ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 535.421

ЛАЗЕРНОЕ СЧИТЫВАНИЕ РАДИОСИГНАЛОВ С УСТРОЙСТВ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ

© 2022 г. В. А. Комоцкий*

Российский университет дружбы народов, ул. Миклухо-Маклая, 6, Москва, 117198 Российская Федерация *E-mail: vkomotskii@mail.ru

> Поступила в редакцию 15.03.2021 г. После доработки 17.03.2022 г. Принята к публикации 20.03.2022 г.

Рассмотрены оптоэлектронные схемы, предназначенные для считывания радиосигналов с линий задержки на поверхностных акустических волнах (ПАВ), в которых вместо второго, считывающего встречно-штыревого преобразователя применена схема лазерного зондирования ПАВ с фазовой дифракционной решеткой. Приведены примеры и методика расчета амплитуды сигнала и отношения сигнала к шуму на выходе канала лазерного считывания при различных параметрах схем. Представлены результаты экспериментов по считыванию импульсных радиосигналов с длительностями в несколько микросекунд. Отмечены особенности метода лазерного считывания: возможность плавной регулировки времени задержки выходного сигнала относительно входного и исключения отражения поверхностной волны от считывающего встречно-штыревого преобразователя.

DOI: 10.31857/S0033849422120087

ВВЕДЕНИЕ

Поверхностные акустические волны (ПАВ) используются для построения линий задержки, фильтров и устройств обработки радиосигналов [1-4]. Эти устройства содержат, как минимум, два встречно-штыревых преобразователя (ВШП) на поверхности подложки. Один из них предназначен для возбуждения ПАВ, а второй, расположенный на некотором расстоянии от первого ВШП, служит для считывания радиосигнала. В данной работе будут рассмотрены схемы лазерного считывания (ЛС) радиосигнала с линий задержки, в которых вместо второго ВШП применена одна из схем [5, 6] лазерного зондирования ПАВ с опорной дифракционной решеткой (ОДР). Схема ЛС линейно преобразует радиосигнал, который распространяется в форме ПАВ по подложке, в выходной электрический радиосигнал с сохранением несущей частоты и фазовых соотношений. Другие способы лазерного зондирования ПАВ, которые были описаны в работах [7, 8] и в обзорах [9, 10], не предназначены на практике для считывания сигнала с линии задержки на ПАВ. Лазерное считывание сигналов с применением ОДР дает возможность получить ряд новых качеств, которые не реализуются в традиционных устройствах на ПАВ. Во-первых, оно создает возможность плавного изменения длительности задержки выходного сигнала за счет перемещения следа лазерного пучка вдоль направления распространения ПАВ: во-вторых. позволяет устранить отраженную волну за счет того, что из схемы исключается считывающий ВШП. В традиционной линии задержки считывающий ВШП вызывает отражение ПАВ и так называемый трехпроходный сигнал на выходе. Дополнительно можно отметить, что схема ЛС с ОДР позволяет считывать сигнал с подложки, которая не обладает пьезоэлектрическими свойствами, в том случае, если ПАВ введена в подложку каким-либо способом, например, с помощью краевого возбудителя. Теоретический анализ процесса формирования выходного сигнала, а также методика выбора оптимальных параметров схем лазерного зондирования ПАВ, описаны в работах [5, 6, 11, 13]. Здесь мы рассмотрим практические аспекты построения схем ЛС, расчет амплитуды полезного сигнала и отношения сигнала к шуму на выходе схем ЛС с ОДР.

1. ВАРИАНТЫ СХЕМ ЛАЗЕРНОГО СЧИТЫВАНИЯ СИГНАЛА

1.1. Схема ЛС с ОДР на поверхности подложки

Рассмотрим схему ЛС с ОДР, представленную на рис. 1. На поверхности подложки 1 имеется ВШП 2, для ввода сигнала в линию задержки. На пути распространения ПАВ находится ОДР 4. Пе-

Рис. 1. Схема лазерного считывания сигнала с линии задержки, в которой ОДР расположена на поверхности подложки: *1* – подложка, *2* – ВШП, *3* – поглотители ПАВ, *4* – ОДР, *5* – лазер, *6* – диафрагма, *7* – фотодиод, *8* – нагрузка фотодиода в виде колебательного контура, *9* – усилитель радиосигнала, *10* – генератор радиосигнала.

риод ОДР, Λ_g , равен длине волны ПАВ, $\Lambda = \Lambda_0$, которая соответствует центральной частоте радиосигнала F_0 . В данной схеме ОДР представляет собой отражающую свет рельефную периодическую структуру с прямоугольной формой профиля типа "меандр". Пучок излучения от лазера 5 направлен на ОДР под углом падения $\Theta_{\text{пад}}$, который достаточен для разделения в пространстве входного и отраженного пучков излучения лазера. Плоскость падения лазерного пучка параллельна линиям ОДР. На волновом фронте отраженного оптического пучка формируется пространственная фазовая модуляция (ПФМ), амплитуду которой $\Phi_{\text{м}}$ можно рассчитать по формуле

$$\Phi_{\rm M} = \frac{2\pi}{\lambda} H_g \cos \Theta_{\rm mag},\tag{1}$$

где λ — длина волны излучения лазера, H_g — глубина рельефа ОДР, $\Phi_{\rm M} = \Delta \Phi/2$ — амплитуда ПФМ волнового фронта, $\Delta \Phi$ — величина скачка фазы на фронте отраженной оптической волны, на границе выступа и впадины рельефа.

