ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 551.510.535,537.868

ВЛИЯНИЕ СЛОИСТОСТИ ЛИТОСФЕРЫ НА ВОЗБУЖДЕНИЕ КРАЙНЕ НИЗКОЧАСТОТНЫХ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ГОРИЗОНТАЛЬНЫМ ДИПОЛЕМ

© 2021 г. Е. Д. Терещенко^{*a*}, П. Е. Терещенко^{*b*, *c*, *}

^аПолярный геофизический институт РАН, ул. Халтурина, 15, Мурманск, 183010 Российская Федерация ^bСанкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, Университетская набережная, 5Б, Санкт-Петербург, 199034 Российская Федерация ^сСанкт-Петербургский научный центр РАН, Университетская набережная, 5, Санкт-Петербург, 199034 Российская Федерация *E-mail: tereshchenko@gmail.com Поступила в редакцию 11.06.2020 г. После доработки 26.08.2020 г.

Принята к публикации 01.09.2020 г.

Получено аналитическое решение задачи возбуждения электромагнитных волн горизонтальным диполем, расположенным на границе раздела между вакуумом и проводящей двуслойной средой, опирающееся на малость длины волны в проводящей среде по сравнению с вакуумом. Проведены численные расчеты, позволившие оценить эффективность такого подхода и показать, что приближенные формулы описывают поведение поля с высокой точностью. Получено асимптотическое представление для магнитного поля на границе раздела между плоскослоистой Землей и атмосферой, имеющее вид волны в однородном полупространстве с коэффициентом возбуждения, зависящим от эффективной проводимости нижнего полупространства, что полезно для определения электропроводности литосферы на основе экспериментальных данных регистрации электромагнитного поля активного источника. Отмечена большая чувствительность к проводимости среды вертикальной компоненты магнитного поля по сравнению с горизонтальными.

DOI: 10.31857/S0033849421040148

ВВЕДЕНИЕ

Задача возбуждения электромагнитного поля диполем, расположенным на границах двух сред, анализировалась в ряде работ [1-5]. Исследования, начатые Зоммерфельдом, были дополнены Фоком, получившим аналитические решения, удобные для практического использования. В [2] было введено понятие "квазистационарное приближение" (волновое число в вакууме $k_0 = 0$), в рамках которого решение задачи было представлено в виде модифицированных функций Бесселя. При этом обобщение на случай $k_0 \neq 0$ имело вид разложения по параметру $q = (k_0^2 - k_1^2) / (k_0^2 + k_1^2),$ где k_1 — волновое число, относящееся к проводящему полупространству. В дальнейшем результаты и выводы, полученные в [2], использовались для обоснования многих работ, связанных с дистанционным электромагнитным зондированием глубинной структуры Земли [6, 7].

В практике генерации электромагнитного поля сверх- и крайне низкочастотного диапазона используют антенны с горизонтальным током [8, 9], возбуждающие поле, которое не обладает азимутальной симметрией. Это приводит к необходимости даже для изотропной среды определять две составляющие электрического векторпотенциала.

Ниже рассмотрим возбуждение низкочастотного электромагнитного поля горизонтальным заземленным диполем с гармонической зависимостью от времени. Считаем, что Земля состоит из плоских слоев разной проводимости, расположенных друг над другом. В отличие от традиционного подхода при построении аналитического решения будем использовать малость параметра $|k_0/k_j|$, где k_j – волновое число в *j*-слое. Такое предположение является вполне естественным в свете реальной проводимости литосферы для ча-стот $f < 10^5 \Gamma\mu$ [4].

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим возбуждение горизонтальным заземленным вибратором поля в плоской трехслойной среде. Одну среду будем считать практически вакуумом, а две другие — проводящими средами с различными значениями проводимости. Вибратор с током, меняющимся по монохроматическому закону $\exp(-i\omega t)$, где t – время, ω – циклическая частота, расположим на границе между вакуумом и проводящей областью. Для решения такой задачи можно использовать подход, описанный ранее [10], отличием от прежней работы будет отсутствие ионосферы и учет конечности k_0 .

