К 85-ЛЕТИЮ Н.И. СИНИЦЫНА

УДК 621.385.632.1

ИССЛЕДОВАНИЕ ВЫХОДНОГО ДВУХЗАЗОРНОГО РЕЗОНАТОРА ТРЕХСТВОЛЬНОГО ДВУХПОЛОСНОГО МНОГОЛУЧЕВОГО КЛИСТРОНА Кu-ДИАПАЗОНА

© 2022 г. В. А. Царев^{а, b,} *, А. П. Онищенко^{а, b}

 ^а Акционерное общество "Научно-производственное предприятие "Алмаз", ул. им. Панфилова И.В., 1, Саратов, 410033 Российская Федерация
^b Саратовский государственный технический университет им. Гагарина Ю.А., ул. Политехническая, 77, Саратов, 410054 Российская Федерация
*E-mail: tsarev_va@mail.ru Поступила в редакцию 13.04.2022 г.

Поступила в редакцию 15.04.2022 г. После доработки 13.04.2022 г. Принята к публикации 25.04.2022 г.

Приведены результаты трехмерного моделирования двухзазорного выходного резонатора трехствольного многолучевого клистрона. Коаксиальный вывод энергии имеет простую конструкцию и позволяет добиться одновременного вывода СВЧ-энергии на двух частотах Кu-диапазона, одна из которых находится в начале диапазона и соответствует противофазному (π) виду колебаний двойного бессеточного зазора, а вторая, соответствующая синфазному (2π) виду, – в его конце. Показано, что применение спроектированного резонатора в трехствольной конструкции 57-лучевого клистрона, с общим числом лучей N = 57, позволяет при работе на синфазном виде колебаний получить в полосе усиления 100 МГц уровень непрерывной выходной мощности около 3 кВт при ускоряющем напряжении 5.4 кВ и плотности тока в одном луче 35 А/см². Показано, что самовозбуждение резонатора клистрона на противофазном виде колебаний отсутствует. Это достигается благодаря наличию в гибридной конструкции выходного резонатора метаматериала, а также в результате оптимального выбора параметров двойных зазоров, исключающего появление областей взаимодействия с отрицательной зоной относительной электронной проводимости. Продемонстрирована возможность перестройки (в пределах 12%) частоты синфазного вида колебаний при помощи вводимых в объем резонатора продольных ребер.

DOI: 10.31857/S003384942210014X

1. ПОСТАНОВКА ЗАДАЧИ

Мощные многолучевые клистроны (МЛК) в настоящее время находят широкое применение в качестве выходных каскадов усиления передатчиков радиолокационных станций (РЛС) [1–3].

При работе в коротковолновой части сантиметрового диапазона длин волн МЛК должны обладать следующим комплексом параметров: низким ускоряющим напряжением (не более 5...7 кВ), сравнительно высоким уровнем выходной мощности (более 1 кВт) и малой плотностью тока (не более 35 А/см²), отбираемого с парциального катода [4].

Для некоторых приложений (например, для двухчастотной радиолокации) важным является вывод в нагрузку СВЧ-мощности одновременно на двух частотах [5]. Это особенно актуально для создания системы двухканальной морской системы спутниковой связи, использующей единую антенную платформу [6]. Всем перечисленным требованиям можно удовлетворить, если перейти от обычной однопучковой схемы построения МЛК к схеме многопучковых МЛК, в которых общий электронный поток состоит из нескольких пространственно-разнесенных друг от друга многолучевых пучков, взаимодействующих с СВЧ-полями общей пространственно-развитой резонансной системы. Такие клистроны принято называть многоствольными (MCK) [7].

Переход к схеме МСК, содержащей однозазорные резонаторы, сопровождается пропорциональным уменьшением характеристического сопротивления этих резонаторов и ухудшением его выходных параметров и характеристик. В этом случае в конструкции МСК целесообразно использование многозазорных резонаторов, работающих одновременно на нескольких резонансных модах [8]. Однако эти резонаторы являются сложными многочастотными системами. Особенности их работы в многомодовом режиме взаимодействия в настоящее время детально не исследованы. Для уменьшения или устранения влияния нежелательных высших видов колебаний в таких резонансных системах требуется использование нетрадиционных технических решений.

