ПРИМЕНЕНИЕ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ В БИОЛОГИИ И МЕДИЦИНЕ

УДК 535.36

РАССЕИВАЮЩИЕ СВОЙСТВА ОПТИЧЕСКОГО ВОЛОКНА С КВАРЦЕВОЙ СВЕТОВЕДУЩЕЙ СЕРДЦЕВИНОЙ И СО СВЕТООТРАЖАЮЩЕЙ ОБОЛОЧКОЙ ИЗ ФТОРИРОВАННОГО ТЕРМОПЛАСТИЧНОГО ПОЛИМЕРА

© 2021 г. А. А. Маковецкий^{а, *}, А. А. Замятин^а, Д. В. Ряховский^а

^а Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация

> **E-mail: maz226@ms.ire.rssi.ru* Поступила в редакцию 09.12.2019 г. После доработки 15.09.2020 г. Принята к публикации 21.10.2020 г.

Экспериментально исследованы рассеивающие свойства оптического волокна с кварцевой световедущей сердцевиной и светоотражающей оболочкой из фторированного термопластичного сополимера тетрафторэтилена с этиленом марки Tefzel. Установлено, что при распространении излучения ($\lambda = 532$ нм) по данному волокну наблюдается заметное рассеяние эванесцентной части волны, распространяющейся по светоотражающей оболочке. Измерены индикатриса рассеяния излучения оболочкой, распределение интенсивности рассеянного излучения вдоль оси волокна и его зависимость от условий ввода излучения в оптическое волокно. Проведен расчет суммарного рассеянного излучения и сравнение его с излучением, прошедшим через оптическое волокно. Обсуждена возможность использования данных оптических волокон в лазерной медицине.

DOI: 10.31857/S0033849421030141

введение

Оптические волокна (ОВ) со световедущей сердцевиной из чистого кварцевого стекла диаметром 200...600 мкм, полимерной светоотражающей оболочкой из полидиметилсилоксановых эластомеров и защитной оболочкой из термопластичных полимеров (в частности, сополимера тетрафторэтилена с этиленом марки Tefzel) широко используются в медицине для доставки лазерного излучения УФ-, видимого и ближнего ИК-диапазонов к биообъекту в хирургических, терапевтических, диагностических и других целях [1], (см.: Polymerico Technologies: http://www.polimerico.com/tech/whitepapers/ 2006NOV.htm). Данные ОВ принято называть кварц-полимерными ОВ, они имеют малые оптические потери, высокую числовую апертуру, высокую механическую прочность и биосовместимы с живой тканью. Вследствие высокой оптической однородности и чистоты материалов сердцевины и светоотражающей оболочки рассеяние проходящего по данному ОВ излучения пренебрежимо мало.

Отметим, что сополимер марки Tefzel имеет показатель преломления меньший, чем у кварцевого стекла (1.396 и 1.456 соответственно). Его оптические свойства были исследованы на пленках [2]. Но из-за высокого светорассеяния в нем этот материал не использовался непосредственно в качестве материала светоотражающей оболочки в кварц-полимерном OB.

Однако группа ученых из компании Corning Incorporated показала, как надо превращать недостатки оптического материала в его достоинство (см. Corning Fibrance Light-Diffusing Fibers / http://www.corning.com/ corning fibrance light-diffusing fibers/product information sheet). Они создали преформу с сердцевиной из непоглощающего стекла с рассеивающими центрами и перетянули ее в оптическое волокно, создав новый продукт под названием Fibrance TM Light Diffusing Fiber (Fibrance TM светорассеивающее волокно). В таком ОВ ослабление света определяется не поглощением в сердцевине, а его рассеянием в ней с последующим высвечиванием через боковую поверхность ОВ. Это волокно действует как длинный и гибкий цилиндрический рассеиватель, как струна света или светящаяся направляющая проволока. Текушая линейка продуктов обеспечивает 1, 5 и 10 м диффузионной длины (т.е. длины волокна, необходимой для потери 90% света). Интенсивность рассеянного света уменьшается экспоненциально по длине волокна. В силу логарифмической чувствительности глаз человека свечение волокна представляется однородным. Данные волокна предназначены для использо-

Рис. 1. Фотография бухты OB длиной 20 м (диаметр бухты – 220 мм) при его засветке излучением лазера LG Laser 303 (λ = 532 нм). Ввод излучения в волокно – через объектив "×10, 04" (с 10-кратным увеличением и апертурой 0.4); соосная засветка; расстояние от объектива до лазера – 10 см; апертура выходящего из OB луча ≈0.1.

