# ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАЛИОВОЛН

УДК 538.566.2;621.372.8

# СВЯЗАННЫЕ РЕЗОНАНСЫ ПЛАЗМОНОВ В ЛИНЕЙНОМ КЛАСТЕРЕ ИЗ ШЕСТИ СЕРЕБРЯНЫХ НАНОЦИЛИНДРОВ

© 2022 г. А. П. Анютин\*

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация

\*E-mail: anioutine@mail.ru
Поступила в редакцию 28.05.2021 г.
После доработки 28.05.2021 г.
Принята к публикации 30.06.2021 г.

Рассмотрена двумерная задача дифракции плоской волны светового диапазона, (300 нм <  $\lambda$  < 900 нм,  $\lambda$  — длина волны) на линейном кластере, состоящем из шести одинаковых серебряных наноцилиндров. Строгими численными методами рассчитаны частотные характеристики поперечника рассеяния, диаграммы рассеяния и пространственное распределение поля плазмонов вблизи цилиндров. Исследовано влияние угла падения, радиуса цилиндров и расстояния между цилиндрами на спектры поперечника рассеяния, диаграмму рассеяния и структуру ближнего поля плазмонов. Показано, что структура спектра нормированного поперечника рассеяния  $k\sigma_S$  — число его максимумов (резонансов), эффект вырождения максимумов, а также характер связанных колебаний и резонансов плазмонов существенно зависит от геометрических параметров кластера.

**DOI:** 10.31857/S003384942206002X

## **ВВЕДЕНИЕ**

Как известно, в нанопроводах (цилиндрах) из благородных металлов (например, из серебра или золота) в оптическом диапазоне волн существуют резонансы поверхностных волн (плазмон-поляритонов) [1—3]. Поэтому такие нанопровода находят применение в спектроскопии, а также используются в качестве сенсоров. Спектры рассеяния и поглощения на одиночных цилиндрах с прямоугольной формой поперечного сечения рассчитаны в [4—6]. В работах [5—11] исследовано рассеяние на цилиндрах прямоугольного, круглого или эллиптического сечения из золота, серебра и метаматериала. Случаи линейных кластеров из двух или трех цилиндров из серебра рассматривался в [4—6, 12—14].

Цель данной работы состоит в строгом электродинамическом исследовании особенностей резонансного рассеяния плоской волны светового диапазона длин волн линейным кластером, образованным шестью одинаковыми серебряными цилиндрами.

# 1. ФОРМУЛИРОВКА ЗАДАЧИ. МЕТОД РЕШЕНИЯ

Рассмотрим двумерную задачу дифракции плоской электромагнитной волны на линейном кластере (структуре), состоящем из шести одинаковых серебряных наноцилиндров. Считается, что

цилиндры расположены вдоль оси x декартовой системы координат (x,y) на одинаковом расстоянии h=2a+d и имеют одинаковые радиусы  $a_l=a$  (l=1,2,...,6) (рис. 1). Предполагается, что длина электромагнитной волны  $\lambda$  принадлежит световому диапазону длин волн  $(\lambda \approx 300...900 \, \mathrm{hm})$ .

Геометрия исследуемой задачи представлена на рис. 1. Относительную диэлектрическую проницаемость серебра  $\varepsilon_{\rm Ag}=\varepsilon'-i\varepsilon''\equiv {\rm Re}(\varepsilon_{\rm Ag})-i\,{\rm Im}(\varepsilon_{\rm Ag})$  в световом диапазоне длин волн определяли путем аппроксимации кубическими сплайнами экспериментальных данных работы [15]. Отметим, что использование результатов работы [15], так же как и теории Друде [1], накладывает ограничение на минимальный диаметр 2a серебряных цилиндров 2a>10 нм, так как при 2a<10 нм необходимо учитывать явления пространственной дисперсии [1].

Таким образом, с точки зрения классической электродинамики речь идет о решении задачи дифракции плоской электромагнитной волны на шести диэлектрических цилиндрах.

