РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ

УДК 535-14:537.67

ЭКСИТОННЫЙ ВКЛАД В ФОТОИНДУЦИРОВАННУЮ ГИГА- И ТЕРАГЕРЦОВУЮ ДИЭЛЕКТРИЧЕСКУЮ ПРОНИЦАЕМОСТЬ ПОЛУПРОВОДНИКОВ

© 2022 г. В. С. Бутылкин^{а, *}, П. С. Фишер^а, Г. А. Крафтмахер^а, Ю. Н. Казанцев^а, Д. С. Каленов^а, В. П. Мальцев^а, М. П. Пархоменко^а

^а Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН. пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация

> *E-mail: vasebut@yandex.ru После доработки 22.07.2022 г.

Поступила в редакцию 22.07.2022 г. Принята к публикации 10.08.2022 г.

В рамках единого подхода, базирующегося на использовании матрицы плотности экситонов, исследована фотоиндуцированная диэлектрическая проницаемость є полупроводников в области объединения гигагерцового (ГГц) и терагерцового (ТГц) диапазонов частот. Выявлено существенное различие особенностей поведения ε в ГГц- и ТГц-диапазонах. Показано, что с ростом мощности P_{λ} оптического облучения Re ϵ убывает на частотах $\omega > \Delta \omega_{ex}$ (ТГц-диапазон, друдеподобное поведение) и увеличивается при $\omega < \Delta \omega_{\rm ex}$ (ГГц-диапазон, не-друдеподобное поведение); $\Delta \omega_{\rm ex}$ — диапазон частот переходов с участием наиболее заселенных экситонных уровней. Рост Ime с P_{λ} максимален в середине $\Delta \omega_{\rm ex}$ и ослабевает при удалении ω от $\Delta\omega_{\rm ex}$. Особенности при $\omega < \Delta\omega_{\rm ex}$ исследованы измерениями ${\rm Im} \epsilon^{\rm GHz}(P_{\lambda})$ и $\text{Re}\epsilon^{\text{GHz}}(P_{\lambda})$ при волоконно-оптическом облучении $(P_{\lambda}=0...370~\text{мВт},\lambda=0.97~\text{мкм})$ образцов Si в волноводном резонаторе ($f = \omega/2\pi = 4.7$ ГГц) и измерениями динамики пропускания $T(P_{\lambda})$ в свободном пространстве (f = 8...36 ГГц). Обнаружено, что $\text{Re}\epsilon^{\text{GHz}}$ и $\text{Im}\epsilon^{\text{GHz}}$ с ростом P_{λ} увеличиваются, а пропускание убывает, приближаясь к насыщению при $P_{\lambda} > 200$ мВт. При одинаковой мощности P_{λ} пропускание увеличивается с понижением частоты.

DOI: 10.31857/S0033849422120038

ВВЕДЕНИЕ

Индуцируемая оптическим излучением диэлектрическая проницаемость полупроводников, имеющих важное значение в микроволновой фотонике, приобретает дополнительный интерес в ГГц- и ТГц-диапазонах в связи с разработками оптически-управляемых метаструктур (метаматериалов, метаповерхностей, метаатомов) [1-7]. Поскольку свойства метаматериалов (структур с элементами, содержащими полупроводник) в ГГц- и ТГц-диапазонах во многом определяются динамикой диэлектрической проницаемости & полупроводника при возбуждении управляющим оптическим облучением (мощность P_{λ} , λ – длина волны), особое внимание в указанных работах было уделено расчетам и измерениям $\text{Re} \varepsilon^{\text{GHz(THz)}}(P_2)$ и $\text{Im} \varepsilon^{\text{GHZ(THz)}}(P_2)$.

Для расчетов и объяснения экспериментальных результатов использовалась модель Друде (в рамках механизма свободных носителей заряда) [8], которая оказалась приемлемой в ТГц-диапазоне при исследовании метаматериалов, содержащих Si и GaAs[1-4]. Эта модель была также использована для численных расчетов $\mathrm{Re} \epsilon^{\mathrm{GHz}}(P_{\lambda})$ и $Im \varepsilon^{GHz}(P_{\lambda})$ образцов Si в ГГц-диапазоне [9]. Повеление є^{ТНz,GHz} исследовалось экспериментально с образцами Si, одного из основных полупроводников микроэлектроники [10-12]. В [10] содержится анализ свойств Si в оптическом и ТГц-диапазонах; в [11] представлены результаты измерений поглощения при фотовозбуждении в ТГц-диапазоне в зависимости от частоты; в [12] приведена осциллограмма поглощения при импульсном фотовозбуждении в ГГц-диапазоне.