В отраженном лазерном пучке, за диафрагмой 6, которая выделяет нулевой порядок дифракции, расположен фотодетектор 7. На нагрузке 8, которая включена последовательно в цепь фотодетектора, получаем выходной радиосигнал, подобный сигналу, введенному в линию задержки через ВШП. Колебательный контур в нагрузке фотодетектора настроен на центральную частоту радиосигнала F_0 . Групповая задержка радиосигнала от входа до выхода схемы зависит от расстояния между ВШП и точкой падения лазерного пучка на подложку с ОДР, и она изменяется при перемещении точки падения пучка относительно подложки вдоль направления ПАВ.

1.2. Результаты испытаний ЛС с ОДР на поверхности подложки

В эксперименте, описанном ранее в [5], макет линии задержки был изготовлен на подложке из танталата лития У-среза, с Z направлением ПАВ. ВШП имел период 200 мкм и 14.5 пар штырей. Центральная частота ВШП составляла $F_0 = 16.15$ МГц, а полоса пропускания $\Delta F = 1.1$ МГц. Длина волны ПАВ, соответствующая центральной частоте радиосигнала, составляла $\Lambda_0 = 200$ мкм. В схеме ЛС применялся гелий-неоновый лазер с длиной волны $\lambda = 0.6328$ мкм и мощностью 5 мВт. Размер считывающего пучка на поверхности подложки составлял 2 мм. Фотодиод располагался в нулевом порядке дифракции в отраженном пучке. LC-контур в нагрузке фотодиода был настроен на центральную частоту радиоимпульса $F_0 = 16.15$ МГц, а его полоса пропускания была равна $\Delta F = 2 \text{ MFu}.$

Технология изготовления рельефной ОДР на поверхности подложки состояла из нескольких этапов. На первом этапе на поверхность подложки нанесли пленку алюминия с заданной толщиной: $H_g = 0.087$ мкм. На втором этапе с помощью технологии фотолитографии и химического трав-

Рис. 2. Осциллограммы, иллюстрирующие считывание импульсных радиосигналов: *1* – сигнал на входе ВШП, *2* и *3* – сигналы на выходе канала лазерного считывания при различных расстояниях от ВШП до точки считывания.

ления из этой пленки формировали структуру, состоящую из полосок пленки с шириной $0.5\Lambda_g = 100$ мкм, которые чередовались с пустыми промежутками шириной $0.5\Lambda_g$. Период структуры был равен $\Lambda_g = 200$ мкм. На третьем этапе на поверхность структуры из металлических полосок напыляли сплошную пленку алюминия. В результате была изготовлена рельефная, отражающая свет периодическая структура с заданной глубиной рельефа $H_g = 0.087$ мкм и периодом $\Lambda_g = 200$ мкм.

Рассчитать оптимальную глубину рельефа отражающей ОДР можно по формуле: $H_{g \text{ опт}} = \lambda/(8\cos\Theta_{\text{пад}})$. Например, если $\Theta_{\text{пад}} = 25^{\circ}$, то для лазера с длиной волны $\lambda = 0.6328$ мкм расчетная оптимальная величина $H_{g \text{ опт}} = 0.0872$ мкм.

На рис. 2 изображены три радиоимпульса: 1 – это радиоимпульс на входе ВШП, его несущая частота 16.15 МГц. Справа показан фрагмент входного радиоимпульса при увеличенной скорости развертки осциллографа. Импульс 2 с несущей частотой 16.15 МГц получен с выхода канала ЛС при некоторой исходной позиции следа лазерного пучка на поверхности линии задержки, а импульс 3 также получен с выхода канала ЛС, но при дополнительном сдвиге точки падения лазерного пучка в направлении распространения ПАВ на три миллиметра относительно исходной позиции, при которой был получен импульс 2. Этот сдвиг точки

падения лазерного пучка в направлении от ВШП привел к увеличению времени задержки выходного сигнала – импульса 3, по сравнению с задержкой сигнала – импульса 2. Форма огибающей импульсного сигнала на выходе канала ЛС несколько отличается от формы огибающей сигнала, поданного на вход ВШП, из-за частотных искажений, вносимых элементами схемы. Можно выделить три фактора, которые определяют частотные искажения сигнала: первый — это форма амплитудно-частотной характеристики ВШП, второй — это форма амплитудно-частотной характеристики *LC*-контура, установленного на выходе, в нагрузке фотодетектора; третий фактор – это форма частотной зависимости оптической части схемы ОДР-ПАВ. Роль первых двух факторов очевидна и хорошо изучена. Рассмотрим подробнее третий фактор. Как было установлено в [5], относительная полоса пропускания частот, $\Delta F/F_0$, радиосигнала в схеме ЛС зависит от количества периодов ОДР, Ng, которые находятся в пределах следа оптического пучка на подложке: $\Delta F/F_0 \approx 1/N_g$. В данном эксперименте число периодов в пределах следа оптического пучка была равна $N_g = 10$. При этом расчетная полоса пропускания оптической части схемы ЛС составила $\Delta F =$ $= 0.1F_0 = 1.6$ МГц. Число периодов, которые охвачены следом оптического пучка, не должно быть

Рис. 3. Схема лазерного считывания радиосигнала, в которой ОДР расположена на расстоянии от поверхности подложки: *1* – подложка, *2* – ВШП, *3* – площадка, покрытая металлической отражающей пленкой, *4* – ОДР, *5* – лазер, *6* – диафрагма, *7* – фотодиод, *8* – нагрузка фотодиода в виде колебательного контура, *9* – усилитель выходного радиосигнала, *10* – генератор радиосигнала, *11* – поглотитель ПАВ.