В данной работе представлены результаты численного трехмерного моделирования выходного двухзазорного резонатора трехствольного клистрона, позволяющего осуществлять одновременный вывод СВЧ-энергии в двух полосах с центральными частотами $f_1 = 12.4 \Gamma \Gamma \mu n f_2 = 18 \Gamma \Gamma \mu$, что делает такой прибор перспективным для применения в двухчастотных радиолокаторах Ки-диапазона, а также в системах двухканальной спутниковой связи.

2. РЕЖИМ РАБОТЫ УСИЛИТЕЛЯ

На основе анализа имеющихся аналогов и перспективных областей применения клистрона были выбраны следующие исходные данные для его проектирования, которые определялись из условия достижения наибольшей эффективности взаимодействия на высшем рабочем виде колебаний:

— рабочая частота высшего рабочего вида колебаний $f_2 = 18$ ГГц,

- -число стволов *n* = 3;
- -число лучей в одном стволе N = 19;
- − плотность тока в одном луче $J_{01} \le 35 \text{ A/см}^2$;
- ускоряющее напряжение $U_0 = 5.4 \text{ кB}$;

— виды колебаний в двойном бессеточном зазоре: на частоте f_1 —противофазный, а на частоте f_2 — синфазный.

Будем исходить из условия получения высокой эффективности взаимодействия при работе на частоте f_2 , соответствующей синфазному виду колебаний. Для этого выберем величину приведенного радиуса пролетного канала $\gamma_2 a = 0.8$ и зададим оптимальное значение угла пролета электронов между центрами зазоров $\varphi_2 = 2\pi$. Кроме того, зададим отношение длины одного зазора к радиусу d/a = 2 и будем считать отношение радиуса пучка к радиусу пролетного канала, равным b/a = 0.6. Для вычисления остальных геометрических параметров двойного зазора используем известные формулы [9]:

$$\gamma_2 a = \frac{2\pi f_2 a}{V_0}, \quad \varphi_2, = \frac{2\pi f_2 (l+d)}{V_0},$$
 (1)

где a — радиус пролетного канала, l — длина центральной пролетной трубы; d — длина одного зазора; $\gamma_2 = 2\pi f_2 / v_0$ — радиальная постоянная распространения электронного пучка; $v_0 = 5.932 \times 10^5 \sqrt{U_0}$ — скорость электронов.

Тогда из формулы (1) можно определить радиус одного пролетного канала a = 0.3 мм, а также найти остальные размеры: двойного зазора d = 0.6 мм, l = 1.82 мм.

Для дальнейших расчетов параметров многолучевого клистрона используем известное из литературных источников [10] оценочное выражение, связывающее подводимую мощность P_0 , кВт, с геометрией пролетной трубы, плотностью тока на катоде $J_{\text{кат}}$, A/cm^2 , длиной волны λ , см и величиной ускоряющего напряжения U_0 , кВ:

$$P_0 = J_{\text{Kat}} K_{\text{пKK}} K_{\text{3KaH}} \left(\frac{\pi}{4}\right) \left(K_{\text{Tp}} \lambda\right)^2 U_0, \qquad (2)$$

где $K_{пкк}$ — отношение площади парциального катода к площади поперечного сечения парциального пролетного канала; $K_{3кан}$ — коэффициент заполнения трубы пролетными каналами; K_{rp} — коэффициент, связывающий диаметр пролетной трубы D_{rp} и рабочую длину волны $\lambda = 2\pi c/\omega$.