Однако прямыми измерениями мнимой и действительной частей диэлектрической проницаемости в ГГц-диапазоне образцов CdS и CdSe в волноводном резонаторе на частоте $f=4.7~\Gamma\Gamma$ ц обнаружено отклонение от модели Друде [13]. Продемонстрировано увеличение с ростом P_{λ} не только $Im \epsilon^{GHz}$, но и $Re \epsilon^{GHz}$, тогда как в модели Друде Ree^{THz} должна убывать. Очевидна необходимость исследовать фотоиндуцированную диэлектрическую проницаемость на примере других полупроводников (кроме упомянутых), включая отклонения от модели Друде, и описать ее поведение, охватывая весь рассматриваемый диапазон частот, что и является целью данной работы.

Для изучаемого диапазона характерно, что на область смыкания гигагерцовых и терагерцовых частот приходится полоса $\Delta f_{\rm ex} = \Delta \omega_{\rm ex}/2\pi$, в которой расположены частоты экситонных переходов $(f_{\rm ex})$ с участием наиболее заселенных уровней. Так, из данных [14—17] легко найти, что $\Delta f_{\rm ex} \cong 160~\Gamma \Gamma \mu$...3.4 $T \Gamma \mu$ для Si $(f_{21} \approx 2.5~T \Gamma \mu, f_{31} \approx 3~T \Gamma \mu, f_{32} \approx 470~\Gamma \Gamma \mu, f_{43} \approx 165~\Gamma \Gamma \mu$, индексы — значения главного квантового числа уровней, к переходу между которыми относится приведенная частота); $\Delta f_{\rm ex} \cong 350~\Gamma \Gamma \mu$...7.25 $T \Gamma \mu$ для CdS; $\Delta f_{\rm ex} \cong 50~\Gamma \Gamma \mu$...1 $T \Gamma \mu$ для GaAs. Поэтому представляет интерес рассмотреть связь фотоиндущированной диэлектрической проницаемости полупроводников в $\Gamma \Gamma \mu$ - $\tau \Gamma \mu$ - τ

В данной работе с этой целью применен единый подход, основанный на использовании матрицы плотности экситонов. Показано, что на частотах f выше $\Delta f_{\rm ex}$ поведение ${\rm Re} \epsilon^{f>\Delta f_{\rm ex}}(P_{\lambda})$ и ${\rm Im} \epsilon^{f>\Delta f_{\rm ex}}(P_{\lambda})$ удовлетворяет модели Друде (друдеподобное поведение, ${\rm T} \Gamma_{\rm U}$ -диапазон). На частотах ниже $\Delta f_{\rm ex}$ поведение ${\rm Re} \epsilon^{f<\Delta f_{\rm ex}}(P_{\lambda})$ и ${\rm Im} \epsilon^{f<\Delta f_{\rm ex}}(P_{\lambda})$ существенно отличается от модели Друде (не-друдеподобное поведение, ${\rm \Gamma} \Gamma_{\rm U}$ -диапазон).

Впервые экспериментально наблюдены не-друдеподобные отклики образцов Si прямыми измерениями ${\rm Im} \epsilon^{\rm GHz}$ и ${\rm Re} \epsilon^{\rm GHz}$ резонаторным методом в волноводном резонаторе ($f=4.7~\Gamma \Gamma_{\rm H}$) и динамики пропускания $T(P_{\lambda})$ в свободном пространстве ($f=8...36~\Gamma \Gamma_{\rm H}$) при волоконно-оптическом облучении мощностью $P_{\lambda}=0...370~{\rm MBT}~(\lambda=0.97~{\rm MkM}).$ Результаты экспериментов согласуются с выводами теории.

1. ЭКСИТОННЫЙ ВКЛАД

Диэлектричская проницаемость среды, параметр пропорциональности амплитуд электрических индукции и напряженности $(\vec{D}_{\omega} = \varepsilon(\omega)\vec{E}_{\omega} = \vec{E}_{\omega} + 4\pi\vec{P}_{\omega})$ [8], связана с амплитудой $\vec{P}_{\omega} = \sum_{i} \chi^{(i)}(\omega)\vec{E}_{\omega}$ поляризации единицы объема среды на частоте $\omega = 2\pi f$ и восприимчивостями $\chi^{(i)}(\omega)$ составляющих ее частиц:

$$\varepsilon(\omega) = 1 + 4\pi \sum_{i} \chi^{(i)}(\omega).$$

В поляризации единицы объема выделяют вклад взаимодействия электромагнитных волн с колебаниями связанных (валентных) электронов (\vec{P}^{v}) , ионных остовов решетки (\vec{P}^{l}) и колебаниями свободных носителей заряда (\vec{P}^{ch}) [16]. В связи с этим