менее четырех, чтобы выполнялось условие: $\Delta F/F_0 \leq 0.25$. При увеличении количества периодов ОДР, находящихся в пределах следа оптического пучка, уменьшается полоса пропускания системы ОДР-ПАВ. При этом амплитуда выходного сигнала не зависит от количества периодов ОДР, охваченных считывающим лазерным пучком. Так как в данной схеме ОДР расположена на поверхности подложки, то она вносит некоторые возмущения в распространение ПАВ. Как показали проведенные нами эксперименты, при длине волны ПАВ, равной 200 мкм, наличие препятствий в виде небольшого числа канавок с периодом $\Lambda_g =$ = 200 мкм, с глубиной H_g менее 0.1 мкм не вызывали существенных отражений ПАВ, так как в этом случае глубина канавок значительно меньше эффективной глубины проникновения ПАВ в подложку.

1.3. Схема ЛС с отделенной от подложки ОДР

Рассмотрим схему ЛС с отделенной от подложки ОДР (рис. 3). На подложке *1* имеется ВШП *2* для возбуждения ПАВ. На пути распространения ПАВ расположена площадка *3*, покрытая отражающей свет металлической пленкой. В этой схеме ОДР *4* представляет собой рельефную структуру с периодом Λ_g на прозрачной пластине, которая закреплена на небольшом расстоянии d_g от поверхности подложки. Пучок излучения от лазера *5*

проходит через ОДР 4, отражается от поверхности подложки, покрытой сплошной металлической пленкой 3, а затем отраженный пучок вторично проходит через ОДР. В отраженном пучке с помощью диафрагмы 6 мы выделяем нулевой порядок дифракции и направляем его на фотодетектор 7. Нагрузкой фотодетектора служит LC-контур 8, настроенный на центральную частоту радиосигнала F_0 . Так как ОДР отделена от подложки, она не вносит каких-либо возмущений в распространение ПАВ. Однако в этой схеме требуется тщательная настройка положения ОДР по отношению к плоскости подложки и к направлению распространения ПАВ. Необходимо установить ОДР таким образом, чтобы линии рельефа ОДР были параллельны линиям ВШП, а плоскость ОДР была параллельна подложке и располагалась на малом расстоянии от нее: $d_g \ll 0.5 \Lambda_g^2 / \lambda$. Если, например, в качестве источника излучения мы применяем полупроводниковый лазер с длиной волны $\lambda = 0.65$ мкм, то при $\Lambda_g = 100$ мкм получим условие $d_g \ll 7.7$ мм, что нетрудно выполнить на практике. При уменьшении длины волны ПАВ и периода ОДР расчетная величина dg быстро умень-

риода ОДР расчетная величина d_g быстро уменьшается. Например, при $\Lambda_g = 30$ мкм получим условие $d_g \ll 0.63$ мм. При дальнейшем уменьшении дины волны ПАВ требуемая величина d_g становится очень малой, порядка единиц или долей микрометра, что может быть неприемлемо на

практике. Вместе с тем, как было показано в работе [6], существует другой вариант расположения ОДР в плоскости, которая находится на расстоянии от подложки, равном $d_g = \Lambda_g^2 / \lambda$. При этом условии также получаем максимальную амплитуду сигнала с частотой ПАВ на выходе канала ЛС, однако в этом варианте необходимо выдерживать высокую точность установки расстояния между поверхностями ОДР и ПАВ. Допустимое отклонение положения ОДР от оптимальной плоскости составляет $\Delta d_g \ll 0.5 \Lambda_g^2 / \lambda$. При этом следует иметь в виду, что если расстояние между подложкой и ОДР будет равно $d_g = 0.5 \Lambda_g^2 / \lambda$ или $d_g = 1.5 \Lambda_g^2 / \lambda$, то амплитуда сигнала на выходе схемы ЛС будет равна нулю. В схеме, изображенной на рис. 3, ОДР представляет собой прямоугольный рельеф на поверхности стеклянной пластины 4. Период рельефа равен средней длине волны ПАВ в заданном диапазоне. Ширина выступа рельефа равна ширине впадины и равна 0.5 Л_g. Так как оптический пучок в этой схеме дважды проходит через ОДР, то оптимальная амплитуда пространственной фазовой модуляции волнового фронта оптической волны, Φ_{M} , рассчитанная при однократном прохождении через ОДР, должна составлять $\Phi_{\rm M}$ = 22.5°, а не 45°. Расчет величины $\Phi_{\rm M}$ при прохождении оптической волны сквозь прозрачную пластинку с рельефом на ее поверхности можно провести по следующей формуле:

$$\Phi_{\rm M} = (\Delta \varphi/2) =$$

$$= \frac{\pi H_g}{\lambda} \Big(\sqrt{n_g^2 - \sin^2 \Theta_{\rm max}} - \cos \Theta_{\rm max} \Big), \qquad (2)$$

где H_g — глубина рельефа, n_g — показатель преломления пластины, Например, при величине угла падения $\Theta_{\text{пад}} = 10^\circ$, и при условии, что $\lambda = 0.65$ мкм, для получения оптимальной величины $\Phi_{\text{м}} = 22.5^\circ$, расчетная глубина рельефа ОДР на поверхности пластины из стекла с показателем преломления $n_g = 1.51$ составляет $H_g = 0.16$ мкм. Плоскость падения лазерного пучка в схеме рис. 3 должна быть параллельна линиям рельефа ОДР, что связано с особенностями схемы ЛС с ОДР, отделенной от подложки [6].