Введем декартову систему координат (x, y, z) с центром в середине диполя, осью Ox, направленной вдоль диполя, осью Oy – в перпендикулярном горизонтальном направлении, осью Oz – перпендикулярной границе раздела. Тогда для электрического вектор-потенциала \vec{A} , относящегося к области над Землей $(z \ge 0)$, можно написать следующее представление:

$$A = A_{x}e_{x} + A_{z}e_{z},$$

$$A_{x} = \frac{J\Delta x}{4\pi}\int_{0}^{\infty} \left(\frac{\lambda}{v_{0}} + \alpha_{0}\right)\exp\left(-v_{0}z\right)J_{0}\left(\lambda\rho\right)d\lambda, \quad (1)$$

$$A_{z} = -\frac{J\Delta x}{4\pi}\frac{\partial}{\partial x}\int_{0}^{\infty}\eta_{0}\exp\left(-v_{0}z\right)\frac{1}{\lambda}J_{0}\left(\lambda\rho\right)d\lambda,$$

где $\vec{e_x}, \vec{e_z}$ – орты, направленные вдоль осей Ox и Oy, $iv_j = \sqrt{k_j^2 - \lambda^2} = i\sqrt{\kappa_j^2 + \lambda^2}$, Re $v_j > 0$, j = 0,1,2 – указывает на среду, $\kappa_j = -ik_j$, $k_j = \omega/c \times \sqrt{\epsilon_j/\epsilon_0 + i\sigma_j/(\omega\epsilon_0)}$ – волновое число в *j*-й среде, $\epsilon_0 \simeq 10^{-9}/(36\pi) \Phi/M$, ϵ_j и σ_j – диэлектрическая проницаемость и проводимость, $J\Delta x$ – момент тока, $J_0(\lambda\rho)$ – функция Бесселя первого рода, ρ – расстояние между элементарным диполем и проекцией точки, в которой вычисляется потенциал, на плоскость (*x*, *y*, 0).

Коэффициенты α_0 и η_0 находятся из граничных условий для потенциала. Для трехслойной среды получаем

$$\alpha_0 = -\frac{\lambda}{\nu_0} \frac{D(-\nu_0)}{D(\nu_0)}$$

где

$$D(\mathbf{v}_{0}) = (\mathbf{v}_{0} + \mathbf{v}_{1})(\mathbf{v}_{1} + \mathbf{v}_{2}) + + (\mathbf{v}_{0} - \mathbf{v}_{1})(\mathbf{v}_{1} - \mathbf{v}_{2})\exp(-2\mathbf{v}_{1}d), D(-\mathbf{v}_{0}) = D(\mathbf{v}_{0})|_{\mathbf{v}_{0} \to -\mathbf{v}_{0}},$$

d – толщина первого слоя, примыкающего к вакууму.

Выражение для η_0 имеет более сложную структуру и может быть представлено для трехслойной среды в следующем виде:

$$\eta_{0} = D_{\eta} \left(\frac{\lambda}{v_{0}} + \alpha_{0} \right) + + \frac{8\lambda^{2}k_{0}^{2}v_{1}^{2}}{D(v_{0})D_{z}} \left(k_{1}^{2} - k_{2}^{2} \right) \exp\left(-2v_{1}d\right),$$
(2)

где

$$D_{\eta} = \frac{\lambda}{D_{z}} (k_{0}^{2} - k_{1}^{2}) \times \\ \times \left[(k_{1}^{2} \mathbf{v}_{2} + k_{2}^{2} \mathbf{v}_{1}) - (k_{1}^{2} \mathbf{v}_{2} - k_{2}^{2} \mathbf{v}_{1}) \exp(-2\mathbf{v}_{1}d) \right], \\ D_{z} = (k_{0}^{2} \mathbf{v}_{1} + k_{1}^{2} \mathbf{v}_{0}) (k_{1}^{2} \mathbf{v}_{2} + k_{2}^{2} \mathbf{v}_{1}) + \\ + (k_{0}^{2} \mathbf{v}_{1} - k_{1}^{2} \mathbf{v}_{0}) (k_{1}^{2} \mathbf{v}_{2} - k_{2}^{2} \mathbf{v}_{1}) \exp(-2\mathbf{v}_{1}d).$$

Из формулы (2) следуют предельные соотношения. Для однородной Земли $d \to \infty$ или $k_1 = k_2$

$$\eta_0 = \frac{2(\kappa_0^2 - \kappa_1^2)\lambda^2}{(\nu_0 + \nu_1)(\kappa_0^2\nu_1 + \kappa_1^2\nu_0)}$$
(3)

и приближение, справедливое для малых значений $\left|k_0^2/k_j\right| \ll 1$ (j = 1, 2), имеет вид

$$\eta_0 = -\frac{\lambda}{\nu_0} \left(\frac{\lambda}{\nu_0} + \alpha_0 \right). \tag{4}$$

Подстановка (4) в (1) показывает, что такое приближение эквивалентно выполнению в области $z \ge 0$ условия div $\vec{A} = 0$.