диэлектрическая проницаемость содержит вклады, выражаемые через соответствующие этим механизмам восприимчивости X единицы объема:

$$\epsilon = 1 + 4\pi \left(X^{\mathrm{v}} + X^{\mathrm{l}} \right) + 4\pi X^{\mathrm{ch}} = \widehat{\epsilon} + \delta \epsilon^{\mathrm{ch}}. \tag{1}$$

В полупроводниковой среде присутствуют и проявляются как в поглощении света, так и в люминесценции [8], экситоны. Необходимо учитывать также и их вклад

$$\vec{P}^{\text{ex}} = N^{\text{ex}} \left\langle \hat{\vec{d}} \right\rangle. \tag{2}$$

Здесь N^{ex} — концентрация экситонов,

$$\langle \hat{\vec{d}} \rangle = \operatorname{Sp}(\hat{\mathbf{o}}\hat{\vec{d}}) \tag{3}$$

— квантовомеханическое среднее оператора дипольного момента экситона. Состояние экситона характеризуется статистическим оператором $\hat{\sigma}$ (матрицей плотности). Эволюция матрицы плотности определяется кинетическим уравнением [18]

$$\frac{d\hat{\sigma}}{dt} + \hat{\Gamma}\hat{\sigma} = -\frac{i}{\hbar}(\hat{V}\hat{\sigma} - \hat{\sigma}\hat{V}) \tag{4}$$

(используем представление взаимодействия экситона с электромагнитным излучением). В (4) $\hat{\Gamma}$ — оператор, описывающий влияние диссипативных систем, в качестве чего может рассматриваться взаимодействие с фононами, спонтанное излучение и столкновения экситонов. В дипольном приближении оператор $\hat{V} = -\hat{d}\vec{E}$ энергии взаимодействия экситона с микроволновым и оптическим излучением выражается через оператор дипольного момента и напряженности электрических полей волн

$$\vec{E} = \sum_{i} \vec{e}_{j} E_{j} \exp(-i\omega_{j}t),$$

 \vec{e}_j — единичный вектор в направлении поляризации j-й волны. В используемом нами представлении взаимолействия

$$V_{rr'} = -\vec{d}_{rr'} \sum_{j} \vec{e}_{j} E_{j} \exp\left[i\left(\omega_{rr'} - \omega_{j}\right)t\right] =$$

$$= \sum_{j} V_{rr'}^{(j)} \exp\left[i\left(\omega_{rr'} - \omega_{j}\right)t\right],$$

$$\langle \hat{\vec{d}} \rangle = \sum_{r,r'} \sigma_{rr'} \vec{d}_{r'r} \exp\left(i\omega_{r'r}t\right),$$
(5)

 $\vec{d}_{rr'}$ — матричный элемент дипольного момента на базе стационарных функций гамильтониана экситона, $\omega_{rr'} = \left(\mathcal{E}_r - \mathcal{E}_{r'} \right) \hbar^{-1}$ — частота перехода между уровнями с собственными энергиями $\mathcal{E}_r, \mathcal{E}_{r'}$. В соответствии с условиями измерений диэлектрической проницаемости полагаем, что амплитуды E_j от времени не зависят, причем $\left| \vec{E}_{\omega} \right| \ll \left| \vec{E}_{\Omega} \right|$. Обозначение $\omega = 2\pi f$ относим к ГГц-

и ТГц-диапазонам частот, Ω — к частотам облучения для фотовозбуждения в оптическом диапазоне. Для удобства сопоставления с обычно применяемой записью диэлектрической проницаемости (например, происходящей от свободных носителей заряда) мы принимаем положительные значения ω , Ω ($\omega_i = \pm \omega$, $\pm \Omega$).

Вклад экситонов в диэлектрическую проницаемость выразим через восприимчивость экситона $\chi^{ex}(\omega)$:

$$\delta \varepsilon^{\text{ex}} (\omega) = 4\pi N^{\text{ex}} \chi^{\text{ex}} (\omega). \tag{6}$$

Восприимчивость экситона определяется через амплитуду спектральной компоненты среднего дипольного момента экситона:

$$\langle \hat{\vec{d}} \rangle_{\omega} = \operatorname{Sp}(\hat{\vec{d}}\hat{\sigma})_{\omega} = \chi^{\operatorname{ex}}(\omega) \vec{E}_{\omega}.$$
 (7)

