ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 53.083

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ЛИНИИ НУТАЦИИ В ЯДЕРНО-МАГНИТНЫХ МАГНИТОМЕТРАХ И РАСХОДОМЕРАХ С ТЕКУЩЕЙ ЖИДКОСТЬЮ

© 2023 г. В. В. Давыдов^{а, b, c,} *, С. Э. Логунов^b, Д. С. Проводин^a, Р. В. Давыдов^{a, b, c}

^а Санкт-Петербургский государственный политехнический университет,

ул. Политехническая, 29, Санкт-Петербург, 195251 Российская Федерация

^b Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича,

пр. Большевиков 22, Санкт-Петербург, 193232 Российская Федерация

с Всероссийский научно-исследовательский институт фитопатологии,

р.п. Большие Вяземы Московской обл., 143050 Российская Федерация

**E-mail: Davydov_vadim66@mail.ru* Поступила в редакцию 10.04.2022 г. После доработки 15.02.2023 г. Принята к публикации 15.02.2023 г.

Рассмотрен механизм формирования линии нутации в текущей жидкости. Разработаны новые уравнения движения продольной и поперечных компонент вектора намагниченности в катушке нутации, в которых учтена неоднородность магнитного поля ΔH_0 в зоне воздействия радиочастотного поля H_1 на текущую жидкость. В уравнениях также учтен характер изменения значения неоднородности магнитного поля ΔH_0 при движении жидкости по катушке нутации. Представлены результаты экспериментальных исследований формы линии нутации. Проведено сравнение теоретических расчетов с экспериментальными данными.

DOI: 10.31857/S0033849423070021, EDN: WOHJWM

ВВЕДЕНИЕ

В настоящее время приборы, принцип работы которых основан на явлении ядерного магнитного резонанса (ЯМР), нашли большое применение при проведении исследований [1-6]. Особое место среди них занимают ЯМР-расходомеры-релаксометры на текущей жидкости, которые используются для измерения расхода q и времен продольной T_1 и поперечной T₂ релаксации агрессивных и опасных сред (например, бензол или серная кислота), а также биологических растворов, при работе с которыми требуется соблюдение условий стерильности [6-9]. Кроме того, ЯМР-расходомеррелаксометр является одним из основных измерительных устройств для контроля работы различных систем (например, охлаждения в атомной энергетической установки как на атомной электрической станции, так и на подвижном объекте идр.) [10—13].

Внесением незначительных изменений в электронную часть измерительной схемы можно преобразовать расходомер-релаксометр в нутационный ЯМР-магнитометр (тесламетр) для измерения индукции и неоднородности магнитного поля [14–16]. Полученный прибор обладает высокой точностью (индукция магнитного поля определяется по частоте ядерного резонанса), не нуждается в предварительной градуировке, осуществляет измерения в реальном времени и прост в эксплуатации [14—16]. Высокие метрологические характеристики позволили его ранее использовать в качестве первичного [17] и вторичного [18] средства измерения магнитной индукции. На основе нутационного ЯМР-магнитометра [19] был создан государственный специальный эталон единицы магнитной индукции [20].

Для проведения измерений физических величин в ЯМР-расходомерах-релаксометрах и ЯМРмагнитометрах с текущей жидкостью используется зависимость амплитуды регистрируемого сигнала ЯМР в анализирующем устройстве от частоты f_n поля B_1 (линия нутации), которое воздействует на текущую жидкость в катушке нутации, размещенной на некотором расстоянии от магнитной системы анализирующего устройства [14, 21–23].

В последние десятилетия ЯМР-магнитометры с текущей жидкостью получили широкое применение для контроля параметров сильного неоднородного поля с индукцией более 1 Тл и неоднородностью 0.1 см⁻¹ в ускорителях частиц, в спек-

трометрах высокого разрешения, в которых для создания магнитного поля применяется система. состоящая из магнитных квадрантов, нуждающихся в центровке, а также вблизи мощной компактной электростанции или специальных трансформаторов - преобразователей различного назначения на судах с атомной энергетической установкой [14, 24]. Следует отметить, что контроль параметров магнитного поля в этих случаях приходится проводить в условиях сильных электромагнитных, а также других помех различного рода. Кроме того, иногда контроль магнитного поля на ускорителях или кораблях осуществляется в зонах с повышенным радиационным воздействием [24]. Все это создает большие проблемы для применения оптических датчиков [25-27], а также других типов магнитометров [28].