Эти расчеты проводили исходя из следующих значений параметров: $U_0 = 5.4 \text{ кB}$, $K_{пкк} = 1$; $K_{3кан} = 0.5$; $K_{rp} = 0.5$; $\lambda = 1.67 \text{ см}$. В результате расчетов по формуле (2) была определена величина подводимой мощности $P_0 = 10.35 \text{ кBT}$; полный ток $I_0 = 1.92 \text{ A}$; ток одного луча $I_{01} = 0.034 \text{ A}$; плотность тока в одном луче $J_{01} = 33.4 \text{ A/см}^2$.

В мощных многолучевых клистронах, работающих в коротковолновой части сантиметрового диапазона, плотность тока на парциальном катоде обычно не превышает 35 A/cm^2 , поэтому найденное значение J_{01} можно считать вполне приемлемым. Таким образом, основные электрические параметры прибора и геометрические размеры пространства взаимодействия полностью определены.

3. КОНСТРУКЦИЯ Выходной двухчастотной резонансной системы

Для уменьшения или устранения влияния нежелательных высших видов колебаний целесообразно использование нетрадиционных технических решений. Одним из таких технических решений, реализованных в исследуемой конструкции выходной резонансной системы, показанной на рис. 1 и рис. 2, является введение метаматериала [11] в цилиндрический корпус резонатора *1*. Этот корпус ограничен в продольном направлении двумя боковыми крышками *2*, *3*. В исследуемом резонаторе метаматериалом служит двумерная (2D) периодическая структура, состоящая из двух

разномасштабных групп металлических стержней, закрепленных на боковых крышках [12]. Причем в первой группе опорные боковые стержни 4 одинаково удалены в радиальном направлении от центрального опорного стержня 5. Стержни 6 во второй группе имеют меньший диаметр, по сравнению со стержнями первой группы. Они расположены в вершинах шести правильных шестигранников, отстоящих в азимутальном направлении друг от друга на 60° и находящихся на равном расстоянии от боковых поверхностей опорных боковых стержней. Стержни второй группы предназначены для ограничения области распространения в объеме резонатора электромагнитных полей нежелательных высших мод колебаний.

Другим способом управления частотами этих мод является введение в цилиндрический корпус резонатора разделительных стенок 7(ребер), превращающих пространство взаимодействия в виде ряда радиально расположенных секторных резонаторов [13]. Эти ребра с одной стороны имеют своей опорой три боковых опорных стержня, отстоящих в радиальном направлении друг от друга на 120°.

Остальные три боковых опорных стержня служат для закрепления на них полуволновых резонансных элементов. В состав этих элементов входят отрезки симметричных полосковых линий 8, а также шесть боковых 9 и три центральные пролетные трубы 10 с соосными каналами 11 для пролета электронных пучков. Между внутренними торцами этих пролетных труб образуется двойной ВЧ-зазор. Пролетные каналы в каждом из трех стволов имеют плотную упаковку в пределах поперечного сечения каждой пролетной трубы.

Такая конструктивная особенность позволяет внутри общего гибридного резонатора, настроенного на частоту f_2 , соответствующую основной 2π -моде сигнала, разместить еще один "встроенный" трехполосковый резонатор, настроенный на частоту f_1 , соответствующую основной π -моде ТЕМ-вида колебаний (рис. 2а). В конструкции выходного резонатора используется коаксиальный вывод энергии (рис. 2б), представляющий собой отрезок коаксиальной линии с плоской перегородкой 12, имеющей три щели связи 13, расположенных между центральным 14 и внешним 15 проводниками на равном расстоянии. Диаметры проводников коаксиальной линии выбраны из условия согласования с нагрузкой, имеющей волновое сопротивление 50 Ом. Настройка частоты 2π-вида производилась за счет изменения длины продольных ребер S.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА № 10 2022 том 67

$$4$$

 4
 6
 4
 4
 4
 4
 4
 4
 9
 4
 7
 14
 7

Рис. 1. Конструкция резонатора: 1 – цилиндрический корпус; 2, 3 – боковые крышки резонатора; 4 – боковые опорные стержни; 5 – центральный опорный стержень; 6 - металлические стержни; 7 - радиальные перегородки (ребра); 9-боковые пролетные трубы; 14 – центральный проводник коаксиального вывода энергии.