Качественно поведение экситонной добавки $\delta \varepsilon^{\rm ex}$ (ω) к диэлектрической проницаемости может быть рассмотрено на примере квантовой системы с дискретными уровнями, соответствующими энергиям $\mathscr{E}_r = \mathscr{E}_g - \mathscr{E}_{\rm ex} / n^2$ при $r=n=1,2,...,\infty$, матричными элементами дипольного момента $\vec{d}_{rr'} = \vec{d}_{r'r}^*$ и релаксационным оператором, у которого

$$(\hat{\Gamma}\hat{\sigma})_{rr'} = \begin{cases} -\tau_{rr'}^{-1}\sigma_{rr'} & \text{для } r' \neq r, \\ \sum_{r''} (\sigma_{rr}w_{rr''} - w_{r''r}\sigma_{r''r''}) & \text{для } r' = r. \end{cases}$$
(8)

 \mathscr{E}_g — ширина запрещенной зоны, $\mathscr{E}_{\rm ex}$ — энергия связи экситона, $\tau_{rr'}$ — время поперечной релаксации для перехода между уровнями r и r', $w_{rr''}$ и $w_{r''r}$ — вероятности релаксационных переходов системы за единицу времени из состояния r в состояние r'' и из r''-го в r-е, σ_{rr} — населенность r-го уровня. В другой модели совокупность индексов r соответствует всем состояниям системы, включая подуровни, на которые расщепляются из-за взаимодействия с диссипативной системой уровни с главным квантовым числом n. При этом r упорядочены так, что их рост сопровождает увеличение энергии состояния \mathscr{E}_r .

В рамках описанного подхода восприимчивость квантовой системы определяется населенностями σ_{rr} и поляризуемостями $\kappa^{(r)}(\omega_j)$ ее уровней [19, 20]:

$$\chi_{(jj)}^{\text{ex}}(\omega_j) = \sum_r \sigma_{rr} \kappa_{(jj)}^{(r)}(\omega_j)$$
 (9)

(индексы j в скобках внизу восприимчивостей, поляризуемостей, дипольных моментов означают, что взяты проекции на направления \vec{e}_i).

Приведем уточненное выражение для поляризуемостей (в [19, 20] пренебрегалось влиянием на них релаксации недиагональных элементов матрицы плотности):

$$\kappa_{(jj)}^{(r)}(\omega_{j}) = \frac{\widehat{\varepsilon}(\omega_{j}) + 2}{3} \sum_{r'} \frac{\left| (d_{(j)})_{r'r} \right|^{2}}{\hbar} \times \frac{2\omega_{r'r} \left(\omega_{r'r}^{2} - \omega_{j}^{2} + \tau_{r'r}^{-2} \right) + 4i\omega_{j}\omega_{r'r}\tau_{r'r}^{-1}}{\left[\left(\omega_{r'r} + \omega_{j} \right)^{2} + \tau_{r'r}^{-2} \right] \left[\left(\omega_{r'r} - \omega_{j} \right)^{2} + \tau_{r'r}^{-2} \right]}.$$
(10)

Поправка на фактор локального поля учитывает преобладание доли решетки и валентных электронов. Соединяя сказанное, получаем вклад экситонов в ϵ :

$$\delta \varepsilon_{(jj)}^{\text{ex}}(\omega) = 4\pi N^{\text{ex}} \frac{\hat{\varepsilon}(\omega) + 2}{3} \sum_{r=1,\dots} \sigma_{rr} \sum_{r'} \frac{\left| (d_{(j)})_{r'r} \right|^{2}}{\hbar} \times \frac{2\omega_{r'r} \left(\omega_{r'r}^{2} - \omega^{2} + \tau_{r'r}^{-2} \right) + 4i\omega\omega_{r'r} \tau_{r'r}^{-1}}{\left[\left(\omega_{r'r} + \omega \right)^{2} + \tau_{r'r}^{-2} \right] \left[\left(\omega_{r'r} - \omega \right)^{2} + \tau_{r'r}^{-2} \right]}.$$
(11)

Запишем действительную и мнимую части диэлектрической проницаемости:

Re
$$\varepsilon = \hat{\varepsilon} + \frac{8\pi(\hat{\varepsilon} + 2)}{3} N^{\text{ex}} \sum_{r=1,\dots} \sigma_{rr} \sum_{r'} \frac{\left| (d_{(j)})_{r'r} \right|^2}{\hbar} \times \frac{\omega_{r'r} \left(\omega_{r'r}^2 - \omega^2 + \tau_{r'r}^{-2} \right) \tau_{r'r}^4}{1 + 2 \left(\omega_{r'r}^2 + \omega^2 \right) \tau_{r'r}^2 + \left(\omega_{r'r}^2 - \omega^2 \right)^2 \tau_{r'r}^4},$$
(12a)

Im
$$\varepsilon = \frac{16\pi(\widehat{\varepsilon} + 2)}{3} N^{\text{ex}} \sum_{r=1,\dots} \sigma_{rr} \sum_{r'} \frac{\left| (d_{(j)})_{r'r} \right|^2}{\hbar} \times \frac{\omega \omega_{r'r} \tau_{r'r}^3}{1 + 2(\omega_{r'r}^2 + \omega^2) \tau_{r'r}^2 + (\omega_{r'r}^2 - \omega^2)^2 \tau_{r'r}^4}$$
(126)

(по оценкам [16] $\operatorname{Im} \hat{\varepsilon} = 0$, $\operatorname{Re} \hat{\varepsilon} \gg 1$).