Исследуем случай TM-поляризации, когда в электромагнитном поле присутствуют компоненты  $H_z(x,y)$ ,  $E_x(x,y)$ ,  $E_y(x,y)$ . При этом задача дифракции сводится к нахождению скалярной



Рис. 1. Геометрия задачи: 1...6 — номера цилиндров.

функции  $U(x, y) = H_z(x, y)$ , а волновое поле падающей плоской волны задается выражением

$$U^{0}(x,y) = \exp(-ikx\cos\varphi_{0} - iky\sin\varphi_{0}), \qquad (1)$$

где угол  $\phi_0$  определяет направление распространения волны. В работе используется гауссовская система физических единиц, зависимость от времени выбрана в виде  $\exp(i\omega t)$ ,  $k=2\pi/\lambda=\omega/c-$  волновое число вакуума,  $\omega-$  круговая частота, c- скорость света в вакууме.

Полное поле U(x, y) в кусочно-однородной среде удовлетворяет уравнению Гельмгольца

$$\frac{\partial^2 U(x,y)}{\partial x^2} + \frac{\partial^2 U(x,y)}{\partial y^2} + k^2 \varepsilon(x,y) U(x,y) = 0, \quad (2)$$

где диэлектрическая проницаемость  $\varepsilon(x,y)$  среды определяется выражением

$$\varepsilon(x,y) = \begin{cases} \varepsilon_{Ag}, & \text{если } \frac{(x-h_l)^2}{a^2} + \frac{y^2}{a^2} \le 1, \\ h_l = (l-1)h, l = 1, 2, \dots, 6; \\ 1, & \text{если } \frac{(x-h_l)^2}{a^2} + \frac{y^2}{a^2} > 1, \\ h_l = (l-1)h, l = 1, 2, \dots, 6. \end{cases}$$
(3)

Уравнение (2) необходимо дополнить условием непрерывности величин

$$U(x,y), \ \frac{1}{\varepsilon(x,y)} \frac{\partial U(x,y)}{\partial N}$$
 (4)

на границах цилиндров, где N — нормаль к границам цилиндров.

Полное поле вне цилиндров состоит из падающего  $U^0$  и рассеянного  $U^s$  полей

$$U = U^0 + U^s, (5)$$

где рассеянное поле  $U^s$  представляет собой сумму полей  $U^s$ , рассеянных каждым цилиндром

$$U^{s} = \sum_{l=1}^{6} U_{l}^{s}.$$
 (6)

Отметим, что в цилиндрической системе координат ( $x = r\cos \varphi$ ,  $y = r\sin \varphi$ ) рассеянное  $U^s$  поле должно удовлетворять в дальней зоне условию излучения

$$U^{s} \approx \Phi(\varphi) \sqrt{\frac{2}{\pi k r}} \exp(-ikr + i\pi/4), \quad kr \to \infty, \quad (7)$$

где  $\Phi(\phi)$  — диаграмма рассеяния кластера. Полное сечение рассеяния  $\sigma_s$  выражается через решение краевой задачи (1)—(5) по формуле

$$\sigma_s = \frac{2}{\pi k} \int_0^{2\pi} |\Phi(\varphi)|^2 d\varphi. \tag{8}$$

## 2. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Численное решение краевой задачи проводили модифицированным методом дискретных источников [16—18]. Точность численного решения оценивали невязкой граничных условий  $\Delta$  в линейной норме на цилиндрах, и во всех расчетах она была не хуже чем  $\Delta = 10^{-3}$ .

Рассмотрим сначала случай кластера, когда радиусы цилиндров из реального серебра полагались равными a=25 нм. На рис. 2a-2в представлены результаты расчетов спектра нормированного поперечника рассеяния  $k\sigma_S$  для трех углов падения плоской волны  $\phi=0,\pi/4$  и  $\pi/2$ . Расстояния между цилиндрами на всех рисунках кa=0.05a,0.1a,0.2a,0.5a,1a и 2a.