вания при анатомическом освещении, для фотодинамической терапии и фототерапии, для снижения хирургического риска, при инфекциях и др. [3].

Предметом исследования в данной работе является кварц-полимерное OB с рассеивающей светоотражающей оболочкой Tefzel – качественный аналог волокон Fibrance TM Light Diffusing Fiber. В отличие от волокна компании Corning Inc. наше волокно полностью изготовлено из коммерчески доступных материалов. Светорассеяние в нем происходит не в сердцевине, а в тонком слое оболочки у границы с сердцевиной.

Цель данной работы — исследовать рассеивающие свойства данного кварц-полимерного оптического волокна.

Рис. 2. Схема регистрации рассеянного оболочкой OB излучения с $\lambda = 532$ нм: 1 - LG Laser 303, 2 - столик подачи лазера, обеспечивающий сдвиг оси лазера относительно оси объектива на величину δ , $3 - \phi$ окусирующий объектив "×10, 04", 4 - исследуемое OB, $5 - \phi$ отоприемник ФЭУ-51, 6 - кожух фотоприемника.

1. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Для исследований на вытяжной установке были изготовлены образцы ОВ длиной до 50 м с диаметром световедущей сердцевины 400 мкм и толщиной светоотражающей оболочки 70...90 мкм. Покрытие на вытягиваемое кварцевое волокно наносили из расплава термопласта фильерным способом непосредственно во время вытяжки [4, 5]. Значение показателя преломления Tefzel n_T = 1.398 (λ = 0.63 мкм), кварцевого стекла – n_S = 1.457. В качестве преформ ОВ использовали штабики из кварцевого стекла марки КУВИ; температура расплава термопласта при нанесении покрытия – 270°С; скорость вытяжки – 1.5...4.5 м/мин.

При распространении лазерного излучения (0.63 мкм; 532 нм) по изготовленным ОВ наблюдалось сильное его рассеяние оболочкой Tefzel (рис. 1). Его можно было наблюдать под любым углом обзора к оси ОВ. В наших экспериментах регистрировались распределение интенсивности бокового рассеянного излучения по длине ОВ при различных условиях ввода излучения в волокно, выходное излучение, а также индикатриса рассеяния.

Схема регистрации бокового рассеянного излучения приведена на рис. 2. Для каждого выбранного расстояния *x* до входного торца ОВ регистрировалось излучение $J_s(x)$, рассеянное участком оболочки ОВ длиной ≈ 25 мм. При этом измеряемый участок ОВ устанавливали параллельно светочувствительному торцу ФЭУ на расстоянии 5 мм от него. Для возбуждения ОВ использовали лазер LG Laser 303 с длиной волны излучения $\lambda = 532$ нм и мощностью 150...300 мВт.

На рис. 3 приведена схема измерения индикатрисы рассеяния участка светоотражающей оболочки Tefzel при засветке OB излучением с $\lambda = 532$ нм [6].

Рис. 3. Схема измерения индикатрисы рассеяния: *1* – лазер LG Laser 303, *2* – столик подачи лазера, обеспечивающий сдвиг оси лазера относительно оси объектива, *3* – фокусирующий объектив "×10, 04", *4* – исследуемое OB, *5* – открытый участок OB длиной 10 мм, *6* – экранирующие трубочки на OB, *7* – гониометр, *8* – ФЭУ-51.

Исследуемое OB длиной 0.6 м было возбуждено излучением LG Laser 303 мощностью ~150 мВт. Поперечный сдвиг оси лазерного луча относительно осей объектива и торца OB при измерении индикатрисы составлял $\delta = 5$ мм, что соответствовало апертуре входного луча OB ~ 0.4. В эксперименте регистрировалось излучение, рассеянное участком оболочки длиной h = 10 мм, находившимся на расстоянии 30 см от входного торца OB. При этом расстояние от рассеивающего участка до фотоприемника составляло 150 мм, диаметр диафрагмы на входе $\Phi \Im Y - 10$ мм, интервал углов наблюдения – 5...175 град, угловое разрешение 1 град.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Распределение интенсивности бокового рассеяния по длине OB при различных условиях ввода в него излучения λ = 532 нм