Иногда удобно пользоваться эквивалентными (12), (13) выражениями:

$$Re \, \varepsilon = \widehat{\varepsilon} + \frac{8\pi (\widehat{\varepsilon} + 2)}{3} N^{\text{ex}} \times \frac{\sum_{\substack{r=1,2...;\\r'>r}} \left(\sigma_{rr} - \sigma_{r'r'}\right) \frac{\left|(d_{(j)})_{r'r}\right|^{2}}{\hbar} \times \frac{\omega_{r'r} \left(\omega_{r'r}^{2} - \omega^{2} + \tau_{rr'}^{-2}\right)}{\left(\omega_{r'r}^{2} - \omega^{2}\right)^{2} + 2\left(\omega_{r'r}^{2} + \omega^{2}\right) \tau_{r'r}^{-2} + \tau_{rr'}^{-4}},$$
(13a)

Im
$$\varepsilon = \frac{16\pi(\widehat{\varepsilon} + 2)}{3} N^{\text{ex}} \times \sum_{\substack{r=1,2...;\\r'>r}} \left(\sigma_{rr} - \sigma_{r'r'}\right) \frac{\left|\left(d_{(j)}\right)_{r'r}\right|^{2}}{\hbar} \times \frac{\omega \omega_{r'r} \tau_{rr'}^{-1}}{\left(\omega_{r'r}^{2} - \omega^{2}\right)^{2} + 2\left(\omega_{r'r}^{2} + \omega^{2}\right) \tau_{r'r}^{-2} + \tau_{rr'}^{-4}}{\left(\omega_{r'r}^{2} - \omega^{2}\right)^{2} + 2\left(\omega_{r'r}^{2} + \omega^{2}\right) \tau_{r'r}^{-2} + \tau_{rr'}^{-4}}.$$
(136)

В (12а), (12б), (13а) и (13б) не включены специальные добавки, касающиеся свободных носителей зарядов, поскольку в суммировании по уровням учтены состояния непрерывной части энергетического спектра экситонов.

В (11)—(13) содержатся $N^{\rm ex}$ и σ_{rr} , произведение которых $N_{rr}^{\rm ex}=N^{\rm ex}\sigma_{rr}$ представляет собой число экситонов на r-м уровне в единице объема. Эти же величины определяют интенсивность линий люминесценции (для атомов и молекул см. в [21]). Основываясь на данных об экситонной фотолюминесценции, например из [16], полагаем, что в фотоиндуцированную диэлектрическую проницаемость наибольший вклад вносят нижние уровни.

Обсудим поведение Re ϵ и Im ϵ , разделив частоты $\omega = 2\pi f$ на три области по отношению к $\Delta \omega_{\rm ex}$.

1.1. Высокочастотная область (ТГц-диапазон, частоты $\omega > \Delta \omega_{ex}$)

Наиболее интересна асимптотика, когда квадрат частоты ю много больше квадратов частот всех экситонных межуровневых переходов и квадратов обратных времен поперечной релаксации, относящихся к этим переходам. Первое условие обеспечивается достаточным превышением энергии фотона над энергией связи экситона. Граница выполнения второго условия определяется температурой и обычно лежит внизу ТГц-диапазона.

В отсутствие инверсии населенностей уровней, т.е. когда населенности нижних уровней больше населенностей более высоких уровней (при r' > r частота $\omega_{r'r} > 0$ и $\sigma_{rr} > \sigma_{r'r'}$), высокочастотная экситонная добавка (δ Reε) к Reε отрицательна. По абсолютной величине при увеличении $N^{\rm ex}$ она растет. Поэтому с увеличением концентрации экситонов $N^{\rm ex}$ из-за повышения интенсивности облучения Ree убывает. Кроме того, при повышении частоты ω экситонная добавка $\delta \text{Re} \epsilon$ убывает по абсолютной величине обратно пропорционально ω². Высокочастотная экситонная добавка δІтε, как и Ітε, в отсутствие инверсии населенностей положительна и растет с увеличением интенсивности фотооблучения. Это соответствует усилению поглощения излучения

на частоте ω . При повышении ω Im ϵ убывает обратно пропорционально ω^3 (соответственно, должно увеличиваться прохождение сигнала или уменьшаться поглощение).

