ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 519.725;512.62

ЛИНЕЙНАЯ СЛОЖНОСТЬ НЕДВОИЧНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ГОРДОНА–МИЛЛСА–ВЕЛЧА

© 2021 г. В. Г. Стародубцев^{а, b, *}

^аВоенно-космическая академия им. А.Ф. Можайского, ул. Ждановская, 13, Санкт-Петербург, 197198 Российская Федерация

^bСанкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Кронверкский просп., 49, Санкт-Петербург, 197101 Российская Федерация

> **E-mail: vgstarod@mail.ru* Поступила в редакцию 29.03.2020 г. После доработки 22.11.2020 г. Принята к публикации 23.11.2020 г.

Представлено выражение для определения эквивалентной линейной сложности (ЭЛС) $l_S p$ -ичных (p > 2) последовательностей Гордона–Миллса–Велча (ГМВП) с периодом $N = p^S - 1$, формируемых в конечных полях $GF(p^S) = GF[(p^m)^n]$, для значения параметра n = 2. Выражение получено на основе анализа ЭЛС известных троичных с периодами N = 80, 728 и пятеричных ГМВП с периодами N = 24, 124, 624, а также с учетом особенностей вычисления ЭЛС для двоичных последовательностей. Определены значения ЭЛС для троичных, пятеричных, семеричных, одиннадцатеричных и тринадцатеричных ГМВП, алгоритмы формирования которых в известной литературе отсутствуют.

DOI: 10.31857/S003384942107010X

Существующие системы передачи цифровой информации (СПЦИ), включающие системы управления, связи, навигации и радиолокации, характеризуются широким применением сигналов с расширенным спектром (СРС), которые формируются на основе псевдослучайных последовательностей (ПСП) [1–4]. В настоящее время в основном используются двоичные ПСП, обладающие как хорошими периодическими автокорреляционными (ПАКФ) и взаимно корреляционными функциями (ПВКФ), так и структурной скрытностью, в качестве показателя которой выступает эквивалентная линейная сложность (ЭЛС), численно равная степени проверочного полинома, на основании которого формируется данная последовательность [5-7].

В качестве ПСП часто используются как М-последовательности (МП), так и последовательности, формируемые на их основе, такие как последовательности Голда, малого и большого множеств Касами [3, 6]. Основной причиной широкого применения МП является то, что данная последовательность является минимаксной, т.е. имеющей минимально возможный для бинарных кодов боковой лепесток ПАКФ. При этом ЭЛС как двоичных, так и недвоичных МП, формируемых в конечных полях $GF(p^S) = GF[(p^m)^n]$, равна $l_S = S$ [2, 6–8]. Наряду с МП к классу минимаксных последовательностей относятся последовательности Гордона-Миллса-Велча (ГМВП). Однако ЭЛС ГМВП существенно превышает ЭЛС МП, причем в зависимости от периода выигрыш может составлять от 2 до 50 и более раз [8–10]. Данное обстоятельство определяет целесообразность применения ГМВП вместо МП в СПЦИ, в которых требуются минимаксные ПСП с повышенной структурной скрытностью.

Одним из направлений повышения эффективности функционирования СПЦИ является переход к многопозиционным сигналам, которые формируются на основе недвоичных ПСП. Вопросам разработки алгоритмов формирования и анализа корреляционных и структурных свойств недвоичных ПСП посвящено большое количество работ как в нашей стране, так и за рубежом [11-20]. В [11] разработан алгоритм формирования и проведен анализ корреляционных свойств семейства *р*-ичных последовательностей с небольшими значениями взаимной корреляционной функции. В [12] проведен достаточно подробный анализ состояния вопроса формирования недвоичных ПСП и систем ПСП с заданными корреляционными и структурными свойствами. В работах [13, 14] выполнен анализ свойств недвоичных последовательностей, формируемых путем децимации недвоичных МП. В [15] проведен анализ применения недвоичных последовательностей для контроля функционирования устройств декодирования помехоустойчивых кодов. В [16] разработан алгоритм формирования и выполнена оценка линейной сложности пятеричных ГМВП с периодом N = 624. В [17, 18] приведены результаты по формированию семейств недвоичных последовательностей с низкими уровнями взаимно корреляционных функций. В работах [19, 20] рассмотрены вопросы формирования и оценки корреляционных и структурных свойств ГМВП.

Для формирования недвоичных СРС с заданными характеристиками предварительно требуется определить корреляционные и структурные свойства ПСП. Для двоичных ГМВП известны выражения для ЭЛС данных последовательностей [5, 8–10]. Для недвоичных ГМВП выражения для ЭЛС в известной литературе отсутствуют.

