфера, 2014.
- Пономарёв Л.И., Степаненко В.И. Сканирующие многочастотные совмещённые антенные решетки. М.: Радиотехника, 2009.
- 5. *Zhu Y., Chen Y., Yang S.* // IEEE Trans. 2019. V. AP-67. № 8. P. 5272.
- Zhai H., Zhang K., Yang S., Feng D. // IEEE Antennas and Wireless Propag. Lett. 2017. V. 16. P. 2692.
- 7. *Abdelghani M.L., Attia H., Denidni T.A.* // IEEE Antennas and Wireless Propag. Lett. 2017. V. 16. P. 473.
- 8. Foged L.J., Giacomini A., Saccardi F. et al. // IEEE Trans. 2015. V. AP-63. № 4. Pt. 1. P. 1276.

- Volkov A.P., Kozlov K.V., Kurochkin A.P., Grinev A.Y. // Proc. 2017 Radiation and Scattering Electromagnetic Waves (RSEMW) Conf. Divnomorskoe. 26–30 Jun. N.Y.: IEEE, 2017. P. 353.
- 10. Гринев А.Ю., Измайлов А.А., Волков А.П. // Антенны. 2019. № 4. С. 20.
- 11. Верба В.С., Волков А.П. Какшин В.В. и др. // Радиотехника. 2019. Т. 83. № 5. С. 101.
- 12. *Modi A.Y., Balanis C.A., Birtcher C.R., Shaman H.N. //* IEEE Trans. 2017. V. AP-65. № 10. P. 5406.
- 13. Казанцев Ю.Н., Крафтмахер Г.А., Мальцев В.П. // РЭ. 2019. Т. 64. № 9. С. 874.
- 14. Гринев А.Ю., Волков А.П. // РЭ. 2019. Т. 64. № 6. С. 549.
- 15. *Li T., Chen Z.N.* // IEEE Trans. 2018. V. AP-66. № 12. P. 6742.
- 16. Измайлов А.А. Двухдиапазонная двухполяризационная антенная система авиационного мониторинга земной поверхности. Дис. ... канд. техн. наук: М.: МАИ (НИУ), 2019. 145 с. https://mai.ru/upload/iblock/fe7/D.2.-DISSERTATSIYA.pdf.