1.4. Результаты измерений параметров схемы ЛС с ОДР, отделенной от подложки, с применением полупроводникового лазера [12]

Образец линии задержки был изготовлен на подложке из ниобата лития Y среза с Z направлением распространения ПАВ. При этом ВШП имел период 100 мкм, апертуру 10 мм и содержал пять пар электродов. Радиоимпульс с частотой $F_0 = 34.6$ МГц, с длительностью 2 мкс и с амплитудой 3 В подавался на вход ВШП. В схеме был

использован полупроводниковый лазер с длиной волны 0.65 мкм и мощностью 4.5 мВт. В области падения лазерного пучка поверхность подложки была покрыта отражающей свет алюминиевой пленкой, а ОДР была выполнена в виде рельефа с прямоугольной формой с периодом $\Lambda_g = 100$ мкм на отдельной стеклянной пластине. Пластина с рельефом располагалась параллельно подложке на расстоянии $d_{g} = 0.1$ мм от ее поверхности. Выходной сигнал с нагрузки фотодетектора в виде LC-контура с шириной полосы 5 МГц, подавался на вход широкополосного усилителя с коэффициентом усиления k = 90. На выходе усилителя получали импульсный сигнал, подобный входному, с амплитудой 90 мВ. Длительность импульса была равна 2 мкс, длительность фронта импульса 0.5 мкс, несущая частота $F_0 = 34.6$ МГц. Отношение напряжения сигнала к измеренному напряжению шума на выходе составляло с/ш = 18. Среднее напряжение шума на выходе усилителя составляло 5 мВ, а при перекрытии лазерного излучения среднее напряжение шума снижалось до уровня 2.5 мВ. Отсюда следует, что значительная часть шумов была вызвана дробовыми шумами фототока и дополнительными шумами лазерного излучения. При сдвиге подложки вдоль направления распространения ПАВ время задержки выходного импульса относительно входного изменялось пропорционально перемещению подложки относительно точки падения лазерного пучка на подложку.

2. РАСЧЕТ ОТНОШЕНИЯ СИГНАЛА К ШУМУ

В схемах ЛС, изображенных на рис. 1 и 3, колебания мощности с частотой ПАВ F в нулевом порядке дифракции происходят на фоне значительной постоянной мощности оптического излучения. В результате на выходе фотодетектора мы получаем полезный сигнал — переменный ток с частотой F, а также постоянный фототок, который порождает дробовый шум.

2.1. Расчет амплитуды сигнала

Если ПАВ имеет амплитуду гофра поверхности, равную h_w , то при отражении от поверхности подложки оптическая волна получает пространственную фазовую модуляцию (ПФМ) волнового фронта, амплитуда Φ_w которой определяется соотношением

$$\Phi_{w} = \frac{4\pi}{\lambda} h_{w} \cos \Theta_{\text{пад}}.$$
 (3)

Амплитуду колебаний мощности оптического излучения с частотой колебаний *F* в нулевом порядке дифракции будем рассчитывать по формуле [5]

$$P_{0F} = P_{\rm BX} R q_{0F} \Phi_w = P_{\rm bp} q_{0F} \Phi_w. \tag{4}$$

 $P_{\rm вx}$ — мощность входного лазерного излучения, R — коэффициент отражения лазерного пучка от поверхности подложки в области зондирования, $P_{\rm эф} = P_{\rm Bx}R$ —эффективная мощность зондирующего лазерного излучения, Φ_w — амплитуда ПФМ, которая получена в результате взаимодействия оптической волны с ПАВ, q_{0F} — коэффициент эффективности преобразования ПФМ в колебания мощности излучения с частотой ПАВ (F) в нулевом порядке дифракции. Коэффициент q_{0F} зависит от параметров ОДР. Для схемы, изображенной на рис. 1, в которой ОДР имеет прямоугольную форму типа "меандр", эта зависимость выражается следующей формулой, приведенной в [5] и в Приложении:

$$q_{0F} = (2/\pi)\sin 2\Phi_{\rm M} \,. \tag{5}$$

Здесь $\Phi_{\rm M}$ — амплитуда ПФМ, которая получена в результате взаимодействия оптической волны с ОДР. Максимальная величина коэффициента $q_{0F} = 0.63$ достигается при оптимальном значении $\Phi_{\rm M} = 45^{\circ}$.

Аналогично, для схемы на рис. 2, в которой ОДР расположена отдельно от подложки, коэффициент q_{0F} также может достигать максимального значения $q_{0F} = 0.63$ при оптимальной для этой схемы глубине ОДР и при оптимальном расстоянии от подложки до ОДР [6].

Амплитуду колебаний тока сигнала с частотой ПАВ в цепи фотодиода, расположенного в нулевом порядке дифракции, рассчитываем по формуле

$$i_{0F} = S_{P-i} P_{0F} = S_{P-i} P_{\Im \Phi} q_{0F} \Phi_w.$$
(6)

 S_{P-i} (А/Вт) — коэффициент, характеризующий эффективность преобразования мощности излучения лазера в выходной ток фотодиода.