Алгоритмы формирования троичных и пятеричных ГМВП с периодами N = 80,728 и N = 24, 124, 624 рассмотрены в [16, 21], где приведены величины ЭЛС данных последовательностей для различных значений параметра *r*.

Цель статьи – получение выражений для ЭЛС недвоичных ГМВП.

Формирование недвоичных ГМВП с периодом $N = p^{mn} - 1$ осуществляется над конечными полями

$$GF[(p^m)^n] = GF(p^S), S = mn$$

Символы d_i (i = 0...N - 1) ГМВП определяются выражением [5, 9, 10]

$$d_{i} = \operatorname{tr}_{m1}[(\operatorname{tr}_{mn,m}(\alpha^{i}))^{r}],$$

$$1 \le r < p^{m} - 1, \ (r, p^{m} - 1) = 1,$$
(1)

где tr_{*a,b*}(α) — след элемента α из поля *GF*(p^a) в поле *GF*(p^b); $\alpha \in GF[(p^m)^n]$ — примитивный элемент; параметр r — натуральное число, взаимно простое с порядком мультипликативной группы подполя *GF*(p^m), равным $p^m - 1$.

ЭЛС двоичных ГМВП определяется выражением [5, 8, 9]

$$l_S = m n^{g(r)} , \qquad (2)$$

где g(r) — количество единиц в двоичном представлении числа r в (1).

Известно, что любая двоичная ГМВП может быть представлена в виде суммы по mod 2 нескольких ПСП, формируемых на основе неприводимых проверочных полиномов h(x) степени S = mn [9, 10]. В качестве ПСП могут выступать как МП с периодом $N = 2^{S}-1$, так и последовательности с периодами, являющимися делителями

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 8 2021

периода *N*. Тогда выражение (2) может быть представлено в виде

$$l_{S} = mnM, \tag{3}$$

где $M = n^{g(r)-1}$ — число суммируемых двоичных последовательностей.

Важным следствием выражения (3) является то, что число суммируемых последовательностей при формировании ГМВП определяется только параметрами *n* и *r* и не зависит от параметра *m*.

При формировании МП функция g(r) = 1, поэтому в суммировании участвует только одна последовательность, образуемая на основании примитивного полинома степени S = mn. Параметр rв этом случае может принимать значения 1, 2, 4, ..., 2^{m-1} , для которых g(r) = 1.

При формировании ГМВП функция g(r) > 1. Добавление каждой единицы в двоичном представлении параметра r приводит к увеличению числа суммируемых последовательностей и линейной сложности формируемой ГМВП в n раз. С точки зрения структурных свойств конечных полей увеличение числа единиц при вычислении p-сопряженных элементов для элемента α соответствует аналогичному увеличению числа переходов через границу, равную порядку мультипликативной группы подполя $GF(2^m)$. Например, в подполе $GF(2^4)$ при вычислении p-сопряженных элементов для примитивного элемента α^{11} , т.е. при $r = 11_{10} = 1011_2$ и g(r) - 1 = 2, наблюдается два перехода через α^{15} :

$$\alpha^{11}, \alpha^{22 \mod 15} = \alpha^7, \alpha^{14}, \alpha^{28 \mod 15} = \alpha^{13}.$$

А в подполе *GF*(2⁵) для примитивного элемента α^{15} , т.е. при $r = 15_{10} = 1111_2$ и g(r) - 1 = 3, наблюдается три перехода через α^{31} :

$$\alpha^{15}, \alpha^{30}, \alpha^{60 \mod 31} =$$

= $\alpha^{29}, \alpha^{58 \mod 31} = \alpha^{27}, \alpha^{54 \mod 31} = \alpha^{23}$

Соответственно, ЭЛС ГМВП увеличивается в n^2 или в n^3 раз по сравнению с ЭЛС МП.

Можно дать следующую интерпретацию изменения ЭЛС в зависимости от параметра *r* при синтезе МП и ГМВП. В силу свойства цикличности расширенное поле $GF[(2^m)^n]$, его подполе $GF(2^m)$ и простое поле GF(2) можно представить в виде вложенных окружностей различных радиусов, пропорциональных числу элементов полей, с распределением данных элементов по окружностям. Тогда функции следа $tr_{a,b}(\alpha)$ отображаются в виде ребер, соединяющих элементы расширенного поля $GF[(2^m)^n]$ с элементами подполя $GF(2^m)$ и далее с элементами простого поля GF(2). При

формировании МП функция g(r) = 1 и ребра проходят напрямую через подполе $GF(2^m)$, т.е.

