ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 535

ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ ПРОФИЛИРУЮЩИХ ФУНКЦИЙ ДЛЯ ЭФФЕКТИВНОЙ ПОСТАНОВКИ ЗАДАЧ СИНТЕЗА СЛОИСТЫХ ДИЭЛЕКТРИЧЕСКИХ ФИЛЬТРОВ

© 2021 г. Ю. И. Худак^{а,} *, Д. В. Парфенов^а

^аМИРЭА — Российский технологический университет, просп. Вернадского, 78, Москва, 119454 Российская Федерация *E-mail: hudak@mirea.ru Поступила в редакцию 16.09.2020 г. После доработки 22.04.2021 г. Принята к публикации 27.04.2021 г.

Дополнена постановка задачи синтеза слоистых диэлектрических фильтров, рассмотренная в предыдущих работах авторов и основанная на идеях П.Л. Чебышева. Включены принципиальные для таких задач ограничения на допустимые для синтеза материалы слоев. Развит математический аппарат, позволивший существенно упростить классический подход и вычислительные процедуры для подобных задач с сохранением математической эквивалентности получаемых результатов.

DOI: 10.31857/S0033849421090060

Впервые обоснован максимально широкий подход к теории слоистых сред для случая кусочно-непрерывной зависимости диэлектрической и магнитной проницаемостей. Показано, что предлагаемая постановка задачи синтеза приводит к значительно более экономным по сравнению с ранее известными вычислительным процедурам, сохраняя неизменными все другие важнейшие ограничения задачи синтеза.

1. БАЗОВЫЕ ПОЛОЖЕНИЯ СИНТЕЗА СЛОИСТЫХ ДИЭЛЕКТРИЧЕСКИХ ФИЛЬТРОВ

Теория синтеза слоистых диэлектрических фильтров (СДФ) составляет существенный раздел фундаментальной радиоэлектроники, так как в ее современных приложениях, а также в оптике практически нет ни одного общезначимого устройства, которое бы не имело в своем составе некоторого, обычно достаточно большого, количества фильтров.

Построению СДФ посвящена обширная литература (см., например, [1–13]). Обычно математическая постановка задачи синтеза использует сильно нелинейный по основным параметрам задачи функционал качества синтезируемой системы:

$$\Phi_{R} \stackrel{\text{def}}{=} \left\| R(\kappa) - \tilde{R}(\kappa) \right\|_{\mathbb{L}[\mathcal{X}_{1}, \mathcal{X}_{2}]}$$

или
$$\Phi_{T} \stackrel{\text{def}}{=} \left\| T(\kappa) - \tilde{T}(\kappa) \right\|_{\mathbb{L}[\mathcal{X}_{1}, \mathcal{X}_{2}]},$$

где κ — волновое число, $R(\kappa)$ или $T(\kappa)$ — энергетические коэффициенты соответственно отражения и пропускания слоистой диэлектрической системы (СДС), реализующей фильтр.

Желаемое поведение энергетического коэффициента отражения или пропускания в заданной полосе волновых чисел $[\mathcal{K}_1, \mathcal{K}_2]$ задается спектральными характеристиками этого фильтра $\tilde{R}(\kappa)$ или $\tilde{T}(\kappa)$, достаточно условно изображенными на рис. 1а и 16. Функции типа $\tilde{R}(\kappa)$, $\tilde{T}(\kappa)$ в данной работе будем называть идеалами для соответствующих физически реализуемых конкретным фильтром спектральных характеристик.

Качество проектируемой системы оценивается величиной разности между функциями $R(\kappa)$ и $\tilde{R}(\kappa)$ [или $T(\kappa)$ и $\tilde{T}(\kappa)$] по норме линейного нормированного пространства $\mathbb{L}[\mathcal{K}_1, \mathcal{K}_2]$.

В данной работе, как и в [3] в качестве пространства сравнения с идеальными спектральными характеристиками фильтра $\tilde{R}(\kappa)$ [$\tilde{T}(\kappa)$] выбрано пространство $\mathbb{C}[\mathcal{K}_1, \mathcal{K}_2]$ всех непрерывных на фиксированном отрезке [$\mathcal{K}_1, \mathcal{K}_2$] функций с нормой

$$f(\kappa)_{\mathbb{C}[\mathcal{H}_1,\mathcal{H}_2]} = \max_{\mathcal{H}_1 \le \kappa \le \mathcal{H}_2} |f(\kappa)|.$$

Рассмотренная в [3] математическая постановка задачи оптимального синтеза СДФ в смысле П.Л. Чебышева состоит в том, чтобы для задан-

Рис. 1. Идеал $\tilde{R}(\kappa)$ (а) и $\tilde{T}(\kappa)$ (б) для энергетического коэффициента отражения $R(\kappa)$ и $T(\kappa)$ соответственно полосового фильтра для интервала волновых чисел $\mathcal{K}_1, \mathcal{K}_2$ с учетом переходных областей.