2.2. Расчет шумового тока в цепи фотодиода

Постоянная составляющая мощности в нулевом порядке дифракции определяется формулой [5]

$$P_{0(=)} = P_{\Im \Phi} q_{0(=)} = P_{\Im \Phi} (\cos \Phi_{\rm M})^2, \tag{7}$$

 $q_{0(=)} = (\cos \Phi_{\rm M})^2 -$ коэффициент эффективности дифракции оптической волны на ОДР для нулевого порядка. Постоянная составляющая фототока, соответствующая мощности $P_{0(=)}$, равна

$$i_{0(=)} = S_{P-i} P_{0(=)} = S_{P-i} P_{\Im \Phi} q_{0(=)} = S_{P-i} P_{\Im \Phi} (\cos \Phi_{M})^{2}.$$
(8)

Среднеквадратическую величину тока дробового шума рассчитаем по формуле

$$\sqrt{i_{\text{ДШ}}^2} = \sqrt{2ei_{0(=)}\Delta F} = \sqrt{2eS_{P-i}P_{\ni\Phi}q_{0(=)}\Delta F},\qquad(9)$$

где *е* — заряд электрона, ΔF — эффективная полоса частот нагрузки фотодиода и усилителя сигнала.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

Кроме дробового шума следует учитывать тепловой шум нагрузки и усилителя. Среднеквадратическую величину тока теплового шума резистора нагрузки рассчитываем по формуле

$$\sqrt{\overline{i_T^2}} = \sqrt{4kTY_e\Delta F},\tag{10}$$

где k — постоянная Больцмана, T — абсолютная температура, Y_e — эквивалентная проводимость нагрузки: $Y_e = 1/R_e$, а R_e — эквивалентное активное сопротивление нагрузки. В данной схеме R_e — это активное сопротивление *LC*-контура на резонансной частоте. Для оценки влияния шумов усилителя дополнительно введем в расчетную формулу коэффициент шума β , который показывает во сколько раз уровень шума с учетом усилителя, превышает уровень теплового шума нагрузки фотодиода. Суммарный приведенный уровень шумового тока в цепи нагрузки фотодиода рассчитаем по формуле

$$\sqrt{\overline{i_{\Sigma}^2}} = \sqrt{\overline{i_{\mathcal{A}\Pi}^2} + \overline{i_T^2}} = \sqrt{(2ei_{0(=)} + 4kTY_e\beta)\Delta F}.$$
 (11)

Отношение амплитуды тока сигнала с частотой ПАВ, F к среднеквадратической величине шумового тока в нагрузке фотодетектора с учетом формул (3), (6), (11) можно рассчитать, по формуле

$$\frac{\dot{l}_{0F}}{\sqrt{\frac{2eS_{P-i}P_{\ni\Phi}q_{0F}}{\sqrt{\left(2eS_{P-i}P_{\ni\Phi}q_{0(=)} + \frac{4kT}{R_e}\beta\right)\Delta F}}}} 4\pi \frac{h_w}{\lambda}\cos\Theta_{\text{пад}}.$$
(12)

Сопоставим величины первого и второго слагаемых в скобках в знаменателе выражения (12). Положим: $S_{P-i} = 0.25$ A/BT, $q_{0(=)} = 0.5$, $P_{9\phi} = 7$ мBT, $R_e = 10^3$ Ом, тогда при $\beta = 1$ получаем, что первое слагаемое в знаменателе превышает второе слагаемое на порядок. Таким образом, при эффективной мощности зондирования более 7 мВт и при достаточно высоком (порядка 1 кОм и более) эквивалентном сопротивлении нагрузки, при расчетах можно исключить второе слагаемое в знаменателе. Тогда формула (12) примет вид

$$\frac{i_{0F}}{\sqrt{i_{\Sigma}^{2}}} \approx \frac{\sqrt{S_{P-i}}q_{0F}}{\sqrt{2eq_{0(=)}}} \sqrt{\frac{P_{3\Phi}}{\Delta F}} \frac{4\pi}{\lambda} h_{w} \cos\Theta_{\text{nag}}.$$
 (13)

В формуле (13) учтен только дробовый шум, а шум нагрузки отброшен. Это приближение выполняется в случае применения нагрузки с высоким эквивалентным сопротивлением. Например, *LC*-контур на резонансной частоте имеет эквивалентное сопротивление, равное

$$R_e = 2\pi F_0 L Q = \frac{1}{2\pi F_0 C} Q = \frac{1}{2\pi \Delta F C},$$
 (14)

Рис. 4. Расчетные кривые зависимости отношения амплитуды полезного сигнала с частотой ПАВ к среднеквадратической величине шума на выходе канала лазерного считывания при полосе пропускания: $\Delta F = 1 \text{ M}\Gamma_{\text{H}}$.

где Q – добротность, L – индуктивность, C – емкость, ΔF – полоса пропускания – параметры колебательного контура. Оценки показывают, что на частотах F до 60 МГц вполне реально применить в качестве нагрузки колебательный LC-контур, у которого эквивалентное сопротивление на резонансной частоте будет порядка $R_e = 1$ кОм. Однако при повышении резонансной частоты эквивалентное сопротивление LC-контура будет быстро уменьшаться. Как видно из формулы (12), уменьшение сопротивления нагрузки фотодиода приводит к тому же эффекту увеличения шумов, что и увеличение коэффициента шума β .

На рис. 4 приведен ряд расчетных кривых зависимостей отношения сигнала к шуму на выходе схемы ЛС от мощности лазера. Как видно из этих графиков, отношение сигнала к шуму возрастет при увеличении мощности считывающего лазера. Кривые 1, 3 и 5 были рассчитаны при одинаковых значениях эквивалентного сопротивления нагрузки: $R_e = 1$ кОм, но при разных амплитудах ПАВ: $h_w =$ = 3 (1), 1 (3) и 0.3 Å (5). Кривая 2 рассчитана при условии, что амплитуда ПАВ равна $h_w = 1$ Å, но в предположении, что тепловые шумы нагрузки отсутствуют, а присутствует только дробовый шум. Из сравнения кривых 2 и 3 видно, что при эффективной мощности зондирующего излучения $P_{\rm ab} > 7$ мВт, кривая 3 приближается к кривой 2, т.е. к асимптоте дробового шума. Кривая 4 построена для амплитуды ПАВ, равной $h_w = 1$ Å, но при условии, что усилитель, подключенный к выходу, повышает уровень теплового шума в четыре раза ($\beta = 4$). Остальные данные для кривой 4 такие же, как и для кривой 3. Как видно из сравнения кривых 2, 3 и 4, в области, где эффективная мощность зондирующего излучения превышает 7 мВт, тепловые шумы нагрузки (при величине $R_e = 1$ кОм и $\beta = 4$)