$$\operatorname{tr}_{m,1}[\operatorname{tr}_{mn,m}(\alpha^{i})] = \operatorname{tr}_{mn,1}(\alpha^{i}).$$

При формировании ГМВП увеличение функции g(r) соответствует изменению значения функции следа $[tr_{mn,m}(\alpha^i)]^r$ элемента α^i в подполе $GF(2^m)$ и вычислению функции следа в поле GF(2) для элемента, отличного от элемента $tr_{mn,m}(\alpha^i)$. Данное преобразование можно рассматривать как сдвиг подполя $GF(2^m)$ относительно поля $GF[(2^m)^n]$. Величина сдвига пропорциональна значению g(r) - 1, что приводит к соответственному увеличению линейной сложности ГМВП.

В общем случае функциональная зависимость ЭЛС от параметров конечного поля имеет вид $l_s = f(p, m, n, r)$, где параметр r принимает значения, являющиеся взаимно простыми с порядком мультипликативной группы подполя $GF(p^m)$, равным $(p^m - 1)$. В отличие от выражения (2) для ЭЛС двоичных ГМВП, в котором применяется функция g(r), при решении задачи определения ЭЛС недвоичных ГМВП над конечными полями $GF[(p^m)^n] = GF(p^S)$ используются непосредственно значения и кратности разрядов *p*-ичного представления параметра *r*.

При выводе выражения для ЭЛС недвоичных ГМВП использован подход, аналогичный двоичному случаю. Данный подход связан с определением числа переходов через границу, равную порядку мультипликативной группы подполя $GF(p^m)$, в зависимости от структуры *p*-ичного представления параметра *r*, а именно от значений *p*-ичных разрядов и их кратности. Анализ проведен на основании результатов определения ЭЛС троичных и пятеричных ГМВП, полученных в [16, 21].

Формирование недвоичных ГМВП, как и в случае двоичных ГМВП, осуществляется путем суммирования нескольких ПСП с проверочными полиномами степени S = mn. В качестве ПСП могут выступать как недвоичные МП с периодом $N = p^{mn} - 1$, так и недвоичные ПСП с периодами, являющимися делителями периода N. Для заданных значений m и n величина ЭЛС двоичных и недвоичных ГМВП отличается только значением числа суммируемых последовательностей. Поэтому выражение (3) для недвоичных ГМВП принимает вид

$$l_S = mnM_p, \tag{4}$$

где M_p – число суммируемых *p*-ичных последовательностей.

Таким образом, задача определения ЭЛС недвоичных ГМВП сводится к вычислению параметра M_p , т.е. числа суммируемых последовательностей. При выводе выражения для ЭЛС недвоичных ГМВП анализ проведен для троичных и пятеричных последовательностей, построенных в конечных полях

$$GF[(p^m)^n] = GF[(p^m)^2],$$

т.е. для значения n = 2. Данные последовательности обладают максимальным значением ЭЛС при фиксированном значении параметра S = mn и могут быть представлены в виде матрицы размерности $[(p^m - 1) \times (p^m + 1)]$, ненулевые столбцы которой являются различными циклическими сдвигами короткой МП с периодом $J = p^m - 1$ [9, 10].

Сводные исходные данные для анализа ЭЛС представлены в табл. 1. Анализ показал, что число суммируемых последовательностей M_p при фиксированном значении параметра n = 2 зависит только от *p*-ичного представления параметра *r*, а именно от значений *p*-ичных разрядов этого представления и их кратности, и не зависит от значений параметров *p* и *m*. Например, в строках 1–3, 5, 6, 11 число $M_p = 3$, так как разложение параметра *r* содержит одну единицу и одну двойку, хотя параметры *p* и *m*, а также ЭЛС l_S ГМВП имеют различные значения. Аналогичная картина наблюдается для строк 4, 8, 9, в которых число $M_p = 9$, а разложение параметра *r* содержит одну единицу и одну двойки.

Рассмотрение *p*-сопряженных элементов для элемента α в степени *r* показало, что значение каждого разряда *p*-ичного представления параметра *r* определяет число переходов через границу, равную порядку мультипликативной группы подполя *GF*(*p*^{*m*}), при вычислении очередного *p*-сопряженного значения.

Например, в подполе $GF(5^m) = GF(5^2)$ при вычислении *p*-сопряженных элементов для элемента α^{13} , т.е. при $r = 13_{10} = 23_5$, наблюдаются два перехода через порядок мультипликативной группы от элемента α^{13} к элементу $\alpha^{13 \times 5mod 24} = \alpha^{65mod 24} = \alpha^{17}$ и три перехода от элемента α^{17} обратно к элементу $\alpha^{17 \times 5mod 24} = \alpha^{85mod 24} = \alpha^{13}$. А при $r = 19_{10} = 34_5$ – три и четыре перехода соответственно (табл. 1, строки 14, 15).