Распределение интенсивности рассеянного излучения по длине OB $J_{s}(x)$ зависело от условия ввода излучения. Оно варьировалось путем изменения поперечного сдвига оси лазерного луча относительно соосно установленных объектива и торца ОВ – величины δ. Чем больше величина δ. тем под большим углом к нормали торца ОВ падал сфокусированный луч, тем интенсивнее было рассеяние на начальном участке ОВ и тем сильнее оно затухало при увеличении расстояния до входного торца ОВ. На рис. 4 приведены распределения $J_{s}(x)$ для OB длиной 18.5 м, измеренные с шагом 1 м для различных значений величины δ. Диффузионная длина составила $l_d \approx 10$ м ($\delta = 5$ мм) и $l_d \approx 15$ м $(\delta = 2 \text{ мм})$. Отметим, что для уменьшения диффузионной длины надо использовать ОВ с меньшим, чем у исследованных, диаметром световедущей сердцевины. Это связано с тем, что чем меньше ее диаметр, тем больше относительная доля излучения в ОВ распространяется по оболочке.

На рис. 5 приведены измеренные зависимости интенсивностей рассеяния света J_s от величины δ в начале OB (x = 0.5 м) и в его конце (x = 18.0 м) для OB длиной 18.5 м, дополняющие кривые рис. 4. Из приведенных зависимостей видно, что на входе OB интенсивность рассеяния J_s монотонно увеличивается с увеличением δ . На конце же OB интенсивность рассеяния J_s имеет вид выпуклой вверх кривой с максимумом при $\delta = 3.5$ мм.

Отметим также, что для любого расстояния x до входного торца OB интенсивность бокового рассеяния $J_s(x)$ пропорциональна интенсивности излучения $J_t(x)$, распространяющегося по OB, т. е. $J_s(x) \sim J_t(x)$. Следовательно, по функции $J_s(x)$ можно оценивать оптические потери α в волокне [7]:

$$\alpha = 10 \lg \left(\frac{J_s(0)}{J_s(x)} \right) x^{-1}, \tag{1}$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 3 2021

Рис. 4. Распределения интенсивностей бокового рассеяния света $J_s(x)$ вдоль оси OB, полученные при $\delta = 0$ (1), 2 (2) и 5 мм (3); длина OB 18.5 м; x – расстояние вдоль оси OB от входного торца до места регистрации излучения; $\lambda = 532$ нм.

где x — расстояние вдоль оси OB от входного торца до места регистрации излучения.

2.2. Измерение интенсивности прошедшего через ОВ излучения λ = 532 нм при различных условиях его ввода

Отметим, что в зависимости от величины δ в многомодовом OB возбуждаются различные группы обыкновенных мод (меридиональные лучи) и группы мод со спиралевидным волновым фронтом — оптические вихри (косые лучи) [8]. При $\delta = 0...2$ мм возбуждаются волноводные моды с относительно низкой выходной апертурой 0.05...0.15 (рис. 6а). При $\delta > 2$ в поле излучения появляются оптические вихри. При $\delta = 5$ мм (максимальное значение δ для использованного объектива) возбуждается группа вихрей с апертурой выходного излучения ≈ 0.4 (рис. 6б).

На рис. 7 приведены измеренные зависимости интенсивности излучения на выходе OB $J_{\rm вых}$ от величины δ для OB различной длины. Поскольку интенсивность измеряемого в эксперименте рассеянного излучения на несколько порядков слабее ин-

МАКОВЕЦКИЙ и др.

Рис. 5. Зависимости интенсивностей бокового рассеяния света светоотражающей оболочкой Tefzel J_s от смещения оси лазерного луча относительно оси объектива δ , измеренные в начале OB, x = 0.5 м (а) и на его конце, x = 18.5 м (б); $\lambda = 532$ нм.

Рис. 6. Фотоизлучения OB в дальней зоне при соосном возбуждении $\delta = 0$ мм (а) и при возбуждении с $\delta = 5$ мм (б); $\lambda = 532$ нм. Расстояние от выходного торца OB до экрана – 53 мм, масштаб одинаков для обоих фото.

Рис. 7. Зависимость интенсивности прошедшего через ОВ излучения $\lambda = 532$ нм от величины δ для ОВ длиной 0.6 (*1*) и 18.5 м (*2*).

тенсивности излучения, распространяющегося по OB, для измерений $J_{\rm вых}$ была использована стопка из четырех аттенюаторов с ослаблением ≈ 12 у каждого. Это позволило провести измерения в линейном режиме работы фотоприемника.