ного интервала волновых чисел [$\mathscr{K}_1, \mathscr{K}_2$] и заданного идеала энергетического коэффициента отражения $\tilde{R}(\kappa)$ минимизировать функционал:

$$\max_{\mathcal{H}_1 \le \kappa \le \mathcal{H}_2} \left| R(\kappa, \vec{p}, \vec{\nu}) - \tilde{R}(\kappa) \right| \underset{\vec{p}, \vec{\nu}}{\to} \min, \tag{1}$$

где электрические толщины \vec{v} и импедансы \vec{p} всех слоев СДС.

По многим теоретическим и особенно практическим соображениям полезно дополнить постановку задачи синтеза в смысле П.Л. Чебышева, наложив дополнительные ограничения на электродинамические параметры задачи \vec{p} и записав математическую постановку задачи в виде

$$\max_{\mathcal{H}_{1} \leq \kappa \leq \mathcal{H}_{2}} \left| R(\kappa, \vec{p}, \vec{\nu}) - \tilde{R}(\kappa) \right|_{\vec{p}, \vec{\nu}} \min \quad \text{при} \\
\vec{\nu} \subset \mathcal{N}_{N} \quad \text{и} \quad \vec{p} \in \mathbf{P}_{N} \subset \mathcal{P}_{N},$$
(2)

где электрические толщины v есть элементы пространства всех возможных электрических толщин \mathcal{N}_{N} , а импедансы \vec{p} слоев СДС есть элементы заданного параллелепипеда Р_N из пространства всех возможных импедансов \mathcal{P}_N материалов слоистых систем. С учетом реализуемости на практике импедансы материалов слоев удовлетворяют двойному неравенству: $\hat{p} \leq p_j \leq \breve{p}, j = 1, 2, ..., N$, где *p_i* – импедансы слоев, а *N* – порядок фильтра. Такую постановку задачи синтеза СДФ естественно называть задачей оптимизации в смысле П.Л. Чебышева с ограничениями.

Определение. Идеал фильтра $\tilde{R}(\kappa) [\tilde{T}(\kappa)]$ будем называть правильным на заданном интервале волновых чисел $[{\mathscr K}_1, {\mathscr K}_2]$, если он может быть на этом интервале сколь угодно точно равномерно приближен $R(\kappa) [T(\kappa)]$, реализуемыми СДС в классе рассматриваемых. Это естественное требование корректности идеальных характеристик формализуется в виде предположения о том, что $ilde{R}(\kappa)$ [$ilde{T}(\kappa)$] принадлежит замыканию в метрике $\mathbb{C}[\mathcal{K}_1, \mathcal{K}_2]$ множества всех возможных коэффициентов отражения (пропускания) СДС рассматриваемого класса.

Тогда, как будет показано далее, вычислительная сложность функционала качества определяется дробно-рациональной структурой энергетического коэффициента отражения от любой СДС данного класса и может быть существенно уменьшена при помощи эффективной процедуры построения идеала не для сложных коэффициентов отражения или пропускания $R(\kappa) [T(\kappa)]$, а для квадратичных профилирующих функций, введенных в [1, 2, 14], что существенно упрощает анализ и решение соответствующих оптимизационных задач.

По сравнению с работами [1, 2, 14], в постановку задачи синтеза в данной работе включены принципиальные ограничения на допустимые для задачи синтеза параметры материалов слоев. Проведен представляющий самостоятельный интерес анализ прямой задачи об описании всех возможных в СДС с кусочно-непрерывными физическими параметрами плоских электромагнитных полей с плоскостями постоянной фазы, параллельными слоям СДС. Ранее в [1, 2, 14] подобный анализ был проведен только для сред с кусочнопостоянными параметрами.

В этой части работы особенно важен факт доказательства основного энергетического тождества для СДС без потерь (17) (см. [1, 2, 14]), в отличие от обычно постулируемой формы закона сохранения энергии¹:

$$R(\kappa) + T(\kappa) \equiv 1. \tag{3}$$

Замечание. Доказанное в работе основное энергетическое тождество для СДС без потерь (17), эквивалентное в своей основе тождеству (3), показывает, что все спектральные характеристики слоистых диэлектрических систем с кусочнонепрерывными параметрами $\varepsilon(x) > 0$, $\mu(x) > 0$ от координаты x, отсчитываемой от поверхности покрытия вглубь слоя, определяются исключительно величинами скачков функций $\varepsilon(x_j)$, $\mu(x_j)$ в точках x_j разрывов этих функций и совершенно не зависят от "непрерывного" поведения этих функций между точками разрыва.

Более детально вычислительные аспекты предлагаемого подхода к задачам синтеза полосовых фильтров будут рассмотрены в наших следующих работах.