Магнитное поле $\vec{H}(\rho, z)$ связано с векторомпотенциалом формулой $\vec{H} = \text{rot } \vec{A}$. Воспользовавшись соотношением (1), получаем

$$H_{x}(\rho, z) = \frac{\partial}{\partial y} A_{z}, \quad H_{y}(\rho, z) = \frac{\partial}{\partial z} A_{x} - \frac{\partial}{\partial x} A_{z}.$$
 (5)

В качестве первого шага воспользуемся полученными результатами для обоснования возможности использования приближения $|k_0^2/k_1^2| \ll 1$ при вычислении поля на границе двух сред.

2. ГОРИЗОНТАЛЬНЫЕ КОМПОНЕНТЫ МАГНИТНОГО ПОЛЯ НА ГРАНИЦЕ РАЗДЕЛА ДВУХ СРЕД ДЛЯ ОДНОРОДНОЙ ЗЕМЛИ

Подстановка в (5) выражения (3) для η_0 позволяет представить выражение для H_x -компоненты магнитного поля на границе раздела в следующем виде:

$$H_{x}(\rho,0) = \frac{J\Delta x}{2\pi} \left(1 - \frac{k_{0}^{2}}{k_{1}^{2}}\right) \frac{\partial}{\partial x} \frac{\partial}{\partial y} \times \\ \times \int_{0}^{\infty} \frac{\exp\left(-\nu_{0}z\right)}{\left(\nu_{1} + \nu_{0}\right)\left(\nu_{0} + k_{0}^{2}/k_{1}^{2}\nu_{1}\right)} J_{0}(\lambda\rho)\lambda d\lambda, \ z \to +0.$$
(6)

Здесь знак плюс "+" указывает, что подходим к границе между вакуумом и проводящей средой сверху. Учитывая, что

$$\frac{\partial}{\partial y} = \frac{\partial \rho}{\partial y} \frac{\partial}{\partial \rho} = \frac{y}{\rho} \frac{\partial}{\partial \rho},$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 4 2021

выполним дифференцирование по *у* в формуле (6). В результате получим

$$H_{x}(\rho,0) = -\frac{J\Delta x}{2\pi\kappa_{1}}\frac{\partial}{\partial x}\frac{y}{\rho^{3}}F_{x},$$
(7)

где обозначено

$$F_x = \rho^2 \kappa_1 \left(1 - \frac{\kappa_0^2}{\kappa_1^2} \right)_0^{\infty} \frac{\exp(-\nu_0 z)}{(\nu_1 + \nu_0) (\nu_0 + \kappa_0^2 / \kappa_1^2 \nu_1)} \times J_1(\lambda \rho) \lambda^2 d\lambda, \quad z \to +0.$$

Здесь $J_1(\lambda \rho) - функция Бесселя с индексом, рав$ ным единице. Если ввести безразмерные величи $ны <math>r_1 = \rho \kappa_1$, $r_0 = \rho \kappa_0$, $s = \lambda \rho$ и $\tau_j = \sqrt{s^2 + r_j^2}$, j = (0,1), то в этих обозначениях F_x можно записать следующим образом:

$$F_{x} = r_{1} \left(1 - \frac{r_{0}^{2}}{r_{1}^{2}} \right) \times$$

$$\times \int_{0}^{\infty} \frac{1}{(\tau_{1} + \tau_{0}) (\tau_{0} + r_{0}^{2} / r_{1}^{2} \tau_{1})} J_{1}(s) s^{2} ds.$$
(8)

Пренебрегая членами, содержащими $r_0^2/r_1^2 = k_0^2/k_1^2$, получим приближенную формулу для F_x , связанную с H_x компонентой магнитного поля:

$$\tilde{F}_{x} = F_{x}|_{k_{0}^{2}/k_{1}^{2}|\ll 1} = r_{1}\int_{0}^{\infty} \frac{J_{1}(s)s^{2}}{(\tau_{1}+\tau_{0})\tau_{0}} ds.$$