4. РАСЧЕТ ПАРАМЕТРОВ ВЗАИМОДЕЙСТВИЯ

Основным инструментом для исследования являлась программа трехмерного моделирования CST MICROWAVE STUDIO. По найденным с ее помощью распределениям электромагнитного поля в исследуемом резонаторе был определен для каждой моды комплекс электродинамических и электронных параметров: коэффициенты эффективности взаимодействия M_n, нормированные активные проводимости G_{en}/G_0 ; резонансные частоты f_n ; характеристические сопротивления ρ_n и собственные добротности Q_{0n}. Для вычисления этих параметров использовались следующие уравнения [10]:

$$M_{n} = \sqrt{\frac{I_{0}^{2}(\gamma_{n}b) - I_{1}^{2}(\gamma_{n}b)}{I_{0}^{2}(\gamma_{n}a)}} \frac{\left| \int_{0}^{b} E_{z(r=a)} \exp(j\beta_{en}z) dz \right|}{\int_{0}^{b} |E_{z(r=a)}| dz}, \quad (3)$$
$$\frac{G_{en}}{G_{0}} = -\frac{\beta_{en}}{4} \frac{\partial |M_{n}|^{2}}{\partial \beta_{en}}, \quad (4)$$
$$\rho_{n} = \frac{\left(\int_{0}^{b} |\overline{E_{z}}(z)| dz \right)^{2}}{2\omega_{n} W_{con}}, \quad (5)$$

Рис. 2. Конструкция резонатора: 2, 3 – боковые крышки резонатора; 5 – центральный опорный стержень; 7 – радиальные перегородки (ребра); 8 – отрезки симметричных полосковых линий; 9 – боковые пролетные трубы; 10 – центральные пролетные трубы; 11 – пролетные каналы; 12 – плоская перегородка; 13 – щели связи; 14 – центральный проводник коаксиального вывода энергии; 15 – внешний проводник коаксиального вывода энергии.

где n = 1, 2 – номер моды; I_0, I_1 – модифицированные функции Бесселя нулевого и первого порядков; h = 2d + l – полная длина двойного зазора; $\overline{E_z}(z)$ – усредненная по радиусу пучка функция распределения продольного электрического поля; $E_{z(r=a)}(z)$ – функция распределения продольного электрического поля на краю пролетного канала; $W_{3ап}$ – запасенная энергия в резонаторе.

Рис. 3. Зависимости частот π - (1) и 2π -вида (2) колебаний от длины продольных ребер.

Собственная добротность резонатора Q_{0n} рассчитывалась методом численного интегрирования по формуле:

$$Q_{0n} = \frac{\omega_n W_{3a\Pi}}{P_v + P_s},\tag{6}$$

где $P_v = \pi f_n \varepsilon_0 \varepsilon_r \operatorname{tg} \delta \int_v |E|^2 dv$ – потери в объеме диэлектрика, ε_r – относительная диэлектрическая проницаемость, $\operatorname{tg} \delta$ – тангенс угла диэлектрических потерь,

$$P_s = \frac{1}{2} \sqrt{\frac{\pi \mu f_n}{\sigma}} \int_{s} \left| H_{\text{тан}} \right|^2 ds$$

— поверхностные потери, μ — магнитная проницаемость металла стенки, σ — удельная проводимость металла стенки, $H_{\text{тан}}$ — тангенциальная составляющая напряженности магнитного поля.

На рис. 3 приведена зависимость частот π - и 2π -вида от относительной длины продольных ребер (*S/H*). Представленные зависимости позволяют сделать вывод, что изменением глубины введения продольных ребер в объем резонатора можно добиться изменения частоты колебаний 2π -вида, не затрагивая частоту колебаний на π -виде. Ширина диапазона настройки около 12%. При настройке

Рис. 4. Распределение поля 2π-вида в поперечном сечении второго зазора исследуемого резонатора.