2. ПОСТАНОВКА ПРЯМОЙ ЗАДАЧИ

Пусть часть пространства \mathbb{R}^3 между двумя параллельными плоскостями π и π' , расстояние между которыми d, d > 0, заполнена диэлектрической средой, параметры которой – диэлектрическая и магнитная проницаемости – являются кусочно-непрерывными функциями от координаты x оси Ox декартовой системы координат, направленной по нормали от $\pi \kappa \pi'$. Начало координат находится на плоскости π :

$$\varepsilon^{\text{def}}_{=}\varepsilon(x)$$
 и $\mu^{\text{def}}_{=}\mu(x), \quad 0 \le x \le d,$

с конечным, общим для обеих функций, числом точек разрыва первого рода, которые будем обозначать $a_0 = 0 < a_1 < ... < a_N = d$, не заботясь о том, какая из двух функций, $\varepsilon(x)$ или $\mu(x)$, терпит разрыв в точке a_j . Интервалы непрерывности обеих функций $\varepsilon(x)$ и $\mu(x)$ будем обозначать

$$\Delta_j \stackrel{\text{def}}{=} (a_{j-1}, a_j), (j = 1, \dots, N).$$

Пусть полупространство \mathbb{R}^3_{-} слева от π заполнено однородной средой с диэлектрической ε_{-} и магнитной μ_{-} проницаемостями, а полупространство \mathbb{R}^3_{+} справа от π' – однородной средой с проницаемостями ε_{+} и μ_{+} .

Прямая задача о распространении плоских электромагнитных волн в пространстве \mathbb{R}^3 , заполненном слоистым диэлектриком, состоит в описании класса всех возможных плоских электромагнитных полей в определенной выше СДС: требуется, во-первых, указать количество свободных параметров, определяющих все возможные в указанной системе электромагнитные поля, и, во-вторых, определить коэффициенты отражения и пропускания от СДС [0, *d*] слева и справа от нее.

Известно (см., например, [9]), что комплексные амплитуды векторов электрической и магнитной напряженностей

$$ec{E} \stackrel{ ext{def}}{=} u(x)ec{y}_0$$
 и $ec{H} \stackrel{ ext{def}}{=} v(x)ec{z}_0$

плоского электромагнитного поля (зависимость от времени — $\exp(-i\omega t)$) с волновым вектором \vec{k} , параллельным оси Ox внутри каждого интервала непрерывности Δ_j функций $\varepsilon(x)$ и $\mu(x)$, удовлетворяют системе дифференциальных уравнений, записанной в матричной форме, которые получаются для плоских волн из общих уравнений Максвелла:

$$\vec{u}_{j}' = \mathbf{P}_{j}(x)\vec{u}_{j}(x), \text{ где}$$
$$\vec{u}_{j} = \begin{pmatrix} u_{j}(x) \\ v_{j}(x) \end{pmatrix}, \mathbf{P}_{j}(x) = \begin{pmatrix} 0 & i\kappa\mu_{j}(x) \\ i\kappa\varepsilon_{j}(x) & 0 \end{pmatrix}.$$
(4)

Кроме того, на каждой плоскости π_j : $x = a_j$ разрыва коэффициентов $\varepsilon(x)$ или $\mu(x)$ должны выполняться вытекающие из уравнений Максвелла электродинамические граничные условия, совпа-

¹ Распространение результатов данной работы на анализ, например "наклонного" распространения плоских волн в СДС, как в [15] не представляет трудностей.

дающие в нашем случае с условиями непрерывности амплитуд электрического и магнитного полей:

$$\vec{u}(a_j - 0) = \vec{u}(a_j + 0): \quad \begin{array}{l} u(a_j - 0) = u(a_j + 0) \\ v(a_j - 0) = v(a_j + 0), \end{array} \tag{5}$$

где $(a_j - 0)$ и $(a_j + 0)$ – пределы слева и справа в точках разрыва a_j , j = 0, 1, 2, ..., N, коэффициентов $\varepsilon(x)$ или $\mu(x)$ уравнений Максвелла.

Всевозможные плоские электромагнитные поля рассматриваемого выше типа слева и справа от СДС [0,d] (в полупространствах \mathbb{R}^3_{\mp}) определяются уравнением (4) с постоянными коэффициентами ε_{-}, μ_{-} слева от плоскости π и ε_{+}, μ_{+} – справа от π' .

Поэтому в полупространствах \mathbb{R}^3_{\mp} общее решение системы (4) имеет вид

$$\vec{u}_{\mp} \left(x - x_0^{\mp} \right) = C_0^{\mp} \begin{pmatrix} 1 \\ p_{\mp} \end{pmatrix} \exp\left(i \kappa n_{\mp} \left(x - x_0^{\mp} \right) \right) + C_1^{\mp} \begin{pmatrix} 1 \\ -p_{\mp} \end{pmatrix} \exp\left(-i \kappa n_{\mp} \left(x - x_0^{\mp} \right) \right),$$

где величины, помеченные индексами минус и 0, относятся к плоской волне, распространяющейся в \mathbb{R}^3_- к плоскости π , а с индексами минус и 1 соответствуют плоской волне, распространяющейся в \mathbb{R}^3 от плоскости π^2 .