В отличие от функции F_x для \tilde{F}_x несложно найти аналитическое представление, выполнив интегрирование по *s*. Воспользовавшись схемой, предложенной в работе [2], после ряда преобразований можно получить

$$\tilde{F}_{x} = r_{1}I_{1}\left(\frac{r_{1}-r_{0}}{2}\right)K_{1}\left(\frac{r_{1}+r_{0}}{2}\right) + \frac{r_{1}r_{0}}{2} \times \left[I_{0}\left(\frac{r_{1}-r_{0}}{2}\right)K_{1}\left(\frac{r_{1}+r_{0}}{2}\right) + I_{1}\left(\frac{r_{1}-r_{0}}{2}\right)K_{0}\left(\frac{r_{1}+r_{0}}{2}\right)\right],^{(9)}$$

где I_0 , I_1 , K_0 , K_1 — цилиндрические функции мнимого аргумента. Для квазистационарного приближения $r_0 = 0$ и, соответственно,

$$\tilde{F}_x\Big|_{r_0=0}=r_1I_1\left(\frac{r_1}{2}\right)K_1\left(\frac{r_1}{2}\right).$$

Если $|r_1 \pm r_0|/2 \ge 1$, то имеет место асимптотическое представление:

$$\tilde{F}_x \sim (1 + r_0) \exp(-r_0), \ |r_1 \pm r_0|/2 \ge 1,$$
 (10)

т.е. функция, имеющая структуру волны в верхнем полупространстве, не зависящая от проводимости нижнего полупространства, определяемая расстоянием до точки наблюдения и частотой.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 4 2021

Рис. 1. Зависимость от безразмерного расстояния $|r_0|$ функции $|F_x|$ (1), аппроксимации $|\tilde{F}_x|$ (2) и функции $|(1 + r_0)\exp(-r_0)|$ (3) для горизонтального диполя на границе двух однородных сред.

Оценим возможность замены функции F_x на ее приближение \tilde{F}_x в сверхнизкочастотном и крайне низкочастотном (СНЧ-КНЧ) и более низкочастотном диапазоне. С этой целью выполним численные расчеты по формуле (8) и сравним их с результатами, определяемыми выражением (9). Результаты сравнения F_x и \tilde{F}_x удобно представить в виде зависимости от параметра $|r_0|$. При этом для рассматриваемого диапазона можно представить r_1 в следующем виде:

$$r_1 = r_0^{1/2} \sqrt{\frac{\sigma_1 \rho}{c \varepsilon_0}} = r_0^{1/2} \sqrt{120 \pi \sigma_1 \rho}.$$

На рис. 1, 2 приведены результаты расчета модуля и фазы функций F_x , \tilde{F}_x и $(1 + r_0) \exp(-r_0)$. Значение $\sigma_1 \rho = 6$ См близко к реальной ситуации в эксперименте FENICS-2014 [10] при регистрации поля в обсерватории Ловозеро. Из графиков видно совпадение функций F_x и \tilde{F}_x во всем диапазоне изменения r_0 .

Следующий шаг — анализ $H_y(\rho, z)$. Запишем эту компоненту магнитного поля в виде

$$H_{y}(\rho,0) = \frac{J\Delta x}{2\pi\kappa_{1}} \left[\frac{1}{\rho^{3}} F_{y} + \frac{\partial}{\partial x} \frac{x}{\rho^{3}} F_{x} \right]$$

где F_x определена формулой (8), а

$$F_{y} = \frac{r_{\rm i}}{2} \int_{0}^{\infty} \frac{\tau_{\rm i} - \tau_{\rm 0}}{\tau_{\rm i} + \tau_{\rm 0}} J_{0}(s) \, s \, ds.$$

Рис. 2. Зависимость от безразмерного расстояния $|r_0|$ функции $\arg(F_x)$ (*1*), аппроксимации $\arg(\tilde{F}_x)$ (*2*) и функции $\arg((1 + r_0) \exp(-r_0))$ (*3*) для горизонтального диполя на границе двух однородных сред.