По кривой *1* рис. 7, соответствующей короткому (0.6 м) OB, можно судить об эффективности ввода излучения в OB, так как суммарные оптические потери на столь коротком OB незначительны. При этом относительно небольшое уменьшение $J_{вых}$ при возрастании δ для столь короткого отрезка OB можно объяснить снижением эффективности ввода излучения в OB при увеличении δ от 0 до 5 мм. Следовательно, ослабление сигнала приблизительно в 12 раз на выходе из относительно длинного OB (18.5 м) при изменении δ от 0 до 5 мм свидетельствует о существенном рассеянии оболочкой введенного в OB излучения. Можно предположить, что рассеяние излучения оболочкой — главный механизм оптических потерь в исследованных OB. Чем выше апертура введенного излучения, тем выше потери на рассеяние. Наибольший вклад в потери на рассеяние вносят оптические вихри (см. рис. 6б). Эти предположения были подтверждены прямыми измерениями.

Отметим также, что по кривым рис. 7 можно оценить суммарную интенсивность $J_{s,\Sigma}(18.5, \delta)$ рассеянного излучения ОВ длиной 18.5 м:

$$J_{s,\Sigma}(18.5,\delta) \approx J_{\rm BMX}(0.6,\delta) - J_{\rm BMX}(18.5,\delta),$$
 (2)

где $J_{\text{вых}}$ (18.5, δ) и $J_{\text{вых}}$ (0.6, δ) – интенсивности излучения, выходящего из ОВ длиной 18.5 и 0.6 м соответственно.

2.3. Измерение индикатрисы рассеяния и суммарного рассеянного оболочкой Tefzel излучения λ = 532 нм

Результаты измерений индикатрисы рассеяния с шагом измерений 5 град приведены на рис. 8. Рассеяние имеет широкий угол обзора (практически полный телесный угол). Максимальное рассеяние наблюдается при $\phi \approx 30$ град, что связано со структурой полимера.

С помощью измеренных индикатрисы рассеяния (рис. 8) и кривой распределения интенсивности рассеяния по длине OB (см. рис. 3) в системе Mathcad были сделаны оценки суммарного (по всей длине OB) рассеянного излучения $J_{s,\Sigma}$. Для этого сначала просуммировали рассеянное отрезком оболочки OB длиной *h* в пределах полного телесного угла:

$$J_{sh} \approx \sum_{i=1}^{35} I_i \frac{8\rho^2}{D^2} \left(\left| \cos\left(\frac{\pi \varphi_{i+1}}{180}\right) - \cos\left(\frac{\pi \varphi_i}{180}\right) \right| \right), \quad (3)$$

а затем просуммировали величину J_{sh} по всей длине OB:

$$J_{s\Sigma} \approx \left(\sum_{j=1}^{18} \frac{(l_{j+1} - l_j)Js_j}{hJs_1}\right) J_{sh},\tag{4}$$

В формулах (3) и (4) I_i – значение индикатрисы рассеяния для направления φ_i (см. рис. 8), D == 10 мм – диаметр диафрагмы ФЭУ, $\rho = 150$ мм – расстояние от наблюдаемого участка оболочки ОВ до диафрагмы ФЭУ, h = 10 мм – длина наблюдаемого участка ОВ при измерении индикатрисы рассеяния, l_j – координата *j*-го дискрета на оси ОВ, Js_j – значение интенсивности рассеяния для *j*-го дискрета ОВ (см. рис. 4).

Отметим, что практический интерес представляет не абсолютное значение $J_{s,\Sigma}$, а ее сравнение с интенсивностью выходящего из ОВ излучения $J_{\text{вых}}$. Рассчитанные оценки величины $J_{s,\Sigma}$ и измеренные значения величины $J_{\text{вых}}$ для нескольких значений δ приведены в табл. 1. Из приведенных

Рис. 8. Индикатриса рассеяния излучения $\lambda = 532$ нм участком оболочки Tefzel длиной 10 мм, расположенным на расстоянии ≈15 см от выходного торца OB. Кривая получена при рассогласовании осей лазера и объектива $\delta = 5$ мм; диаметр входной диафрагмы ФЭУ 10 мм; расстояние от открытого участка оболочки до входной диафрагмы ФЭУ 150 мм.

данных видно, что при соосном возбуждении ($\delta = 0$ мм) величина рассеянного излучения составляет незначительную часть от прошедшего через OB излучения — около 8%. При $\delta = 2$ мм эта величина возрастает до $\approx 60\%$, а при $\delta = 5$ мм суммарная интенсивность рассеянного излучения в ≈ 3.8 раз больше интенсивности излучения, прошедшего через OB.