Аналогично этому в (4) все величины, помеченные индексами + и 0, относятся к плоской волне, распространяющейся в \mathbb{R}^3_+ от плоскости π ', а с индексами + и 1 соответствуют плоской волне, распространяющейся в \mathbb{R}^3_+ к плоскости π '.

Замечание. Вектор Пойнтинга $\vec{W} = \begin{bmatrix} \vec{E}, \vec{H}^* \end{bmatrix}$ для волны в \mathbb{R}^3_- , распространяющейся к плоскости π , равен $p_- |C_0^-|^2 \vec{x}_0$, а для распространяющейся от π , равен $-p_- |C_1^-|^2 \vec{x}_0$. Аналогично, вектор Пойнтинга для волны в \mathbb{R}^3_+ , распространяющейся к плоскости π ', равен $-p_+ |C_1^+|^2 \vec{x}_0$, а для распространяющейся от π ' равен $p_+ |C_0^+|^2 \vec{x}_0$. Общее решение уравнений (4) в \mathbb{R}^3_{\mp} в векторно-матричной записи имеет вид

$$\vec{u}_{\mp} \left(x - x_0^{\mp} \right) = \mathbf{B}_{\mp} \mathbf{S}_{\mp} \left(x - x_0^{\mp} \right) \vec{\mathbf{C}}_{\mp}, \quad \vec{\mathbf{C}}_{\mp} = \begin{pmatrix} C_0^{\mp} \\ C_1^{\mp} \end{pmatrix}, \quad (6)$$

где $x_0^- = 0, x_0^+ = d$. При этом

$$\mathbf{B}_{\tau} = \begin{pmatrix} 1 & 1 \\ p_{\tau} & -p_{\tau} \end{pmatrix},$$

$$\mathbf{S}_{\tau} \left(x - x_{0}^{\tau} \right) =$$
(7)
$$= \begin{pmatrix} \exp\left(i\kappa n_{\tau} \left(x - x_{0}^{\tau} \right) \right) 0 \\ 0 & \exp\left(-i\kappa n_{\tau} \left(x - x_{0}^{\tau} \right) \right) \end{pmatrix}.$$

В (6) и (7) введены обозначения: λ_s^{\mp} – собственные значения и \vec{l}_s^{\mp} , (s = 0,1) – собственные векторы матриц **Р**_{\mp} для полупространств \mathbb{R}^3_{\mp} , имеют вид

$$\lambda_{s}^{\mp} = (-1)^{s} i \kappa n_{\mp}, \quad \vec{l}_{s}^{\mp} = \begin{pmatrix} 1 \\ (-1)^{s} p_{\mp} \end{pmatrix}, \quad (s = 0, 1),$$

где $n_{\mp} = (\epsilon_{\mp}\mu_{\mp})^{1/2}$, $p_{\mp} = \left(\frac{\epsilon_{\mp}}{\mu_{\mp}}\right)^{1/2}$. Таким образом, в соответствии с (5) на плоскостях π и π ' справед-

ливы равенства $\mathbf{B}_{-}\vec{C}_{-} = \vec{u}_{1}(0)$ и $\vec{u}_{N}(d) = \mathbf{B}_{+}\vec{C}_{+}$.

3. ОСНОВНЫЕ СВОЙСТВА ПРЯМОЙ ЗАДАЧИ

Лемма. Матрицы $\mathbf{B}_{\scriptscriptstyle \rm T}$ обладают свойством:

$$\mathbf{B}_{\mp}^{*} \mathbf{J}_{0} \mathbf{B}_{\mp} = 2p_{\mp} \mathbf{J}_{1}, \quad \text{где} \quad \mathbf{J}_{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\ \mathbf{J}_{1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \text{матрицы Паули.}$$
(8)

Доказательство леммы проводится перемножением нужных матриц.

Для произвольного решения $\vec{u}(x)$ (4) рассмотрим квадратичную форму:

$$(\vec{u}^* \mathbf{J}_0 \vec{u})(x) \equiv u(x) v^*(x) + u^*(x) v(x) \equiv \equiv 2 \operatorname{Re}[u(x) v^*(x)].$$
(9)

Лемма (основная). Для произвольного решения $\vec{u}(x)$ системы уравнений (4) на всяком интервале непрерывности ее коэффициентов $\Delta_j, j = 1, ..., N$, квадратичная форма (9) сохраняет постоянное значение:

$$(\vec{u}^* \mathbf{J}_0 \vec{u})(x) \equiv \text{const.} \tag{10}$$

Доказательство. Производная от квадратичной формы (7) с учетом уравнений (4) тождественно равна нулю на всяком интервале непрерывности Δ_j

² В физической литературе для волны, распространяющейся к какой-либо плоскости, обычно применяется термин "падающая" (на эту плоскость) волна, а для волны, распространяющейся от плоскости – термин "отраженная" (от этой плоскости) волна.