Рис. 5. Распределение напряженности электрического поля вдоль центра пролетного канала: $1 - 2\pi$ -вид; $2 - \pi$ -вид.

резонатора для работы на частотах с соотношением $f_2/f_1 = 1.44$ относительная длина продольных ребер $S/H \approx 0.66$. Картина электрических полей в поперечном сечении резонатора, соответствующем области выходных ВЧ-зазоров для этого случая показана на рис. 4, функции распределения продольной составляющей электрического поля приведены на рис. 5.

Эффективное характеристическое сопротивление найдено как

$$\rho_{en} = \rho_n |M_n|^2. \tag{7}$$

Зависимости коэффициента взаимодействия M_n и относительной электронной проводимости G_{en}/G_0 от ускоряющего напряжения приведены на рис. 6. Показано, что относительная электронная проводимость при работе на обеих частотах при выбранном напряжении $U_0 = 5.4$ кВ имеет положительную величину, что позволяет сделать вывод об отсутствии самовозбуждения резонатора при работе клистрона в режиме усилителя.

Полученные зависимости эффективного характеристического сопротивления ρ_{en} для n = 1 (π) и n = 2 (2π) видов колебаний в центральном пролетном канале верхнего ствола в зависимости от относительной длины ребер *S*/*H* приведены на рис. 7.

Для проведения оценки эффективности процесса отбора энергии одновременно на двух частотах примем для определенности величину внешней добротности одинаковой для нижней и верхней полос усиления $Q_{\rm BH} = 200$. Тогда, учитывая, что $Q_{01} = 1208$, $Q_{02} = 1756$, $\rho_{e1} = \rho_{e2} = 16.5$ Ом, можно найти величины нагруженной добротности резонатора $Q_{\rm H1}$, $Q_{\rm H2}$, ширину полос усиления Δf_1 , Δf_2 , а также величины контурного КПД $\eta_{\kappa 1}$, $\eta_{\kappa 2}$ по известным формулам [10]:

Рис. 6. Зависимости M_n (кривая *I*) и G_{en}/G_0 (кривая *2*) от ускоряющего напряжения U_0 : а) – π -вид, б) – 2π -вид; вертикальной чертой отмечено выбранное ускоряющее напряжение.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 10 2022

Рис. 7. Зависимость эффективного сопротивления ρ_{en} от *S/H* :на π -виде (кривая *I*) и 2π -виде (кривая *2*).

1) при работе на частоте f_1 –

$$Q_{\rm H1} = \frac{Q_{\rm BH}Q_{01}}{Q_{01} + Q_{\rm BH}} = \frac{1208 \times 200}{1208 + 200} = 172,$$
$$\Delta f_1 = \frac{f_1}{Q_{\rm H1}} = \frac{1.24 \times 10^4}{172} = 72 \text{ M}\Gamma\text{u},$$

$$\eta_{\rm K1} = \frac{Q_{01}}{Q_{01} + Q_{\rm BH}} = \frac{1208}{1208 + 200} = 0.86.$$

2) при работе на частоте f_2 –

$$Q_{\rm H2} = \frac{Q_{\rm BH}Q_{02}}{Q_{02} + Q_{\rm BH}} = \frac{200 \times 1756}{1756 + 200} = 180,$$

$$\Delta f_2 = \frac{f_2}{Q_{\rm H2}} = \frac{1.8 \times 10^4}{172} = 100 \text{ MFu},$$

$$\eta_{\rm K2} = \frac{Q_{02}}{Q_{02} + Q_{\rm BH}} = \frac{1756}{1756 + 200} = 0.89.$$

Проведенные выше расчеты позволили определить оценочные величины выходной мощности клистрона с исследуемым резонатором при возбуждении его на частоте f_2 :

$$P_{\rm вых} = I_0 U_0 \eta_{\rm эл} \eta_{\kappa} =$$

= 1.92 × 5400 × 0.35 × 0.89 = 3230 Вт

ЗАКЛЮЧЕНИЕ

Показано, что исследованный двухзазорный многолучевой выходной резонатор можно использовать в трехствольном многолучевом клистроне для высокоэффективного вывода энергии одновременно на двух частотах Ки-диапазона. Наиболее широкую полосу усиления (около 100 МГц) можно получить при работе на синфазном виде колебаний.