Выполняя интегрирование по *s*, получим

$$F_{y} = \frac{\left(r_{1}^{2} - r_{0}^{2}\right)r_{1}}{8} \times$$
(11)

$$\times \left[I_{0}\left(\frac{r_{1} - r_{0}}{2}\right)K_{0}\left(\frac{r_{1} + r_{0}}{2}\right) - I_{2}\left(\frac{r_{1} - r_{0}}{2}\right)K_{2}\left(\frac{r_{1} + r_{0}}{2}\right)\right].$$

При совместном выполнении ограничений $|r_0/r_1| \ll 1$ и $|(r_1 \pm r_0)/2| > 1$ формула (11) имеет асимптотическое представление, аналогичное \tilde{F}_x :

$$\tilde{F}_{y} \sim (1+r_0) \exp\left(-r_0\right).$$

Подводя итог, можно сказать, что для однородного полупространства приближенные формулы, полученные в предположении $|k_0/k_1| < 1$, достаточно полно описывают поведение поля и дают хорошее количественное согласие с точными формулами. Причиной такого совпадения являются осциллирующие функции Бесселя в подынтегральных выражениях, из-за которых вклад в интеграл областей с большими значениями переменной интегрирования мал. Поэтому в задаче со слоистой Землей возможен переход от точного выражения для η_0 к его приближению (3).

3. МАГНИТНОЕ ПОЛЕ ДЛЯ ДВУХСЛОЙНОЙ МОДЕЛИ ЗЕМЛИ

Рассмотрим возбуждение горизонтальным диполем магнитного поля для модели Земли в виде двух слоев с различной проводимостью. Используя приближение $|k_0^2/k_j| \ll 1$, j = 1,2, для низкочастотного диапазона из (5) с учетом (4) получим

$$H_{x}(\rho,0) = -\frac{J\Delta x}{2\pi} \frac{\partial}{\partial x} \frac{\partial}{\partial y} \times$$
$$\times \int_{0}^{\infty} \frac{[\nu_{1} + \nu_{2} + (\nu_{1} - \nu_{2})\exp(-2\nu_{1}d)]\exp(-2\nu_{0}z)}{\nu_{0}[(\nu_{0} + \nu_{1})(\nu_{1} + \nu_{2}) + (\nu_{0} - \nu_{1})(\nu_{1} - \nu_{2})\exp(-2\nu_{1}d)]} J_{0}(\lambda\rho)\lambda d\lambda, \quad z \to +0.$$

Выполняя дифференцирование по у, находим

$$H_{x}(\rho,0) = -\frac{J\Delta x}{2\pi\kappa_{\rm sop}}\frac{\partial}{\partial x}\frac{y}{\rho^{3}}(\tilde{F}_{x})_{\rm sop},\tag{12}$$

где

$$(\tilde{F}_{x})_{\flat\phi} = \rho \kappa_{\flat\phi} \int_{0}^{\infty} \frac{[\tau_{1} + \tau_{2} + (\tau_{1} - \tau_{2}) \exp(-2\tau_{1}d/\rho)]}{\tau_{0} [(\tau_{0} + \tau_{1})(\tau_{1} + \tau_{2}) + (\tau_{0} - \tau_{1})(\tau_{1} - \tau_{2}) \exp(-2\tau_{1}d/\rho)]} J_{1}(s) s^{2} ds.$$

Для аналогии с (7) ввели коэффициент $\kappa_{\rm эф}$. Выберем его так, а соответственно, и проводимость, чтобы $\tilde{F}_{\rm эф}$ как при $d \to \infty$, $|r_1/2| > 1$, так и при $d \to 0$, $|r_2/2| > 1$, совпадало с асимптотическим значением \tilde{F}_x , определяемым формулой (10). Если взять значение $\sigma_{\rm эф}$, следующее из выражения для импеданса плоской волны для двухслойной среды [4]

$$\sqrt{\sigma_{\Im \Phi}} = \sqrt{\sigma_1} \frac{1 + R \exp(-2\kappa_1 d)}{1 - R \exp(-2\kappa_1 d)}, \quad R = \frac{\sqrt{\sigma_2} - \sqrt{\sigma_1}}{\sqrt{\sigma_2} + \sqrt{\sigma_1}},$$

то с учетом того, что $\kappa_{\rm sop} = (1-i)/\sqrt{2}\sqrt{\omega\mu_0\sigma_{\rm sop}}$, несложно показать справедливость высказанного требования.

Рассмотрим поведение функции $(\tilde{F}_x)_{э\phi}$ в случае конечной, не равной нулю, толщины первого слоя. На рис. 3 представлены результаты расчета модуля и фазы функции $(\tilde{F}_x)_{э\phi}$ для двухслойной модели Земли с проводимостью $\sigma_1 = 10^{-4}$ См/м, $\sigma_2 = 10^{-5}$ См/м и толщиной первого слоя $d = 12 \times 10^3$ м. Для сравнения на этих графиках

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 4 2021

Рис. 3. Сравнение функций $|(\tilde{F}_x)_{\ni \phi}|$ (1) и $|(1 + r_0) \exp(-r_0)|$ (2) при двухслойной среде под диполем.