коэффициентов системы уравнений (4) в силу тождества:

$$\mathbf{P}^*(x)\mathbf{J}_0 + \mathbf{J}_0\mathbf{P}(x) \equiv 0.$$

4. АМПЛИТУДНАЯ ПАРАМЕТРИЗАЦИЯ ПРЯМОЙ ЗАДАЧИ

Для решения прямой задачи используем представление решения (4) с начальным условием $\vec{u}_i(a_i) = \vec{u}_i^0$ на всяком интервале $\Delta_i, j = 1, 2, ..., N$:

$$\vec{u}_i(x) = \mathbf{M}_i(x)\vec{C}_i,\tag{11}$$

где

$$\mathbf{M}_{j}(x) = \begin{pmatrix} m_{00}(x) & m_{01}(x) \\ m_{10}(x) & m_{11}(x) \end{pmatrix}$$

— фундаментальная матрица, столбцы которой \vec{m}_0 и \vec{m}_1 образуют фундаментальную систему решений (4) на Δ_i ,

$$\vec{C}_j = \begin{pmatrix} C_0^{(j)} \\ C_1^{(j)} \end{pmatrix}$$

— постоянный на Δ_j , j = 1, 2, ..., N вектор коэффициентов — комплексных амплитуд "волн" \vec{m}_0 и \vec{m}_1 .

Чтобы получить представление (11), достаточно решить матричное дифференциальное уравнение

$$\mathbf{M}'_{i} = \mathbf{P}_{i}(x) \mathbf{M}_{i}(x) \tag{12}$$

с начальным условием:

$$\mathbf{M}_{j}(a_{j}) = \mathbf{M}_{j}^{0}, \quad \det\left(\mathbf{M}_{j}^{0}\right) \neq 0.$$
(13)

Далее рассмотрим два разных представления фундаментальных матриц $\mathbf{M}_{j}(x)$ в (12), j = 1, 2, ..., N, отвечающих разным начальным условиям (13). Во-первых, будем говорить про "тригонометрическое" представление (*t*-представление)³, когда $\mathbf{M}_{j}(a_{j}) = \mathbf{I}$, где \mathbf{I} – единичная матрица, и, во-вторых, про "экспоненциальное" представление (*e*-представление), когда

$$\mathbf{M}_{j}(a_{j}) = \mathbf{B}_{j},$$
 где $\mathbf{B}_{j} = \begin{pmatrix} 1 & 1 \\ p_{j}(a_{j}) & -p_{j}(a_{j}) \end{pmatrix},$ (14)

а $p_j(a_j)$ — величина импеданса в правом конце $\Delta_i, j = 1, 2, ..., N$. В силу тождества (10) и нужного начального условия (13) на интервале Δ_i :

$$((\mathbf{M}^{(t)})^* \mathbf{J}_0 \mathbf{M}^{(t)})(x) \equiv \mathbf{J}$$

в *t*-представлении,
$$((\mathbf{M}^{(e)})^* \mathbf{J}_0 \mathbf{M}^{(e)})(x) \equiv 2p(a_j) \mathbf{J}_1$$
(15)
в *e*-представлении.

Из этих тождеств следует невырожденность матриц $\mathbf{M}_{j}^{(e)}(x), \mathbf{M}_{j}^{(t)}(x)$ для всякого x из $\Delta_{j}, j = 1, 2, ..., N$, а также выражения для постоянных векторов \vec{C}_{j} :

$$\vec{C}_{j}^{(t)} = \vec{u}_{j}^{(0)}$$
 в *t*-представлении,
 $\vec{C}_{j}^{(e)} = \mathbf{B}_{j}^{-1}\vec{u}_{j}^{(0)}$ в *e*-представлении. (16)

Представления (15) аналогичны представлению (8) для всякого x из Δ_i .

Используя первое из тождеств (13) и непрерывность электромагнитного поля в каждой точке разрыва коэффициентов уравнений (4), получим основное энергетическое тождество, показывающее сохранение направления и величины потока энергии электромагнитного поля слева от СДС [0,d] и справа от нее:

$$p_{-}\left(\left|C_{0}^{-}\right|^{2}-\left|C_{1}^{-}\right|^{2}\right) \equiv p_{+}\left(\left|C_{0}^{+}\right|^{2}-\left|C_{1}^{+}\right|^{2}\right).$$
(17)

Из последнего тождества видно, что решение прямой задачи для \mathbb{R}^3 зависит от двух произвольных постоянных, в качестве которых можно взять \vec{C}_- или \vec{C}_+ .

При интерпретации решения прямой задачи как задачи о распространении плоской электромагнитной волны через слоистую систему \mathbb{R}^3 слева направо удобно выбрать произвольные постоян-

$$C_0^+ = 1, \quad C_1^+ = 0,$$
 (18)

где второе условие — отсутствие отражения на $+\infty$, а первое — нормировка "по прохождению" волны, прошедшей через СДС [0, d] с кусочно-непрерывными параметрами.