незначительно влияют на отношение сигнала к шуму на выходе схемы ЛС, а основная доля шумов приходится на дробовые шумы фототока. Расчеты показывают, что при уменьшении величины сопротивления нагрузки в цепи фотодиода отношение сигнала к шуму уменьшается, и поэтому применение нагрузки фотодиода с низким сопротивлением нежелательно.

Связь между амплитудой волны h_w и мощностью ПАВ в расчете на единицу длины апертуры фронта ПАВ, P_a [Вт/м], определена формулой, приведенной в [2, с. 61]:

$$h_{w} = k_{P-h} \sqrt{\frac{P_{a}}{2\pi F_{w}}}$$

Величина коэффициента k_{P-h} для подложки, изготовленной из ниобата лития *YZ*-среза, равна $k_{P-h} = (5.23) \times 10^{-6}$ (размерность коэффициента $M\sqrt{\frac{M}{BT \times c}}$). Например, если мощность в расчете на единицу длины апертуры ВШП равна $P_a = 1$ Вт/м (1 мВт/мм), то при частоте 34.5 МГц расчетная амплитуда ПАВ на поверхности подложи из ниобата лития *YZ*-среза составит 3.5 × 10⁻¹⁰ м, т.е. 3.5 Å.

ЗАКЛЮЧЕНИЕ

Лазерное считывание радиосигналов по схеме с ОДР может в некоторых случаях заменить традиционный метод считывания сигналов с применением ВШП. Область частот ПАВ, в которой применение ЛС с ОДР не будет иметь значительных технических проблем — это несколько десятков мегагерц. Применение ЛС с ОДР дает возможность реализовать ряд новых качеств, которые не реализуются в традиционных схемах устройств, использующих считывание сигнала с помощью ВШП. Метод лазерного считывания позволяет полностью или почти полностью устранить эффект отражения ПАВ от считывающего устройства, а кроме того, дает возможность плавно изменять длительность задержки сигнала. В принципе применение данной схемы дает возможность считывать сигналы с аморфных подложек, которые не обладают пьезоэлектрическими свойствами. Для получения большого отношения сигнала к шуму на выходе канала ЛС с ОДР, при широкой полосе частот, порядка единиц мегагерц, необходимо, чтобы амплитуда гофра ПАВ составляла не менее 1 Å. Для считывания можно применять широко используемые полупроводниковые красные лазеры с небольшой мощностью, порядка 7...10 мВт. Вместе с тем следует отметить некоторые негативные стороны метода лазерного считывания: это введение в схему дополнительного элемента – лазера и необходимость некоторой настройки оптической схемы,

при этом устройство фактически перестает быть интегральным.

ПРИЛОЖЕНИЕ

Вывод соотношений, определяющих связь между амплитудой ПАВ и амплитудами колебаний мощности оптического излучения в дифракционных порядках в схеме лазерного зондирования ПАВ с ОДР.

Эквивалентная схема взаимодействия оптической волны с ОДР и ПАВ изображена на рис. 5. Стационарная ОДР с прямоугольным профилем рельефа создает неподвижную пространственную фазовую модуляцию (ПФМ) фронта оптической волны с амплитудой Φ_{M} . Наряду с этим, ПАВ также создает ПФМ с амплитудой Φ_{w} которая движется вдоль направления 0x со скоростью волны *V*. В результате наложения движущейся ПФМ на неподвижную ПФМ наблюдаются колебания мощности излучения в дифракционных порядках с частотой ПАВ, *F*.

Взаимодействие оптической волны с ОДР и с ПАВ эквивалентно прохождению волны через транспаранты, которые имеют комплексные функции пропускания: $t_g(x)$ – для ОДР,

$$\dot{t}_g(x) = \exp(i\Phi_{\rm M}(x)), \qquad (\Pi.1)$$

$$\Phi_{_{\mathrm{M}}}(x) = \begin{cases} +\Phi_{_{\mathrm{M}}} & \text{при } n\Lambda + 0 < x < \frac{\Lambda}{2} + n\Lambda, \\ -\Phi_{_{\mathrm{M}}} & \text{при } n\Lambda - \frac{\Lambda}{2} < x < 0 + n\Lambda, \end{cases} (\Pi.2)$$

и функцию пропускания $t_a(x) - для \Pi AB$:

$$i_{a}(x) = \exp[i\Phi_{w}\sin 2\pi\xi_{1}(x - Vt - x_{0})] =$$

$$= \exp[i\Phi_{w}\sin (2\pi\xi_{1}x - \Omegat - \varphi_{0})] \approx$$

$$\approx t + \frac{\Phi_{w}}{2}\exp(i2\pi\xi_{1}x)\exp[-i(\Omega t + \varphi_{0})] - (\Pi.3)$$

$$- \frac{\Phi_{w}}{2}\exp(-i2\pi\xi_{1}x)\exp[i(\Omega t + \varphi_{0})].$$

Здесь $\xi_1 = 1/\Lambda$ – пространственная частота ПАВ (Λ – длина волны ПАВ); V – скорость ПАВ; $\Omega = 2\pi F$ – круговая частота ПАВ; x_0 – начальное смещение, φ_0 – начальная фаза, Φ_w – амплитуда пространственной фазовой модуляции, вызванной ПАВ, $\Phi_w \ll 1$. Она связана с амплитудой рельефа ПАВ на поверхности подложки формулой

$$\Phi_{w} = 4\pi (h_{w}/\lambda) \cos \Theta_{\text{mag}},$$

где h_w – амплитуда ПАВ, λ – длина волны света, $\Theta_{\text{пад}}$ – угол падения света на ПАВ. Период ОДР при расчетах полагаем равным длине волны ПАВ. Далее перейдем к анализу пространственного спектра оптической волны, прошедшей через систему из двух периодических дифракционных решеток (ДР) с функциями пропускания (П.1)–(П.3).