Установлено, что на выбранных частотах (12.4 и 18 ГГц), соответствующих π - и 2π -виду колебаний двойного ВЧ-зазора, самовозбуждение резонатора отсутствует. Это достигнуто благодаря наличию в резонаторе метаматериала и в результате оптималь-

ного выбора параметров двойных зазоров, исключающего появление областей взаимодействия с отрицательной зоной относительной электронной проводимости.

Показана возможность независимой перестройки частоты колебаний 2π -вида в полосе с шириной около 12% при помощи вводимых в объем резонатора продольных ребер.

Определено, что за счет многоствольной конструкции клистрона, с общим числом лучей N = 57, можно в Ки-диапазоне длин волн получать выходную мощность около 3.2 кВт при ускоряющем напряжении не более 6 кВ и плотности тока в одном луче, не более 35 А/см².

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Борисов Л.М., Гельвич Э.А., Жарый Е.В. и др. // Электрон. техника. Сер. 1. СВЧ-техника. 1993. Вып. 1(455). С. 12.
- Ding Y., Shen B., Shi S., Cao J. // IEEE Trans. 2005. V. ED-52. № 5. P. 889.
- Фрейдович И.А., Балабанов А.К., Акимов П.И. // Матер. III Всерос. науч.-техн. конф. "Электроника и микроэлектроника СВЧ". Санкт-Петербург, 2014. С. 25.
- 4. Синицын Н.И., Захарченко Ю.Ф., Гуляев Ю.В. // Журн. радиоэлектроники. 2009. № 10. http://jre.cplire.ru/jre/oct09/4/text.pdf
- 5. *Sangster A.J., Grant J.* // Int. J. Electron. 2013. V. 100. № 6. P. 793.

https://doi.org/10.1080/00207217.2012.720954

- 6. Акиншин Р.Н., Быстров Р.П., Кузнецов Е.В. и др. // Успехи совр. радиоэлектроники. 2005. № 10. С. 24.
- Kravtsov I.A., Rusakov S.V., Touv A.A., Shifman R.G. // 15th Int. Crimean Conf. Microwave & Telecommunication Technol. Sevastopol. 12–16 Sept. 2005. N.Y.: IEEE, 2005. V. 1. P. 199. https://doi.org/10.1109/CRMICO.2005.1564869
- Царев В.А. // Матер. 10-й юбил. междунар. науч.техн. конф. "Актуальные проблемы электронного приборостроения АПЭП-2012". Саратов, 19—20 сентября 2012. С. 104.
- 9. Пугнин В.И. // Радиотехника. 2000. № 2. С. 43.
- 10. Хайков А.З. Клистронные усилители. М.: Связь, 1974.
- Smirnov A.V., Yu D. // Proc. 2005 Particle Accelerator Conf. Knoxville. 16–20 May. N.Y.: IEEE, 2005. P. 3094. https://doi.org/10.1109/PAC.2005.1591375
- Tsarev V.A. // Proc. 2018 Int. Conf. on Actual Problems of Electron Devices Engineering (APEDE-2018). Saratov. 27–28 Sept. N.Y.: IEEE, 2018. P. 449. https://doi.org/10.1109/APEDE. 2018. 8542362
- Царев В.А., Мучкаев В.Ю. Широкополосный многолучевой клистрон. Патент РФ № 2436181. Опубл. Офиц. бюл. "Изобретения. Полезные модели" № 34 от 10.12.2011.
- Caryotakis G. High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator Center. Pt. 1. Theory and Design. Tech. Rep. SLAC PUB 10620. M, 2005, Menlo Park: SLAC, 2005. 138 p. https://inspirehep.net/files/db23faa11f1b2d4f9fd74d9526c19916.