С учетом указанного выбора свободных параметров тождество (17) примет вид

$$\left|C_{0}^{-}\right|^{2} - \left|C_{1}^{-}\right|^{2} \equiv \theta,$$
 (19)

где $\theta = p_+/p_-$, из которого вытекает ряд важных следствий для рассматриваемых полей: $|C_0^-|^2 = |C_1^-|^2 + \theta \ge \theta$, т.е. оценка величины $|C_0^-|^2$ снизу: $|C_0^-|^2 \ge \theta > 0$, в силу которой для всех к обязательна конечность энергетических коэффициентов

³ Фундаментальная матрица для *t*-представления была названа Абеле характеристической матрицей *j*-го слоя [9, с. 85].

отражения слева от СДС и пропускания справа от СДС с кусочно-непрерывными физическими параметрами:

$$R_{-}(\kappa) \stackrel{\text{def}}{=} \frac{\left|C_{1}^{-}(\kappa)\right|^{2}}{\left|C_{0}^{-}(\kappa)\right|^{2}}, \quad T_{+}(\kappa) \stackrel{\text{def}}{=} \frac{\theta}{\left|C_{0}^{-}(\kappa)\right|^{2}}, \quad (20)$$

и, как следствие этого и (17), оказывается обоснованным тождество (3).

Подстановка решений (12) в условия непрерывности (5) приводит к основной системе уравнений (см. [1, 2, 14]) относительно амплитуд

прямой и обратной волн
$$\vec{C}_j = \begin{pmatrix} C_0^{(j)} \\ C_1^{(j)} \end{pmatrix}$$
 в *j*-м слое

 $(j = 0, 1, \dots, N + 1)$:

$$\mathbf{M}_{j}\vec{C}_{j}=\mathbf{M}_{j+1}\vec{C}_{j+1},$$

где j = 0 отвечает индексу минус, а j = N + 1 индексу плюс в предыдущем тексте.

Определение. При распространении волны слева направо будем называть профилирующими функциями следующие функции от волнового числа к:

$$F_0(\kappa) \stackrel{\text{def}}{=} \left| C_0^-(\kappa) \right|^2 \quad \varkappa \quad F_1(\kappa) \stackrel{\text{def}}{=} \left| C_1^-(\kappa) \right|^2$$

Эти функции, а также аналогичные им при распространении волны справа налево, являются функционалами от кусочно-непрерывных параметров СДС [0, d]. В силу (17), будет справедливо тождество

$$F_0(\kappa) - F_1(\kappa) = \theta$$
, где $\theta = \frac{p_+}{p_-}$,
 $R_-(\kappa) = \frac{F_1(\kappa)}{F_0(\kappa)}$, $T_+(\kappa) = \frac{\theta}{F_0(\kappa)}$.

Замечание. При интерпретации решения прямой задачи, как задачи о распространении плоской электромагнитной волны через слоистую систему справа налево, удобно выбрать произвольные постоянные в (14) в виде $C_0^- = 0$, $C_1^- = 1$, где первое условие означает отсутствие отражения на $-\infty$, а второе — нормировку "по прохождению" волны, прошедшей через кусочно-непрерывную СДС.

С учетом указанного выбора свободных параметров и изменения знаков тождество (17) примет вид

$$|C_1^+|^2 - |C_0^+|^2 \equiv \theta^{-1},$$
 (21)

из которого, как и выше, вытекает ряд следствий для рассматриваемых полей: $|C_1^+|^2 = |C_0^+|^2 + \theta^{-1} \ge \theta^{-1}$, т.е. оценка величины $|C_1^+|^2$ снизу: $|C_1^+|^2 \ge \theta^{-1} > 0$, в си-

лу которой для всех к следует не обращение в нуль: $|C_1^+|^2 > 0$, и вытекающая из этого факта конечность энергетических коэффициентов отражения справа от СДС и пропускания слева от СДС с кусочно-непрерывными физическими параметрами:

$$R_{+}(\kappa) \stackrel{\text{def}}{=} \frac{\left|C_{0}^{+}(\kappa)\right|^{2}}{\left|C_{1}^{+}(\kappa)\right|^{2}}, \quad T_{-}(\kappa) \stackrel{\text{def}}{=} \frac{\theta^{-1}}{\left|C_{1}^{+}(\kappa)\right|^{2}},$$

Следствием этих обозначений и (17) выступает обоснование тождества (2), которое, как и при распространении волны слева направо, позволяет в случае правильных идеалов для коэффициентов отражения (пропускания) обосновать переход от стандартных постановок задач синтеза к их эффективным постановкам.

5. ОБОСНОВАНИЕ ПЕРЕХОДА К ЭФФЕКТИВНЫМ ПОСТАНОВКАМ ЗАДАЧ СИНТЕЗА

Лемма. Если идеальные спектральные характеристики $\tilde{R}(\kappa)$ и $\tilde{T}(\kappa)$ связаны между собой соотношением $\tilde{R}(\kappa) + \tilde{T}(\kappa) \equiv 1$, то оба идеала могут быть правильными только одновременно.