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

Рис. 5. Эквивалентная схема для анализа схемы оптического зондирования ПАВ с ОДР, расположенной на подложке.

Разложим функцию пропускания фазовой ОДР (П.1), (П.2) в ряд Фурье, по гармоникам пространственной частоты ξ₁:

$$\dot{t}_g(x) = \sum_{k=-\infty}^{\infty} \dot{a}_k \exp(ik2\pi\xi_1 x). \tag{\Pi.4}$$

При условии, что форма рельефа — прямоугольная типа "меандр", у которой ширина выступа равна ширине впадины, и равна 0.5Л, коэффициенты Фурье ОДР равны

$$a_{0} = \cos\Phi_{M}, \quad a_{1} = \frac{2}{\pi}\sin\Phi_{M}, \quad a_{-1} = -\frac{2}{\pi}\sin\Phi_{M}, \quad (\Pi.5)$$
$$a_{2} = 0, \quad a_{k} = \frac{1}{\pi k} [\sin\Phi_{M} + \sin(\pi k - \Phi_{M})].$$

Выражение для пространственного спектра функции ОДР имеет вид

$$\dot{S}_{g}(\xi) = \int_{-\infty}^{\infty} \dot{t}(x) \exp(-i2\pi\xi x) dx =$$

$$= \sum_{-\infty}^{\infty} \dot{a}_{k} \int_{-\infty}^{\infty} \exp[-i2\pi(\xi - k\xi_{1})x] dx = (\Pi.6)$$

$$= \sum_{n=-\infty}^{\infty} \dot{a}_{k} \,\delta(\xi - k\xi_{1}).$$

Выражение для пространственного спектра функции ПАВ имеет вид

$$\dot{S}_{w}(\xi) = \sum_{n=-\infty}^{\infty} \dot{b}_{n} \delta(\xi - n\xi_{1}), \qquad (\Pi.7)$$

где

$$b_0 \cong 1, \quad b_1 = \frac{\Phi_w}{2} \exp[-i(\Omega t + \varphi_0)],$$

$$b_{-1} = -\frac{\Phi_w}{2} \exp[i(\Omega t + \varphi_0)], \qquad (\Pi.8)$$

$$b_2 \cong 0, \quad b_3 \cong 0.$$

Если на вход оптической схемы, изображенной на рис. 5, падает плоская волна с амплитудой, равной $a_{\text{вх}}$, то амплитуда выходного сигнала будет выражена через произведение функций пропускания двух решеток: $a_{\text{вых}} = a_{\text{вх}}t_g(x)t_w(x)$. Положим $a_{\text{вх}} = 1$. При этом пространственный спектр на выходе схемы, составленной из двух ДР, будет равен свертке спектров ДР, входящих в состав этой схемы:

$$\dot{S}_{\text{BMX}} = \dot{S}_{w} \otimes \dot{S}_{g} =$$

$$= \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \dot{a}_{k} \dot{b}_{n} \delta(\xi - k\xi_{1} - n\xi_{1}) = (\Pi.9)$$

$$= \sum_{m=-\infty}^{\infty} \dot{A}_{m} \delta(\xi - m\xi_{1}),$$

где *m* = *k* + *n* – номер дифракционного порядка, а коэффициент *A_m* – амплитуда волны в данном ди-фракционном порядке:

$$\dot{A}_m = \sum_{k=-\infty}^{\infty} \dot{a}_k \, \dot{b}_{m-k}. \tag{\Pi.10}$$

Для описания реальной оптической схемы с конечным размером апертуры введем "окно" с ограниченными размерами в плоскости ДР. Пусть функция пропускания окна по координате 0x -это f(x), а фурье-образ этой функции – $F(\xi)$. Тогда выражение (П.9), определяющее пространственный спектр на выходе схемы, будет иметь вид

$$\dot{S}_{\scriptscriptstyle \rm Bbix} = \dot{S}_{\scriptscriptstyle W} \otimes \dot{S}_{\scriptscriptstyle g} \otimes F(\xi) = \sum_{m=-\infty}^{\infty} \dot{A}_m F(\xi - m\xi_1). \ (\Pi.11)$$

Отношение мощности излучения P_m в дифракционном порядке с номером *m* к мощности излучения на входе схемы $P_{\rm BX}$ равно:

$$P_m/P_{\rm BX} = \dot{A}_m \overset{*}{A}_m. \tag{\Pi.12}$$

Нулевой порядок дифракции. Положив m = 0, при условии, что коэффициенты при четных гармониках функции ОДР равны нулю, $a_2 = 0$, $a_4 = 0$, ..., и при условии, что $b_n = 0$ при n > 1, что соответствует условию $\Phi_w \ll 1$, из (П.10) получим выражение для амплитуды волны в нулевом порядке дифракции:

$$\dot{A}_0 = a_0 b_0 + a_1 b_{-1} + a_{-1} b_1 \approx$$

$$\approx \cos \Phi_{\rm M} - \Phi_{\rm W} \frac{2}{\pi} \sin \Phi_{\rm M} \cos(\Omega t + \phi_0). \qquad (\Pi.13)$$