Для двоичных ГМВП, построенных над $GF[(2^m)^2]$, т.е. при n = 2, добавление единицы в двоичном представлении параметра r приводит к увеличению ЭЛС в два раза. Для p-ичных ГМВП, построенных над $GF[(p^m)^2]$, наличие разряда со значением 1 < i < p приводит к увеличению параметра M_p и ЭЛС l_S в (i + 1) раз. При наличии двух одинаковых разрядов увеличение будет в $(i + 1)^2$ раз, т.е. увеличение кратности разряда p-ичного представления параметра r приводит к росту ЭЛС в степенной зависимости. При отсутствии разряда, равного единице, ЭЛС уменьшается в два раза.

N⁰	Период N	р	т	<i>r</i> ₁₀	r_p	M_p	ЭЛС <i>l</i> _S
1	$3^4 - 1 = 80$	3	2	5	12	3	12
2		3	3	5	12	3	18
3	$3^6 - 1 = 728$	3	3	7	21	3	18
4		3	3	17	122	9	54
5		3	4	7	21	3	24
6		3	4	11	102	3	24
7		3	4	13	111	4	32
8	$3^8 - 1 = 6560$	3	4	17	122	9	72
9		3	4	23	212	9	72
10		3	4	41	1112	12	96
11		3	4	53	1222	27	216
12	$5^2 - 1 = 24$	5	1	3	3	2	4
13		5	2	7	12	3	12
14	$5^4 - 1 = 624$	5	2	13	23	6	24
15		5	2	19	34	10	40

Таблица 1. Значения ЭЛС недвоичных ГМВП с периодами N < 6561 при n = 2

Таким образом, выражение для числа суммируемых последовательностей при формировании p-ичных ГМВП, построенных в конечных полях $GF[(p^m)^2]$, может быть представлено в виде произведения множителей, пропорциональных значениям и кратности разрядов p-ичного разложения параметра r

$$M_p = 0.5 \prod_{i=1}^{p-1} (i+1)^{t_i},$$
(5)

где t_i — кратность разрядов, равных i, в p-ичном представлении параметра r.

Тогда ЭЛС недвоичных ГМВП при значении параметра n = 2 определяется выражением (4) при подстановке числа суммируемых последовательностей из (5)

$$l_{S} = m \prod_{i=1}^{p-1} (i+1)^{t_{i}}.$$
 (6)

В качестве примера определим число суммируемых последовательностей M_p при формировании троичных ГМВП с периодом $N = 3^8 - 1 = 6560$ для значений параметра $r = 41_{10} = 1112_3$ и $r = 53_{10} =$ = 1222₃:

$$M_p(r_{10} = 41) = 2^{3-1} \times 3^1 = 12;$$

 $M_p(r_{10} = 53) = 2^{1-1} \times 3^3 = 27.$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 66 № 8 2021

Число M_p при формировании пятеричных ГМВП с периодом $N = 5^4 - 1 = 624$ для значений параметра $r = 7_{10} = 12_5$ и $r = 19_{10} = 34_5$:

$$M_p(r_{10} = 7) = 2^{1-1} \times 3^1 = 3;$$

 $M_p(r_{10} = 19) = 0.5 \times 4^1 \times 5^1 = 10,$

где отсутствие единичных разрядов в *p*-ичном представлении соответствует делению на два.

Полученные результаты совпадают с приведенными в табл. 1, что подтверждает справедливость выражений (5) и (6).

Кроме того, при p = 2 и n = 2 выражение (6) переходит в (2) для ЭЛС ГМВП, так как $t_1 = g(r)$, а выражение под знаком произведения становится равным $n^{g(r)}$. Таким образом, выражение (2) для ЭЛС двоичных последовательностей является частным случаем для ЭЛС недвоичных ГМВП при n = 2.

В соответствии с выражениями (5) и (6) были получены значения числа суммируемых последовательностей M_p и, соответственно, ЭЛС l_S для троичных, пятеричных, семеричных, одиннадцатеричных и тринадцатеричных ГМВП с периодами $N = 3^{10} - 1$, $N = 5^6 - 1$, $N = 7^4 - 1$, $N = 11^4 - 1$, $N = 11^6 - 1$, $N = 13^6 - 1$ для некоторых значений параметра *r*. Результаты вычислений представлены в табл. 2.