Лемма. Если хотя бы один из идеалов $\tilde{R}_{-}(\kappa)$ или $\tilde{T}_{+}(\kappa)$ имеет представление

$$\tilde{R}_{-}(\kappa) = \frac{\tilde{F}_{1}(\kappa)}{\tilde{F}_{0}(\kappa)} \left[\tilde{T}_{+}(\kappa) = \frac{\theta}{\tilde{F}_{0}(\kappa)} \right],$$

где $\tilde{F}_1(\kappa)$ — идеал для профилирующей функции $F_1(\kappa)$, а $\tilde{F}_0(\kappa)$ — идеал для профилирующей функции $F_0(\kappa)$, то правильность любого из идеалов $\tilde{R}_-(\kappa)$, $\tilde{T}_+(\kappa)$, $\tilde{F}_0(\kappa)$ или $\tilde{F}_1(\kappa)$ влечет правильность остальных идеалов из перечисленных.

Формулы пересчета идеала для стандартного коэффициента отражения $\tilde{R}_{-}(\kappa)$ в идеалы для профилирующих функций $\tilde{F}_{1}(\kappa)$ и $\tilde{F}_{0}(\kappa)$ таковы:

$$\tilde{R}_{-}(\kappa) \stackrel{\text{def}}{=} \frac{\tilde{F}_{1}(\kappa)}{\tilde{F}_{0}(\kappa)}, \quad \tilde{F}_{0}(\kappa) - \tilde{F}_{1}(\kappa) = \theta.$$
(22)

Из первой формулы следует $\tilde{F}_1(\kappa) = \tilde{R}_-(\kappa) \tilde{F}_0(\kappa)$ и, подставляя это соотношение во вторую формулу, получаем

$$ilde{F}_0(\kappa) = rac{ heta}{1 - ilde{R}_-(\kappa)}$$
 и $ilde{F}_1(\kappa) = rac{ ilde{R}_-(\kappa)}{1 - ilde{R}_-(\kappa)} heta.$

В приведенных формулах для оценки точности замены на интервале $[\mathcal{K}_1, \mathcal{K}_2]$ исходного неравенства $|R_{-}(\kappa) - \tilde{R}_{-}(\kappa)| < \varepsilon$ на $|F_1(\kappa) - \tilde{F}_1(\kappa)| < \delta(\varepsilon)$,

нужно использовать модуль непрерывности функции

$$y \stackrel{\text{def}}{=} \frac{x}{x+\theta},$$

производная которой на $(0, +\infty)$ монотонно спадает от $y'(0) = \theta^{-1}$ до нуля, с заменой ее аргумента *x* на $F_1(\kappa)$, а ее значений *y* на $R(\kappa)$.

6. ЗАПИСЬ УПРОЩЕННОЙ ПОСТАНОВКИ ЗАДАЧИ СИНТЕЗА ПО П.Л. ЧЕБЫШЕВУ

Задача оптимального синтеза СДФ в смысле П.Л. Чебышева (1) для энергетического коэффициента отражения в силу тождества (3) полностью эквивалентна такой же задаче для энергетического коэффициента пропускания, если $\tilde{T}(\kappa) = 1 - \tilde{R}(\kappa)$. Аналогично, в силу (17) эквивалентны между собой задачи оптимального синтеза для каждой из профилирующих функций $F_0(\kappa), F_1(\kappa)$.

Тождество

$$R_{-}(\kappa) - \tilde{R}_{-}(\kappa) = |T_{+}(\kappa) - \tilde{T}_{+}(\kappa)| =$$
$$\equiv \frac{\theta}{F_{0}(\kappa)\tilde{F}_{0}(\kappa)} |F_{0}(\kappa) - \tilde{F}_{0}(\kappa)|$$
(23)

позволяет дать простую двухстороннюю оценку для функционала задачи (1) через аналогичные функционалы для профилирующих функций:

$$\frac{\theta}{\alpha\beta} |F_{0}(\kappa) - \tilde{F}_{0}(\kappa)| \leq |R_{-}(\kappa) - \tilde{R}_{-}(\kappa)| \leq \frac{1}{\theta} |F_{0}(\kappa) - \tilde{F}_{0}(\kappa)|, \qquad (24)$$

где $\theta \leq F_0(\kappa) \leq \alpha, \theta \leq \tilde{F}_0(\kappa) \leq \beta$, что позволяет говорить об эквивалентности (1) и существенно более простой задачи:

$$\max_{\mathcal{H}_{1}\leq\kappa\leq\mathcal{H}_{2}}\left|F_{0}\left(\kappa,\vec{p},\vec{\nu}\right)-\tilde{F}_{0}\left(\kappa\right)\right|\underset{\vec{p},\vec{\nu}}{\rightarrow}\min.$$

Аналогичный переход от (24) к его аналогу:

$$\begin{aligned} \frac{\theta}{\alpha} v(\kappa) |F_0(\kappa) - \tilde{F}_0(\kappa)| &\leq |R(\kappa) - \tilde{R}(\kappa)| \leq \\ &\leq v(\kappa) |F_0(\kappa) - \tilde{F}_0(\kappa)|, \end{aligned}$$

где $v(\kappa) = 1/\tilde{F}_0(\kappa)$ — фиксированная весовая функция для равномерной метрики, позволяет говорить об асимптотической (при $n \to +\infty$) эквивалентности задачи (1), аналогичной "весовой" задаче для профилирующей функции $\tilde{F}_0(\kappa)$.