показаны значения функции $(1 + r_0)\exp(-r_0)$. Видим, что при $|r_0| > 8 \times 10^{-2}$, функция $(\tilde{F}_x)_{3\phi}$ хорошо аппроксимируется этим выражением. Преобразуем (12) следующим образом

$$H_{x}(\rho,0) = -\frac{J\Delta x}{2\pi} \frac{\kappa_{1}}{\kappa_{9\phi}} \frac{\partial}{\partial x} \left(\frac{y}{\rho^{3}} \frac{(\tilde{F}_{x})_{9\phi}}{\tilde{F}_{x}} \frac{\tilde{F}_{x}}{\kappa_{1}} \right)$$

При равенстве функций $(\tilde{F}_x)_{ab}$ и \tilde{F}_x получаем

$$H_{x}(\rho,0) = \frac{Z_{g}}{Z_{1}} H_{x}(\rho,0)|_{\sigma_{1}=\sigma_{2}},$$

$$\frac{Z_{g}}{Z_{1}} = \frac{1 - R \exp(-\kappa_{1}d)}{1 + R \exp(-\kappa_{1}d)},$$
(13)

На рис. 4 приведены результаты расчета моду-

ля и фазы функций $(F_y)_{i\phi}$ и $(1 + r_0) \exp(-r_0)$ с теми же параметрами, что и для рис. 3. Видим поведение $(F_y)_{i\phi}$ подобно ранее рассмотренному для $(F_x)_{i\phi}$. При этом $(F_y)_{i\phi}$ идентична $(1 + r_0) \exp(-r_0)$

при $|r_0| > 8 \times 10^{-2}$. Поэтому и составляющую $H_v(\rho, 0)$

можно записать аналогично (13), а значит, и для

Рис. 4. Сравнение функций $|(\tilde{F}_x)_{\ni \phi}|$ (*1*) и $|(1 + r_0) \exp(-r_0)|$ (*2*) при двухслойной среде под диполем.

т.е. произведение отношения импедансов двухслойного и однородного полупространства и поля, возбуждаемого диполем, расположенным на границе между вакуумом и проводящей средой.

Для компоненты $H_y(\rho, 0)$ вычисления подобны сделанным для $H_x(\rho, 0)$. Так как второе слагаемое в (5) сводится к составляющей поля $H_x(\rho, 0)$, то рассмотрим $\partial/\partial z A_x$. Для двухслойной среды представим в виде

$$\frac{\partial}{\partial z} A_x \big|_{z=0} = \frac{J\Delta x}{2\pi\kappa_{\rm sph}} \frac{1}{\rho^3} (F_y)_{\rm sph},$$

где

$$(F_{y})_{\vartheta\phi} = \frac{r_{\vartheta\phi}}{2} \int_{0}^{\infty} \frac{(\tau_{1} - \tau_{0})(\tau_{1} + \tau_{2}) + (\tau_{0} + \tau_{1})(\tau_{2} - \tau_{1})\exp(-2\tau_{1}d/\rho)}{(\tau_{0} + \tau_{1})(\tau_{1} + \tau_{2}) + (\tau_{1} - \tau_{0})(\tau_{2} - \tau_{1})\exp(-2\tau_{1}d/\rho)} J_{0}(s) sds,$$

$$r_{\vartheta\phi} = \rho \kappa_{\vartheta\phi}.$$

тангенциальной составляющей будет иметь место соотношение

$$\vec{H}_{\tau}(\rho,0) = \frac{Z_g}{Z_1} \vec{H}_{\tau}(\rho,0) \Big|_{\sigma_1 = \sigma_2}.$$
 (14)