Таким образом, в статье получено выражение для числа суммируемых последовательностей и

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
<i>r</i> ₁₀	r_p	M_p	l_S					
$N = 3^{10} - 1 = 59048, p = 3, m = 5$								
61	2021	9	90					
67	2111	12	120					
79	2221	27	270					
131	11212	36	360					
161	12222	81	810					
$N = 5^6 - 1 = 15624, p = 5, m = 3$								
3	3	2	12					
7	12	3	18					
47	142	15	90					
63	223	18	108					
99	344	50	300					
$N = 7^2 - 1 = 48, p = 7, m = 1$								
5	5	3	6					
$N = 7^4 - 1 = 2400, p = 7, m = 2$								
5	5	3	12					
19	25	9	36					
25	34	10	40					
41	56	21	84					
$N = 11^2 - 1 = 120, p = 11, m = 1$								
3	3	2	4					
9	9	5	10					
$N = 11^4 - 1 = 14640, p = 11, m = 2$								
7	7	4	16					
13	12	3	12					
43	3A	22	88					
109	9A	55	220					
$N = 11^6 - 1 = 1771560, p = 11, m = 3$								
1209	9AA	605	3630					
$N = 13^6 - 1 = 4826808, p = 13, m = 3$								
1507	8BC	702	4212					
2027	BCC	1014	6084					

Таблица 2. Значения ЭЛС недвоичных ГМВП при различных N, p, m и n = 2

ЭЛС недвоичных ГМВП, формируемых в конечных полях $GF[(p^m)^2]$.

Недвоичные ГМВП могут быть использованы вместо МП при формировании недвоичных сигналов с расширенным спектром с повышенной структурной скрытностью в системах передачи цифровой информации, системах навигации и радиолокации, функционирующих в условиях радиоэлектронного противодействия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ипатов В.П. Широкополосные системы и кодовое разделение сигналов. Принципы и приложения / Пер. с англ. М.: Техносфера, 2007.
- 2. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. М.: Техносфера, 2005.
- Скляр Б. Цифровая связь. Теоретические основы и практическое применение. 2-е изд. / Пер. с англ. М.: Вильямс, 2003.
- 4. *CDMA*: прошлое, настоящее, будущее. М.: MAC, 2003.
- 5. *Golomb S.W., Gong G.* Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar. Cambridge: Cambridge Univ. Press, 2005.
- Ипатов В.П. Периодические дискретные сигналы с оптимальными корреляционными свойствами. М.: Радио и связь, 1992.
- Rizomiliotis P., Kalouptsidis N. // IEEE Trans. 2005. V. IT-51. № 4. P. 1555.
- 8. Wang Q. // IEEE Trans. 2010. V. IT-56. № 8. P. 4046.
- 9. *Chung H.B., No J.S.* // IEEE Trans. 1999. V. IT-45. № 6. P. 2060.
- 10. Стародубцев В.Г. // РЭ. 2020. Т. 65. № 2. С. 169.
- 11. *Lee Wijik, Kim Ji-Youp, No J.S.* // IEICE Trans. on Commun. 2014. V. E97-B. № 1. P. 2311.
- Tasheva Z. // J. Scientific Appl. Research. 2014. V. 2. P. 17.
- 13. *Cho Chang-Min, Kim Ji-Youp, No J.S.* // IEICE Trans. Commun. 2015. V. E98. № 7. P. 1268.
- *Liang H., Tang Y. //* Finite Fields and Their Appl. 2015. V. 31. P. 137.
- 15. Самойленко Д.В., Еремеев М.А., Финько О.А., Диченко С.А. // Труды СПИИРАН. 2018. Вып. 4. С. 31.
- Стародубцев В.Г. // Труды СПИИРАН. 2019. Т. 18. № 4. С. 912.
- 17. *Liang H., Chen W., Luo J., Tang Y. //* Adv. Mathem. Commun. 2017. V. 11. P. 671.
- 18. *Shi X., Zhu X., Huang X., Yue Q.* // IEEE Commun. Lett. 2019. V. 23. № 7. P. 1132.
- 19. No J.S. // IEEE Trans. 1996. V. IT-42. № 1. P. 260.
- Zhu J., Cheng F., Tong L, Zhou S., Hua J. // 2nd Intern. Conf. Inform. Science and Engineering. 4-6 Dec. 2010, Hangzhou, China. 2010. P. 716.
- Стародубцев В.Г., Ткаченко В.В., Боброва Е.А. // Изв. вузов. Приборостроение. 2020. Т. 63. № 5. С. 405.