Таким образом, на частотах, превышающих ширину экситонной полосы $\Delta \omega_{\rm ex}$, реализуется друде-подобное поведение диэлектрической проницаемости полупроводника в условиях, аналогичных состоянию термодинамического равновесия, когда населенность экситонных уровней убывает с увеличением их собственных энергий.

1.2. Низкочастотная область (ГГц-диапазон, частоты $\omega \leq \Delta \omega_{ev}$)

В этой области квадрат частоты ω мал в сравнении с квадратами частот экситонных переходов и/или квадратами обратных времен поперечной релаксации, относящихся к этим переходам). Для большинства переходов первое условие может выполняться только для переходов с участием наиболее населенных уровней (нижних). Второе условие, вполне выполнимое при обычных температурах, нарушается при низких температурах.

Низкочастотная экситонная добавка к диэлектрической проницаемости (также в отсутствие инверсии населенностей) положительна. С ростом мощности облучения δ Reε увеличивается. Добавка δ Imε, как и при $\omega > \Delta \omega_{\rm ex}$, положительна и растет с увеличением концентрации экситонов. В отличие от случая $\omega > \Delta \omega_{\rm ex}$, Imε убывает с понижением ω .

Таким образом, на низких частотах в условиях, близких к термодинамическому равновесию, поведение диэлектрической проницаемости существенно отличается от друдеподобного.

1.3. Промежуточная область (частоты $\omega \cong \Delta \omega_{ex}$)

При обычных температурах проявление вклада отдельных переходов в диэлектрическую проницаемость сглажено; при низких температурах, возможно, удастся вблизи переходов между нижними уровнями, где спектр переходов более разрежен, увидеть пики, подобные пику в работе [22, рис. 16]. На сглаженном участке частотная дисперсия экситонной добавки к диэлектрической проницаемости незначительна. При этом мнимая часть имеет вид колоколообразной кривой, поднимающейся с увеличением мощности фотооблучения; зависимость действительной части от фотооблучения практически отсутствует.

Приведем замечания, касающиеся связи друдеподобного поведения фотоиндуцированной є и свободных носителей зарядов в полупроводниках:

1) представим ситуацию, в которой заселен только самый нижний экситонный уровень. Согласно (11), частотная зависимость диэлектриче-

Рис. 1. Схема измерений: в резонаторе: I — диафрагма связи, 2 — короткозамыкатель.

ской проницаемости для более высокочастотной части терагерцового диапазона соответствует модели Друде, хотя свободные носители зарядов отсутствуют;

2) ситуация, когда заселенным является какойлибо пакет состояний непрерывной части экситонного энергетического спектра. В этом случае для ряда межуровневых переходов имеет место инверсия населенностей и не реализуется друдеподобная частотная дисперсия диэлектрической проницаемости по меньшей мере для мнимой ее части: она отрицательна и соответствует усилению излучения, а не поглощению.

2. ОСОБЕННОСТИ Ітє^{GHz} И Reє^{GHz} И ПРОПУСКАНИЯ *Т* ОБРАЗЦОВ Si ПРИ ФОТОВОЗБУЖДЕНИИ В ГГи-ДИАПАЗОНЕ (ЭКСПЕРИМЕНТ)

Применив прямой резонаторный метод [13], исследуем динамику комплексной диэлектрической проницаемости образцов высокоомного Si в зависимости от P_{λ} относительно $P_{\lambda}=0$ ($\delta \epsilon^{\text{GHz}}$). Используем волноводный резонатор ($48 \times 24 \times 40 \text{ мм}$) отражательного типа на частоте 4.7 ГГц (рис. 1). Образец в виде полоски (поперечные размеры 22×4.6 , толщина 0.55 мм) располагаем в пучности микроволнового электрического поля E, направленного параллельно ее поверхности. Оптоволокно направляем перпендикулярно к центру образца через отверстие в резонаторе.

Определяем:

$$\delta \operatorname{Im} \varepsilon^{\operatorname{GHz}} = \frac{\operatorname{Im} \varepsilon_{P_{\lambda}}^{\operatorname{GHz}}}{\operatorname{Im} \varepsilon_{P=0}^{\operatorname{GHz}}} = \left[\frac{1 + R_{P_{\lambda}}}{1 - R_{P_{\lambda}}} - \frac{1 + R}{1 - R} \right] \left[\frac{1 + R_{P=0}}{1 - R_{P=0}} - \frac{1 + R}{1 - R} \right]^{-1};$$
(14)

Рис. 2. Измеренная в волноводном резонаторе ($f=4.72~\Gamma$ Γц) относительно $P_{\lambda}=0$ динамика диэлектрической проницаемости Si при изменении P_{λ} ($\lambda=0.97~\mathrm{mkm}$): $\delta \mathrm{Re}\epsilon^{\mathrm{GHz}}$ (a) и $\delta \mathrm{Im}\epsilon^{\mathrm{GHz}}$ (б).