**Рис. 2.** Спектр поперечника рассеяния для линейного кластера из шести одинаковых серебряных наноцилиндров при трех углах падения плоской волны  $\varphi_0 = 0$  (а),  $\pi/4$  (б),  $\pi/2$  (в) и различных расстояниях между цилиндрами:  $\kappa a = 0.05a$  (I), 0.1a (I), 0.2a (I), 0.5a (

Из рис. 2 видно, что кривые спектра нормированного поперечника рассеяния  $k\sigma_S$  содержат максимумы (резонансы), число и положение которых зависят от угла падения плоской волны и расстояния между цилиндрами. Так, при угле падения плоской волны  $\phi_0 = 0$  и  $\kappa a = 0.05a$  первый максимум поперечника рассеяния  $k\sigma_S$  располагается при



**Рис. 3.** Спектр поперечника рассеяния для линейного кластера из шести одинаковых серебряных наноцилиндров при угле падения плоской волны  $\pi/4$ ,  $\kappa = 0.2$  и радиусах цилиндров a = 25 (1), 50 (2), 75 (3), 100 нм (4).

 $\lambda \approx 410$  нм (см. рис. 2а), при  $\phi_0 = \pi/4 - \lambda \approx 450$  нм (см. рис. 2б), а при  $\phi_0 = \pi/2 - \lambda \approx 500$  нм (см. рис. 2в). Увеличение ка приводит к смешению резонансных максимумов в сторону меньших длин волн и уменьшению их числа (при ка = 2a остается только один максимум  $k\sigma_s$ ). Отметим, что характер поведения процесса уменьшения числа максимумов свидетельствует о наличии процесса вырождения резонансов плазмонов.

На рис. 3 приведены результаты расчетов спектра нормированного поперечника рассеяния  $k\sigma_S$  для кластера с параметрами  $\kappa a=0.2a$  при угле падения плоской волны  $\phi_0=\pi/4$  и четырех значениях радиуса цилиндров:

a=25, 50, 75 и 100 нм. Из представленных результатов следует, что каждая кривая имеет "главный" максимум, значения которого увеличиваются и смещаются в сторону больших длин волн при увеличении радиуса цилиндров.

Выше была рассмотрена интегральная характеристика рассеянного поля, теперь обсудим структуру ближнего поля кластера при его различных параметрах.

На рис. 4a-4в изображены пространственные распределения линий равных амплитуд компоненты магнитного поля  $H_z$  в линейном кластере из шести одинаковых серебряных наноцилиндров при радиусе цилиндра a=25 нм, угле падения плоской волны  $\phi_0=0$ , расстоянии между цилиндрами  $\kappa a=0.1a$  и трех разных длинах волн: двух резонансных  $\lambda=390.2$  и 356.64 нм и одной нерезонансной  $\lambda=600.2$  нм. Отметим, что при таком угле падения падающая волна "освещает" первый цилиндр и "бежит" вдоль линейного кластера, взаимодействуя поочередно с каждым ци-



**Рис. 4.** Пространственное распределение линий равных амплитуд компоненты магнитного поля  $H_z$  в линейном кластере из шести одинаковых серебряных наноцилиндров при радиусе цилиндра a=25 нм, угле падения плоской волны  $\phi_0=0$ , параметре  $\kappa=0.1$  и двух резонансных длинах волн  $\lambda=390.2$  (a), 356.64 нм (б) и нерезонансной длине волны  $\lambda=600$  нм (в).

линдром. Из представленных результатов следует, что структуры ближнего поля кластера в резонансном и нерезонансном случаях существенно различаются друг от друга. Так, в резонансных случаях (см. рис. 4а, 4б) наблюдаются связанные резонансы, возникающие только между частями двух соседних цилиндров, лежащих друг против друга. В нерезонансном случае (см. рис. 4в) наблюдаем взаимодействие плазмонов как между соседними цилиндрами, так и цилиндрами 1—6, 2—6, 2—5, 3—5.