Замечание. Неравенства (24) и следующее за ним, справедливы для всех \vec{p} , \vec{v} из пространств \mathcal{P}_N , \mathcal{N}_N соответственно и, следовательно, справедливы при замене пространства \mathcal{P}_N на его подмножество — параллелепипед \mathbf{P}_N .

Таким образом, задача оптимального синтеза СДФ в смысле П.Л. Чебышева с ограничениями (2) для энергетического коэффициента отражения или пропускания в силу тождества (3), с учетом проведенных выше рассуждений, эквивалентна такой же задаче для профилирующих функций.

выводы

Проведен анализ прямой задачи о распространении плоских электромагнитных волн в слои-

стой среде в пространстве \mathbb{R}^3 с кусочно-непрерывными физическими параметрами $\varepsilon(x)$ и $\mu(x)$, являющийся единственно надежной основой для постановки и решения всех возможных оптимизационных и обратных задач, связанных с этой тематикой. При указанных предположениях, установлены основные для всей теории слоистых сред тождества (19) и (23).

Приведены явные формулы пересчета для "идеалов" энергетических коэффициентов отражения и пропускания в "идеалы" для профилирующих функций.

Обоснована эквивалентность традиционных постановок задач синтеза слоистых диэлектрических фильтров по их "желаемым" спектральным характеристикам типа энергетических коэффициентов отражения и пропускания, названных в работе "идеалами" для соответствующих спектральных характеристик, значительно более простым по структуре функционалам — задачам синтеза по "идеалу" для профилирующих функций.

Сформулированы принципиально новые постановки задач синтеза полосовых фильтров при помощи идеалов для профилирующих функций с учетом практических ограничений на импедансы слоев реализующих фильтры СДС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Худак Ю.И., Ахмедов И.А., Музылев Н.В., Парфенов Д.В. // Электромагнитные волны и электронные системы. 2016. № 2. С. 24.
- 2. Худак Ю.И., Ахмедов И.А., Музылев Н.В., Парфенов Д.В. // Нелинейный мир. 2016. № 2. С. 38.
- 3. Худак Ю.И., Парфенов Д.В., Музылев Н.В., Хачлаев Т.С. // Росс. технол. журн. 2020. Т.8. № 5. С. 26.
- 4. Гласко В.Б., Тихонов А.Н., Тихонравов А.В. // Журн. вычисл. математики и мат. физики. 1974. Т. 14. № 1. С. 135.
- 5. *Тихонравов А.В.* // ДАН СССР. 1985. Т. 28. № 3. С. 582.
- 6. *Macleod H.A.* Thin-Film Optical Filters. Boca Raton: CRC Press, 2018.

- 7. *Baumeister P.W.* Optical Coating Technology. Bellingham: SPIE Press, 2004.
- Современная теория фильтров и их проектирование / Под ред. Г. Темеша и С. Митра. М.: Мир, 1977.
- 9. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973.
- 10. *Кард П.Г.* Анализ и синтез многослойных интерференционных пленок. Таллин: Валгус, 1971.
- 11. *Furman Sh.A., Tikhonravov A.V.* Basics of Optics of Multilayer Systems. Gif-sur Yvette: Editions Frontiers, 1992.
- 12. *Винер Н*. Интеграл Фурье и некоторые его приложения. М.: Физматлит, 1963.
- 13. *Аткинсон* Ф. Дискретные и непрерывные граничные задачи. М.: Мир, 1968.

- 14. Худак Ю.И. // Докл. РАН. 2013. Т. 448. № 5. С. 1.
- 15. Худак Ю.И. // Докл. РАН. 2015. Т. 467. № 2. С. 149.
- 16. *Худак Ю.И.* // Журн. вычисл. математики и мат. физики. 1990. Т. 30. № 2. С. 325.
- Худак Ю.И. // Изв. вузов. Радиофизика. 1985. Т. 28. № 4. С. 499.
- 18. *Худак Ю.И.* // Журн. вычисл. математики и мат. физики. 1986. Т.26. № 7. С. 1105.
- Akhmedov I., Hudak Yu. // Proc. of the 8th Congress of the Int.l Soc. for Analysis, its Applications, and Computation. Moscow. 22–27 Aug. 2011. M.: Peoples' Friendship Univ. of Russia, 2012. V. 1. P. 128.
- 20. Schuster K. // Annalen der Physik. 1949. F. 6. B. 4. S. 352.