$$\delta \operatorname{Re} \varepsilon^{\operatorname{GHz}} = \left(\operatorname{Re} \varepsilon_{P_{\lambda}}^{\operatorname{GHz}} - 1 \right) \left(\operatorname{Re} \varepsilon_{P=0}^{\operatorname{GHz}} - 1 \right)^{-1} =$$

$$= \left[\left(f - f_{P_{\lambda}} \right) f_{P=0} \right] \left[\left(f - f_{P=0} \right) f_{P_{\lambda}} \right]^{-1},$$
(15)

где измеряемые $R,\,R_{P\,=\,0},\,R_{P_\lambda}$ — коэффициенты отражения по напряжению от пустого резонатора, резонатора с образцом при $P\,{=}\,0$, и при $P_\lambda;f,f_{P\,{=}\,0},\,f_{P_\lambda}$ — частоты резонатора без образца, с образцом при $P\,{=}\,0$ и при P_λ .

Результаты измерений $\delta \text{Res}(P_{\lambda})$ и $\delta \text{Ims}(P_{\lambda})$ приведены на рис. 2а, 2б. Видим, что с ростом P_{λ} от 0 до 370 мВт (плотность мощности 5 Вт/см²) δRes и δIms увеличиваются, приближаясь к насыщению при $P_{\lambda} > 200$ мВт. Существенный рост $\delta \text{Ims}(P_{\lambda})$ при незначительном увеличении $\delta \text{Res}(P_{\lambda})$ должен привести к росту затухания волны и, следовательно, уменьшению пропускания. Это под-

Рис. 3. Измеренная в свободном пространстве динамика коэффициента пропускания $\delta T = T(P_{\lambda})/T(P_{\lambda} = 0)$ полоски Si при изменении P_{λ} в частотных диапазонах $F_1 = 8...12$ ГГц, $F_2 = 18...28$ ГГц и $F_3 = 26...38$ ГГц.

тверждается измерениями изменения пропускания δT на разных частотах при разных величинах мощности P_{λ} относительно $P_{\lambda} = 0$.

Измеряем $\delta T(P_{\lambda})$, располагая полоску Si (22 × \times 4.6 × 0.55 мм) в свободном пространстве в разрыве между приемным и передающим волноводами:

$$\delta T(P_{\lambda}) = T(P_{\lambda})/T \ (P_{\lambda} = 0). \tag{16}$$

Используем набор трех панорамных измерителей для диапазонов частот $F_1=8...12,\ F_2=18...28$ и $F_3=26...38$ ГГц, поперечные размеры соответствующих волноводов имеют размеры $23\times 10,\ 11\times 6$ и 8×4 мм. Результаты измерений $\delta T(P_\lambda)$ приведены на рис. 3. Видим, что δT уменьшается с приближением к насыщению при $P_\lambda>200$ мВт. При этом значения $\delta T(P_\lambda)$ в диапазоне F_1 больше соответствующих значений для F_2 , которые больше, чем для F_3 , что находится в согласии с теорией, отмечающей уменьшение роста δ Ітє при понижении частоты в Γ Гц-диапазоне при $f<\Delta f_{\rm ex}$.

ЗАКЛЮЧЕНИЕ

Примененный теоретический подход позволил описать в рамках механизма экситонов поведение диэлектрической проницаемости полупроводников в широком диапазоне частот при оптическом облучении мощностью P_{λ} и выявить взаимосвязь между явлениями в фотонике и электродинамике.

Из полученных соотношений следует следующее.

1. Частотная зависимость изменения мнимой части диэлектрической проницаемости (Ime) при фотовозбуждении представляет собой колоколообразную кривую, поднимающуюся с увеличением P_{λ} на частотах ω внутри диапазона частот экситонных переходов ($\Delta \omega_{\rm ex}$). Увеличение Ime с ростом P_{λ} осла-

бевает по мере удаления ω от $\Delta \omega_{ex}$ как в сторону низких, так и высоких частот.

2. Действительная часть Reec ростом P_{λ} увеличивается при $\omega < \Delta \omega_{ex}$ (не-друдеподобная зависимость, $\Gamma \Gamma$ ц-диапазон), не меняется на частотах $\Delta \omega_{ex}$ и уменьшается при $\omega > \Delta \omega_{ex}$ (друдеподобный отклик, $T \Gamma$ ц-диапазон).