На рис. 5a-5в изображены пространственное распределение линий равных амплитуд компоненты магнитного поля  $H_z$  в том же самом линейном кластере но при угле падения плоской волны  $\phi_0 = \pi/4$  и двух резонансных длинах волн  $\lambda = 354.9$ 

и 418.4 нм и нерезонансной  $\lambda$  = 600 нм. При таком падении плоской волны "освещается" вся нижняя часть всех цилиндров кластера. Из рис. 5 видно, что в этом случае изолированные связанные резонансы между двумя соседними цилиндрами уже не имеют место и заменяются на связанные резонансы, объединяющие несколько цилиндров. В нерезонансном случае (см. рис. 5в) структура ближнего поля напоминает рассмотренный выше нерезонансный случай падения плоской волны  $\phi_0$  = 0.

Пространственное распределение линий равных амплитуд компоненты магнитного поля  $H_z$  в том же самом линейном кластере, но при нормальном угле падения плоской волны  $\phi_0 = \pi/2$  и длинах волн  $\lambda = 350$  и 410 нм представлены соот-



**Рис. 5.** Пространственное распределение линий равных амплитуд компоненты магнитного поля  $H_z$  в линейном кластере из шести одинаковых серебряных наноцилиндров при радиусе цилиндра a=25 нм, угле падения плоской волны  $\phi_0=\pi/4$ , параметре  $\kappa=0.1$ , двух резонансных длинах волн  $\lambda=354.9$  (a), 418.4 нм (б) и нерезонансной  $\lambda=600.2$  нм (в).

ветственно на рис. 5а, 5б, а для кластера с расстоянием между цилиндрами  $\kappa a=1a$  на резонансной длине волны  $\lambda=360$  нм — на рис. 5в. Отметим, что при длине волны  $\lambda=350$  нм наблюдается минимум нормированного поперечника рассеяния  $k\sigma_S$ , а при длине волны  $\lambda=410$  нм — его максимум (см. рис. 2в, кривая 3). Как видно из рис. 5а, при таком падении плоской волны наиболее сильно связанные резонансы проявляются в первых двух и последних двух (крайних) цилиндрах. Структура ближнего поля в резонансном случае для расстояний между цилиндрами  $\kappa a=0.2a$  и 1.0a существенно различается. Так, при  $\kappa a=0.2a$  связан-

ные резонансы возбуждаются только в средней части кластера (цилиндры 2-5, см. рис. 1) и не возбуждаются в крайних цилиндрах (1 и 6). В случае  $\kappa a = 1a$  связанные резонансы возбуждаются во всех цилиндрах, но наиболее сильно — в первых двух и последних двух цилиндрах.

Наконец обсудим результаты расчетов диаграмм рассеяния. На рис. 7а представлены диаграммы рассеяния для случая кластера с параметрами a=25 нм, угле падения плоской волны  $\phi_0=0$ ,  $\kappa a=0.1a$  и двух резонансных длинах волн  $\lambda=390.2$  и 356.64 нм и нерезонансной длине волны  $\lambda=600.2$  нм.



**Рис. 6.** Пространственное распределение линий равных амплитуд компоненты магнитного поля  $H_z$  в линейном кластере из шести одинаковых серебряных наноцилиндров при радиусе цилиндра a=25 нм, угле падения плоской волны  $\phi_0=\pi/2$ , параметре  $\kappa=0.2$  и длинах волн  $\lambda=350$  нм (а),  $\lambda=410$  нм (б) и параметре  $\kappa=1$  и  $\lambda=360$  нм (в).

Из представленных результатов видно, что диаграмма рассеяния имеет только два лепестка как в резонансных, так и в нерезонансном случае. При этом направления максимумов диаграммы рассеяния соответствуют углам  $\phi = 0$ ,  $\pi$ . Отсутствие большего числа лепестков связано с отмеченным выше эффектом вырождения ближнего поля кластера. На рис. 76 представлены расчеты диаграмм рассеяния для случая такого же кластера, но при угле падения плоской волны  $\phi_0 = \pi/4$ , двух резонансных длинах волн  $\lambda = 354.9$ , 418.4 нм и одной нерезонансной длине волны  $\lambda = 600$  нм. Здесь диаграммы рассеяния для резонансных и нерезонансного случаев отличаются числом лепестков. Следует отметить, что направления максимумов диаграмм рассеяния в резонансных случаях отличаются друг от друга. Расчеты диаграммы рассеяния при нормальном угле падения плоской волны  $\phi_0 = \pi/2$  и длинах волн  $\lambda = 350, 410$  и 700 нм

представлены на рис. 7в. В этом случае диаграммы рассеяния имеют только два лепестка и максимумы излучения в направлениях углов  $\phi = \pm \pi/2$ .