В настоящее время ЯМР-магнитометры на текущей жидкости являются единственными приборами, которыми можно в таких условиях проводить измерения параметров магнитного поля с погрешностью не выше 1%. Это обусловлено тем, что датчик (катушка нутации), в котором происходит определение параметров магнитного поля, может быть размешен на расстоянии более 100 м от расположения остальной части магнитометра [14, 24]. Информацию о параметрах магнитного поля от катушки нутации в систему регистрации переносит быстро протекающая намагниченная жидкость. Регистрация сигнала ЯМР от намагниченной жидкости осуществляется бесконтактным способом [14, 22-24]. Это обеспечивает развязку между катушкой нутации и остальной частью прибора, которая размещена в зоне, где влияние помех незначительно, а также нет радиашионного воздействия.

При разработке новых или модернизации действующих ЯМР-магнитометров необходимо выбрать оптимальные параметры катушки нутации (в первую очередь геометрические размеры), а также параметры электронных схем для создания полем B_1 инверсии намагниченности в текущей жидкости. Как показали проведенные нами исследования, геометрические размеры катушки нутации, особенно в условиях сильных неоднородных магнитных полей, оказывают существенное влияние на погрешность измерений [14–16, 22, 23].

Используемая в настоящее время теория нутационной кинетики на основе уравнений Блоха [29, 30] в случае размещения катушки нутации в сильном неоднородном магнитном поле не отображает физические процессы явления нутации в текущей жидкости, наблюдаемые в эксперименте. Это не позволяет произвести достоверную оценку величины поля B_1 , которая необходима для расчета оптимальных параметров катушки нутации, для проведения измерений в сильном неоднородном магнитном поле с погрешностью не выше 1.0%.

Цель данной работы — исследование нутационной кинетики в сильном неоднородном магнитном поле, которое даст возможность на основании анализа полученных результатов в уравнениях движения вектора намагниченности текущей жидкости в катушке нутации учесть влияние неоднородности магнитного поля. Это позволит получить зависимость формы линии нутации в условиях сильного неоднородного магнитного поля от индукции магнитного поля, расхода жидкости q, времен релаксации текущей жидкости, геометрических размеров катушки нутации для определения значения поля B_1 , соответствующего максимальной амплитуде регистрируемого сигнала ЯМР с инверсией намагниченности.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И РЕГИСТРАЦИЯ СИГНАЛОВ ЯМР С ИНВЕРСИЕЙ НАМАГНИЧЕННОСТИ В СИЛЬНЫХ НЕОДНОРОДНЫХ МАГНИТНЫХ ПОЛЯХ

Для исследования нутационной кинетики в сильном неоднородном магнитном поле была разработана экспериментальная установка (рис. 1). Жидкость от помпы 1 поступает в сосуд-поляризатор 3, расположенный в магните-поляризаторе 2 с индукцией $B_p = 0.781$ Тл, расстоянием между полюсами $d_p = 15$ мм и неоднородностью 0.5×10^{-2} см⁻¹. На выходе из магнита-поляризатора жидкость приобретает намагниченность M, ориентированную по направлению поля B_p [14-16, 22, 23] перпендикулярно направлению течения жидкости (см. рис. 1). Далее по соединительному участку трубопровода 6 с внутренним диаметром $d_{\rm T} = 2$ мм жидкость поступает в катушку нутации 4, размещенную в электромагните с индукцией $B_0 = 1.118$ Тл и минимальной неоднородностью 10^{-4} см⁻¹ при расстоянии между полюсами $d_e = 24$ мм (диаметр полюсов 150 мм). Расстояние между полюсами можно изменять от 4 до 32 мм. С помощью регулировочных винтов 7 и вспомогательных катушек 6 можно изменять неоднородность магнитного поля между полюсами магнита. Использование электромагнита позволяет воспроизводить реальные условия, при которых выполняются измерения ЯМР-магнитометром.