Формула мощности излучения в нулевом порядке (при $(\Phi_a)^2 \ll 1$) имеет вид

$$P_0/P_{\rm BX} = \dot{A}_0 \overset{*}{A}_0 = (\Pi.14)$$
$$= \cos^2 \Phi_{\rm M} - \Phi_w \left(\frac{2}{\pi} \sin 2\Phi_{\rm M}\right) \cos(\Omega t + \varphi_0).$$

Первый член этого выражения — постоянная составляющая мощности излучения в нулевом порядке дифракции. Второй член в (П.14) описывает колебания мощности излучения на выходе схемы с частотой, равной частоте ПАВ, *F*. После фотодетектора из этих колебаний формируется полезный радиосигнал. Амплитуда колебаний пропорциональна величине Φ_w , а следовательно, и амплитуде ПАВ, h_w . Как следует из формулы (П.14), коэффициент эффективности детектирования ПАВ равен:

$$q_{0F} = \frac{2}{\pi} \sin 2\Phi_{_{\rm M}}.$$
 (П.15)

Как видно из формулы (П.15), *максимальное* значение q_{0F} достигается при $\Phi_{\rm M} = 45^{\circ}$, когда $\sin 2\Phi_{\rm M} = 1$. При этом $q_{0F} = 0.63$.

Первый порядок дифракции. Положив *m* = 1, при тех же условиях получим

$$A_{1} = a_{0}b_{1} + a_{1}b_{0} =$$

$$= (\cos\Phi_{M})\frac{\Phi_{W}}{2}\exp(i\Omega t) + \frac{2}{\pi}\sin\Phi_{M}.$$
(II.16)

Формула для расчета мощности излучения в первом порядке имеет вид

$$P_{1}/P_{\rm BX} = \dot{A}_{1} \overset{*}{A}_{1} = \frac{4}{\pi^{2}} \sin^{2} \Phi_{\rm M} +$$

+ $\Phi_{w} \left(\frac{1}{\pi} \sin 2 \Phi_{\rm M}\right) \cos(\Omega t + \phi_{0}).$ (II.17)

Здесь также видим, что существуют колебания мощности с частотой ПАВ, с амплитудой, пропорциональной Φ_w . Коэффициент эффективности детектирования ПАВ в два раза меньше коэффициента для нулевого порядка, и он равен:

$$q_{l(F)} = \frac{1}{\pi} \sin 2\Phi_{M}.$$
 (П.18)

Амплитуду колебаний мощности излучения в нулевом порядке дифракции рассчитываем по формуле

$$P_{0F} = P_{\rm Bx} R q_{0F} \Phi_w = P_{9\phi} q_{0F} \Phi_w =$$

= $P_{9\phi} q_{0F} 4\pi (h_w/\lambda) \cos \Theta_{\rm mag}$ (II.19)

и по аналогичной формуле в первом порядке:

$$P_{1F} = P_{\text{BX}} R q_{1F} \Phi_w = P_{3\phi} q_{1F} \Phi_w =$$

= $P_{3\phi} q_{1F} 4 \pi (h_w / \lambda) \cos \Theta_{\text{mag.}}$ (II.20)

Как видно из сравнения этих формул с учетом (П.15) и (П.18) амплитуда сигнала в нулевом порядке ровно в два раза больше, чем амплитуда сигнала в первом порядке дифракции. При этом максимальную амплитуду сигнала можно получить при оптимальном параметре ОДР $\Phi_{\rm M} = 45^{\circ}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Поверхностные акустические волны / Под ред. А. Олинера. М.: Мир, 1981.
- 2. Фильтры на поверхностных волнах / Под ред. Г. Мэтьюза. М.: Радио и связь, 1981.
- 3. *Морган Д.* Устройства обработки сигналов на поверхностных акустических волнах. М.: Радио и связь, 1990.
- 4. *Речицкий В.И.* Акустоэлектронные радиокомпоненты. М.: Сов. радио, 1980.
- 5. *Komotskii A.V., Black T.D.* // J. Appl. Phys. 1981. V. 52. № 1. P. 129.

- Бессонов А.Ф., Дерюгин Л.Н., Комоцкий В.А., Котюков М.В. // Оптика и спектроскопия. 1984. Т. 56. № 6. С. 1059.
- Whitman R.L., Korpel A. // Appl. Opt. 1969. V. 8. № 8. P. 1567.
- 8. Лин Э., Пауэлл К. // ТИИЭР. 1970. Т. 58. № 12. С. 72.
- 9. Stegeman G.J. // IEEE Trans. 1976. V. SU-23. № 1. P. 33.
- 10. Гранкин И.М., Запунный А.М., Кулаева И.Г. // Зарубеж. радиоэлектрон. 1984. № 11. С. 38.
- Black T.D., Komotskii V.A., Larson D.A. // Proc. IEEE 1984 Ultrasonics Symp. Dallas. 14–16 Nov. N.Y.: IEEE, 1984. IEEE. P. 274.
- Komotskii V.A., Korolkov V.I., Kashenko N.M. // Proc. IV Int. Symp. on Surface Waves in Solid and Layered Structures. SPb:. St-Petersburg State University of Aerospace Instrumentation. 1994, P. 389.
- Комоцкий В.А. Основы когерентной оптики и голографии. Конспект лекций. М.: Изд-во РУДН, 2011.