#### ЗАКЛЮЧЕНИЕ

Из представленных выше результатов следует, что в световом диапазоне длин волн дифракция *ТМ*-поляризованной плоской волны на линейном кластере, состоящем из шести серебряных круговых наноцилиндров одинакового диаметра, сопровождается образованием плазмонов, их вырождением и наличием связанных резонансов. Показано, что на эти процессы, а также на спектры поперечника рассеяния и диаграммы рассеяния оказывают существенное влияние угол падения плоской волны, величина радиуса цилиндров и расстояния между цилиндрами.



**Рис. 7.** Диаграмма рассеяния кластера из шести одинаковых серебряных наноцилиндров при радиусе цилиндра a=25 нм,  $\kappa=0.1$ ; а)  $\phi_0=0, \lambda=390.2$  (*I*), 356.64 (*2*) и 600 нм (*3*); б)  $\phi_0=\pi/4, \lambda=354.9$  (*I*), 418.4 (*2*) и 600.2 нм (*3*); в)  $\phi_0=\pi/2, \lambda=350$  (*I*), 410 (*2*), 700 нм (*3*).

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена за счет бюджетного финансирования в рамках государственного задания по теме 0030-2019-0014.

#### КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Климов В.В.* Наноплазмоника. М.: Физматлит, 2009.
- Velichko E.A., Nosich A.I. // Opt. Lett. 2013. V. 38. № 23. P. 4978.
- 3. Анютин А.П., Коршунов И.П., Шатров А.Д. // РЭ. 2015. Т. 60. № 9. С. 896.
- 4. *Sondergaard T., Bozhevolnyl S.I.* // Phys. Stat. Sol. (b). 2008. V. 245. № 1. P. 9.
- Sondergaard T. // Phys. Stat. Sol. (b). 2007. V. 244.
   № 10. P. 3448.
- 6. *Giannini V., Sánchez-Gil J. A.* // J. Opt. Soc. Amer. A. 2007. V. 24. № 9. P. 2822.

- 7. Александров Д.В., Анютин А.П., Коршунов И.П., Шатров А.Д. // Изв. вузов. Радиофизика. 2017. Т. 60. № 2. С. 210.
- 8. Анютин А.П., Коршунов И.П., Шатров А.Д. // РЭ. 2017. Т. 62. № 1. С. 67.
- 9. Анютин А.П., Коршунов И.П., Шатров А.Д. // РЭ. 2017. Т. 62. № 12. С. 1197.
- 10. Анютин А.П., Коршунов И.П., Шатров А.Д. // РЭ. 2015. Т. 60. № 5. С. 513.
- 11. *Li K., Stockman M.I., Bergman D.J.* // Phys. Rev. Lett. 2003. V. 91. № 22. P. 22401-1.
- 12. Анютин А.П. // РЭ. 2019. Т. 64. № 10. С. 962.
- 13. Анютин А.П. // РЭ. 2019. Т. 64. № 11. С. 1088.
- 14. Анютин А.П. // РЭ. 2020. Т. 65. № 3. С. 240.
- 15. *Johnson P.B.*, *Christy R.W.* // Phys. Rev. B. 1972. V. 6. № 12. P. 4370.
- 16. Кюркчан А.Г., Минаев С.А., Соловейчик А.Л. // РЭ. 2001. Т. 46. № 6. С. 666.
- 17. Anyutin A.P., Stasevich V.I. // J. Quant. Spectroscopy and Radiation Transfer. 2006. V. 100. № 1–3. P. 16.
- 18. Кюркчан А.Г., Смирнова Н.И. Математическое моделирование в теории дифракции с использованием априорной информации об аналитических свойствах решения. М.: Медиа Паблишер, 2014.