Влияние экситонов слабо проявляется на частотах $\omega \gg \Delta \omega_{\rm ex}$ и $\omega \ll \Delta \omega_{\rm ex}$. В этом случае ${\rm Re} \varepsilon (P_{\lambda})$ и ${\rm Im} \varepsilon (P_{\lambda})$ практически сохраняются относительно ${\rm Re} \varepsilon (P_{\lambda}=0)$ и ${\rm Im} \varepsilon (P_{\lambda}=0)$.

Отличительные особенности не-друдеподобного поведения Ітве и Ree при $\omega < \Delta \omega_{\rm ex}$ наблюдали экспериментально в измерениях образцов Si при волоконно-оптическом облучении мощностью $P_{\lambda} = 0...370$ мBт ($\lambda = 0.97$ мкм):

- а) обнаружено измерениями в резонаторе ($f = \omega/2\pi = 4.7~\Gamma\Gamma$ ц) увеличение ${\rm Im}\,\epsilon^{\rm GHz}$ (более чем на порядок) и увеличение ${\rm Re}\,\epsilon^{\rm GHz}$ (в 1.6 раз) с приближением к насыщению при $P_{\lambda} > 200~{\rm MBT}$;
- б) показано экспериментально, что в свободном пространстве (f=8...36 ГГц) с ростом P_{λ} пропускание T уменьшается (это связано с увеличением Ime^{GHz}) с приближением к насыщению при $P_{\lambda} > 200$ мВт и повышением T с понижением частоты при фиксированной мощности.

Результаты могут быть полезны для применений в метаструктурах с целью разработки оптически управляемых коммуникационных систем.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИРЭ им. В.А. Котельникова РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Chen H.T., O'Hara J.F., Azad A.K., Taylor A.J. // Laser Photonics Rev. 2011. V. 5. № 4. P. 513.
- 2. *Padilla W.J.*, *Taylor A.J.*, *Highstrete C. et al.* // Phys. Rev. 2006. V. 96. № 10. P. 107401.
- 3. *Chen H.T., Padilla W.J., Zide J. et al.* // Nature. 2006. V. 444. № 7119. P. 597. https://doi.org/10.1038/nature05343
- 4. *Xiao S., Wang T., Jiang X. et al.* // J. Phys. D: Appl. Phys. 2020. V. 53. № 50. P. 503002.
- 5. *Manceau J.M., Shen N.-H., Kafesaki M. et al.* //Appl. Phys. Lett. 2010. V. 96. № 2. P. 021111.
- 6. *Nemati A., Wang Q., Hong M.H., Teng J.H.* // Opto-Electron Advances. 2018. V. 1. № 18. P. 180009. https://doi.org/10.29026/oea.2018.180009
- 7. Zhou J., Chowdhury D.R., Zha R. et al. // Phys. Rev. B. 2012. V. 86. № 3. P. 035448. https://doi.org/10.1103/PhysRevB.86.035448

- 8. *Маделуне О.* Теория твердого тела. М.: Наука, 1980. С. 414.
- 9. *Rizza C., Ciattoni A., De Paulis F. et al.* // J. Phys. D: Appl. Phys. 2015. V. 48. № 13. P. 135103. https://doi.org/10.1088/0022-3727/48/13/135103
- 10. *Рогалин В.Е., Каплунов И.А., Кропотов Г.И.* // Оптика и спектроскопия. 2018. Т. 125. № 6. С. 851. https://doi.org/10.21883/OS.2018.12.46951.190-18
- 11. *Busch S., Scherger B., Scheller M., Koch M.* // Optics Lett. 2012. V. 37. № 8. P. 1391.
- 12. *Мусаев А.М.* // Физика и техника полупроводников. 2017. Т. 51. № 10. С. 1341. https://doi.org/10.21883/FTP.2017.10.45010.8520
- 13. *Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др.*// Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 586.
- 14. *Агекян В.Ф.* // Соросовский образовательный журн. 2000. Т. 6. № 10. С. 101.

- 15. *Днепровский В.С.* // Соросовский образовательный журн. 2000. Т. 6. № 8. С. 88.
- 16. *Кашкаров П.К., Тимошенко В.Ю.* Оптика твердого тела и систем пониженной размерности. М.: МГУ, 2009. С. 190.
- 17. Нокс Р. Теория экситонов. М.: Мир, 1966.
- 18. *Файн В.М.* Фотоны и нелинейные среды. М.: Сов. радио, 1972. С. 472.
- 19. *Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г.* // ЖЭТФ. 1970. Т. 59. № 3. С. 921.
- 20. Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. М.: Наука, 1977.
- 21. *Ельяшевич М.А*. Атомная и молекулярная спектроскопия. М.: ГИФМЛ, 1962. Гл. 4, 5.
- 22. Агранович В.М. Теория экситонов. М.: Наука, 1968.