Такие же преобразования можно применить и к вертикальной составляющей магнитного поля. В результате можно прийти к следующему выражению:

$$H_{z}(\rho,0) = -\frac{J\Delta x}{2\pi\kappa_{\rm sol}^{2}} \frac{\partial}{\partial y} \frac{(F_{z})_{\rm sop}}{\rho^{3}},$$

$$(F_{z})_{\rm sop} = r_{\rm sop}^{2} \int_{0}^{\infty} \frac{\tau_{1} + \tau_{2} + (\tau_{1} - \tau_{2})\exp(-2\tau_{1}d/\rho)}{(\tau_{0} + \tau_{1})(\tau_{1} + \tau_{2}) + (\tau_{0} - \tau_{1})(\tau_{1} - \tau_{2})\exp(-2\tau_{1}d/\rho)} J_{0}(s) sds.$$
(15)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 4 2021

Рис. 5. Сравнение функций $|(\tilde{F}_x)_{\ni \Phi}|$ (*1*) и $|(1 + r_0) \exp(-r_0)|(2)$ при двухслойной среде под диполем.

На рис. 5 приведен результат сравнения $(F_z)_{3\phi}$ и $(1 + r_0) \exp(-r_0)$. Видно, что с ростом $|r_0|$ происходит совпадение этих функций. Наличие $\kappa_{3\phi}^2$ в (15), в отличие от горизонтальных составляющих, где в определяющие их выражения входит $\kappa_{3\phi}$ в первой степени, указывает на большую чувствительность к проводимости среды вертикальной компоненты магнитного поля, что отмечалось и в экспериментальных данных [11].

ЗАКЛЮЧЕНИЕ

Таким образом, решение задачи возбуждения электромагнитных волн горизонтальным диполем, расположенным на границе раздела между вакуумом и проводящей двухслойной средой, позволило оценить эффективность подхода к определению поля, опирающегося на малость длины волны в проводящей среде по сравнению с вакуумом. Сравнение численных расчетов по точным и приближенным формулам показало целесообразность такого подхода как в задаче с однородным полупространством, так и для слоистой среды.

Для расстояний от источника, превышающих величину скин-слоя любого из проводящих слоев, найдено асимптотическое представление для магнитного поля на границе раздела между плоскослоистой Землей и атмосферой, имеющее вид волны в однородном полупространстве с коэффициентом возбуждения, зависящим от эффективной проводимости нижнего полупространства.

Этот результат полезен для интерпретации данных экспериментов с активным источником, где известны параметры источника и геометрия эксперимента, а требуется определить электропроводность Земли. Используя формулу (14), легко перейти от поля диполя к полю реальной антенны. Результат интегрирования по длине антенны будет зависеть лишь от поля диполя, расположенного на границе двух сред.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-05-00823).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sommerfeld A*. // Ann. Phys. 1909. V. 333. № 4. P. 665. https://doi.org/10.1002/andp.19093330402
- 2. *Fock V.* // Ann. Phys. 1933. V. 409. № 4. P. 401. https://doi.org/10.1002/andp.19334090405
- 3. *Wait J.R.* Electromagnetic Waves in Stratified Media. N.Y.: Pergamon press, 1962.
- 4. *Макаров Г.И., Новиков В.В., Рыбачек С.Т.* Распространение электромагнитных волн над земной поверхностью. М.: Наука, 1991.
- 5. *Терещенко Е.Д., Терещенко П.Е.* // РЭ. 2018. Т. 63. № 4. С. 323.
- https://doi.org/10.7868/S0033849418040034 6. *Ваньян Л.Л.* Электромагнитные зондирования. М.:
- ваньян л.л. электромагнитные зондирования. М.: Научный мир, 1997.
- Ковтун А.А. Строение коры и верхней мантии на северо-западе Восточно-Европейской платформы по данным магнитотеллурического зондирования. Л.: Изд-во ЛГУ, 1989.
- 8. *Bannister P.B.* // Radio Sci. 1986. V. 21. № 3. P. 529. https://doi.org/10.1029/RS021i004p00605
- 9. Велихов Е.П., Кононов Ю.М., Шорин В.И. и др. Способ электромагнитного зондирования земной коры с использованием нормированных источников поля // Пат. РФ № 2093863. Опубл. офиц. бюл. "Изобретения. Полезные модели" № 30 от 20.10.1997.
- Терещенко Е.Д., Сидоренко А.Е., Терещенко П.Е. // ЖТФ. 2019. Т. 89. № 7. С. 1098. https://doi.org/10.21883/JTF.2019.07.47805.388-18
- Терещенко Е.Д., Григорьев В.Ф., Терещенко П.Е., Юрик Р.Ю. // Вестн. Кольского науч. центра РАН. Апатиты: Кольский научный центр РАН, 2013. № 3. С. 34.