В катушке нутации под действием радиочастотного поля B_1 вектор намагниченности M поворачивается на некоторый угол φ_n относительно направления постоянного магнитного поля B_p . Это изменение ориентации вектора M сохраняется на всем пути течения жидкости от катушки нутации до катушки регистрирующего устройства по соеди-

Рис. 1. Структурная схема экспериментальной установки: *1* – помпа; *2* – магнит-поляризатор; *3* – сосуд-поляризатор; *4* – полюсные наконечники электромагнита; *5* – регулировочные винты электромагнита; *6* – катушки электромагнита; *7* – вспомогательные катушки; *8* – источник питания; *9* – катушка нутации; *10* – соединительный участок трубопровода; *11* – магнитный экран; *12*, *21* – радиочастотные генераторы; *13* – частотомер; *14* – катушка регистрации; *15* – сосуд-анализатор; *16* – магнит-анализатор; *17* – катушки модуляции; *18* – источник питания; *19* – устройство регистрации сигнала ЯМР; *20* – осциллограф; *22* – устройство управления и обработки.

нительному участку трубопровода *6* (в зоне протекания жидкости выполняется условие адиабатической теоремы). Регистрирующее устройство – это катушка регистрации ЯМР-сигнала *10*, расположенная в однородном поле B_a магнита-анализатора *9* (индукция $B_a = 0.352$ Т и неоднородность 10^{-4} см⁻¹, $d_a = 14$ мм) и подключенная к высокочастотному генератору слабых колебаний (автодину), входящему в состав схемы регистрации *11* [14–16].

На рис. 2 представлен зарегистрированный сигнал ЯМР от водопроводной воды при температуре $T = 18.1^{\circ}$ С с временами релаксации $T_1 = 1.24$ с, $T_2^* = 0.83$ мс. Катушка нутации, длина которой $L_n = 3$ мм и диаметр $d_n = 5$ мм, размещена в поле электромагнита с индукцией $B_0 = 1.118$ Тл и неоднородностью 0.0616 см⁻¹. Расход жидкости q = 1.82 мл/с (оптимальный) установлен по максимальному отношению сигнал/шум (С/Ш) регистрируемого сигнала ЯМР для данной конструкции

экспериментальной установки [14–16, 22–24]. Сигнал ЯМР на рис. 2а соответствует отсутствию радиочастотного поля B_1 в катушке нутации, на рис. 26 – условию инверсии намагниченности $\varphi_n = 180^\circ$, а значение B_1 соответствует максимальному отношению С/Ш регистрируемого сигнала ЯМР с инверсией намагниченности.

На рис. 3 в качестве примера представлены экспериментальные линии нутации для различных температур водопроводной воды *Т*. Величина индукции и неоднородность магнитного поля в зоне размещения катушки нутации в электромагните не изменялась. Катушка нутации размещена на каркасе. В этом случае контакт трубопровода с полюсами электромагнита исключен.

По ширине линии нутации $\Delta f_n = f_2 - f_1$ была измерена неоднородность магнитного поля в зоне размещения катушки нутации в электромагните, которая составила 0.0616 ± 0.0003 см⁻¹. Данный результат совпадает (в пределах погрешности из-

Рис. 2. Регистрируемые сигналы ЯМР от водопроводной воды при $f_{MOQ} = 50$ Гц: а – соответствует $B_1 = 0$, б – соответствует полной инверсии намагниченности.

мерений) с величиной неоднородности 0.0621 \pm \pm 0.0006 см^{-1}, измеренной с использованием измерителя магнитной индукции "Ш1-1", и 0.0620 \pm

 $\pm\,0.0006~{\rm см}^{-1},$ измеренной многофункциональным тесламетром DX-160 (компания Xiamen Dexing Magnet Tech. Co., Ltd).

Рис. 3. Форма линии нутации регистрируемого сигнала ЯМР от водопроводной воды при T = 14.2 (1), 18.1 (2) и 36.2°С (3); расход воды q = 1.82 мл/с; поле $B_1 = 0.18 \times 10^{-4}$ Тл.

2. УРАВНЕНИЯ ДВИЖЕНИЯ ВЕКТОРА НАМАГНИЧЕННОСТИ В КАТУШКЕ НУТАЦИИ

В теории нутационной кинетики для описания характера изменения продольных и поперечных компонент вектора намагниченности текущей жидкости в катушке нутации используется следующая система дифференциальных уравнений Блоха [29, 30]:

$$dM_x/dt + M_x/T_2 + \Delta\omega M_y = 0,$$

$$dM_y/dt + M_y/T_2 - \Delta\omega M_x + \gamma B_1 M_z = 0,$$
 (1)

$$dM_z/dt + M_z/T_1 - \chi_0 B_0/T_1 - \gamma B_1 M_y = 0,$$

где $\Delta \omega = (\omega_0 - \omega_n)$ — расстройка частоты генератора, подключенного к катушке нутации ω_n , от частоты прецессии намагниченности в поле B_0 ($\omega_0 = \gamma B_0$), в котором располагается катушка нутации, χ_0 – статическая ядерная магнитная восприимчивость, *t* – время.