2.4. Качественное исследование температурной зависимости рассеянного оболочкой Tefzel излучения λ = 532 нм

Представляет интерес изучение влияния температуры на интенсивность рассеяния излучения $\lambda = 532$ нм оболочкой Tefzel в интервале температур от комнатной (23°С) до температуры ее плавления (250...270°С). Нагрев ОВ проводили в печи сопротивления, используемой для плавления гранул Tefzel в фильере для нанесения покрытий [5]. Корпус этой печи прозрачный. Печь сопротивления представляет собой намотанную на стеклянную трубку диаметром 40 мм нихромовую проволоку (диаметром 0.5 мм); шаг намотки 2.5 мм.

Таблица 1. Соотношения интенсивностей рассеянного оболочкой и прошедшего через ОВ излучений ($\lambda = 532$ нм) для различных значений δ

δ, мм	$J_{s\Sigma}$, отн. ед.	$J_{\rm вых}$, отн. ед.	$\chi = J_{s\Sigma}/J_{\rm BMX}$
0	5.6×10^{5}	7.2×10^{6}	0.08
2	1.56×10^{6}	2.62×10^{6}	0.6
5	1.56×10^6	4.1×10^{5}	3.8

Поэтому при помещении подсвеченного OB в такую печь рассеянное излучение $\lambda = 532$ нм можно наблюдать визуально. При температурах 23...235°C интенсивность рассеяния визуально не изменялась. При дальнейшем повышении температуры интенсивность рассеяния уменьшается, достигая минимальной величины при 255°C. В интервале температур 255...270°C интенсивность рассеяния визуально не изменяется. Исчезновение рассеяния вызвано плавлением кристаллической фазы полимера. После извлечения OB из печи сопротивления свечение локально нагретого участка оболочки Tefzel восстанавливалось через 1–2 с.

ЗАКЛЮЧЕНИЕ

Исследованные в работе многомодовые оптические волокна с кварцевой сердцевиной и светоотражающей оболочкой из кристаллизующегося термопластичного полимера Tefzel, изготовленные из коммерчески доступных материалов, демонстрируют заметное рассеяние распространяющегося по нему излучения $\lambda = 532$ нм в широком угле обзора. Это качественно приравнивает их к стеклянным волокнам с рассеивающей сердцевиной Corning Fibrance Light-Diffusing Fibers.

Интенсивности рассеяния излучения $\lambda = 532$ нм оболочками исследованных OB зависят от условий ввода излучения в OB. Чем выше апертура введенного излучения, тем глубже эванесцентная часть волны заходит в оболочку и тем интенсивнее рассеяние. При этом суммарная интенсивность рассеянного излучения может в несколько раз превышать интенсивность излучения, прошедшего через OB.

Оптические волокна исследованного типа могут быть рекомендованы к использованию в качестве гибких протяженных светорассеивателей при анатомическом освещении, для фотодинамической терапии и фототерапии, для снижения хирургического риска, при инфекциях и других применений в медицине и биологии. Однако для практического их применения необходимо разработать линейку таких OB с меньшими диффузионными длинами, чем у исследованных OB, и провести более детальные исследования механизмов рассеяния света в них.

Работа выполнена в рамках государственного задания.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тучин В.В.* Лазеры и волоконная оптика в биомедицинских исследованиях. М.: Физматлит, 2010.
- French R.H., Rodríguez-Parada J.M., Yang M.K. et al. // Solar Energy Materials and Solar Cells. 2011. V. 95. № 8. P. 2077.
- 3. *Klubben W.S., Logunov S.L., Fewkes E.J. et al.* // Proc. SPIE. 2016. V. 9702. P. 970218.
- Замятин А.А., Иванов Г.А., Маковецкий А.А., Шилов И.П. Способ изготовления оптического волокна. Патент РФ на изобретение № 2402497. Опубл. офиц. бюл. "Изобретения. Полезные модели". № 30 от 27.10.2010.
- 5. Маковецкий А.А., Замятин А.А., Аксёнов В.А. // Оптич. журн. 2019. Т. 86. № 3. С. 78.
- Маковецкий А.А., Замятин А.А., Ряховский Д.В. // Спецвыпуск Фотон-Экспресс Наука 2019. 2019. № 6. С. 360.
- 7. *Кизеветтер Д.В., Ильин Н.В.* // Научно-технические ведомости СПбГПУ. 2013. № 3. С. 151.
- Кизеветтер Д.В., Славина А.Ю., Левин В.М., Баскаков Г.Г. // Научно-технические ведомости СПбГПУ. 2012. № 1/6. С. 119.