Максимальная амплитуда регистрируемого сигнала ЯМР с инверсией намагниченности соответствует (только в случае ее совпадения с f_0) повороту вектора M_n на 180° на частоте нутации f_n радиочастотного генератора, подключенного к катушке нутации. На данной частоте магнитный момент осуществляет движение по сфере Блоха, реализуется прецессия с частотой $f_0 = \gamma B_0/2\pi$ (γ – гиромагнитное отношение ядер) вокруг вектора поля B_0 . В этом случае f_n связана с магнитным полем B_0 , в котором находится катушка нутации, следующим образом [14–16, 22–24, 29, 31]:

$$f_n = \gamma B_0 / 2\pi. \tag{2}$$

На этом принципе основаны измерения индукции магнитного поля ЯМР-магнитометрами на текущей жидкости. Амплитуда регистрируемого сигнала ЯМР в случае инверсии намагниченности также зависит от величины поля B_1 в объеме катушки нутации. Значение B_1 , соответствующее максимальной амплитуде регистрируемого сигнала ЯМР с инверсией намагниченности, получается из решения уравнений (1) относительно компонент M_x , M_y и M_z . В получаемом выражении для M_z приравнивают $\Delta \omega = 0$ и из соотношения

$$\gamma B_1 t_n = \pi + 2\pi n, \tag{3}$$

ДАВЫДОВ и др.

		1	0		
<i>В</i> ₀ , Тл	Неоднородность, см ⁻¹	B_{l}° , мкТл	2 <i>B</i> ₁ ^{3р} , мкТл <i>n</i> =0	2 <i>В</i> _l ^{4р} , мкТл	2 <i>В</i> _l ^{5р} , мкТл
0.42282	10 ⁻³	9.94 ± 0.09	10.57	11.48	10.85
0.42282	0.5×10^{-2}	10.09 ± 0.10	10.57	24.44	11.53
0.42282	0.0086	10.63 ± 0.10	17.19	30.80	11.99
0.42282	0.0286	12.33 ± 0.12	45.99	—	14.27
0.42282	0.0597	15.48 ± 0.15	45.99	—	17.64
0.86364	10 ⁻³	9.97 ± 0.09	10.57	25.07	10.95
0.86364	0.6×10^{-2}	10.14 ± 0.09	17.19	34.61	11.73
0.86364	0.0087	11.26 ± 0.11	17.19	41.96	12.91
0.86364	0.0291	16.58 ± 0.16	45.99	—	15.41
0.86364	0.0607	16.59 ± 0.16	45.99	—	18.79
1.13009	10 ⁻³	10.01 ± 0.09	10.57	37.39	11.16
1.13009	0.6×10^{-2}	10.18 ± 0.09	17.19	47.43	13.36
1.13009	0.0088	11.70 ± 0.11	45.99	_	13.36
1.13009	0.0296	14.67 ± 0.14	45.99	—	16.44
1.13009	0.0616	18.31 ± 0.18	45.99	—	20.27

Таблица 1. Экспериментальные B_1^{9} и рассчитанные значения поля B_1^{3p} и B_1^{4p} в катушке нутации для водопроводной воды T = 18.1 °C, q = 1.82 мл/с при различных значениях B_0 и неоднородности

Примечание. Значения B_1^{3p} получены с использованием формулы (3), B_1^{4p} – при решении уравнения (1), в которых неоднородность ΔH_0 учитывается с помощью (4) (тире означает, что ни при каких значениях B_1 невозможно построить линию нута-

ции); значения B_1^{5p} – при решении уравнений (5).

где *n* — принимает целые значения, включая 0, *t_n* — время протекания жидкости по катушке нутации, находят максимум намагниченности.

Далее при теоретических рассмотрениях намагниченности многие авторы берут n = 0, а остальные значения *n* не используют. В этом случае получается следующая формула: $B_1 = \pi/(\gamma t_n)$, что соответствует воздействию π -импульса ($t_n = V_n/q$, V_n – объем, занимаемый сегментом текущей жидкой среды в катушке нутации). Используя полученное соотношения для B_1 и зная диапазон изменения *q*, производят расчет параметров катушки нутации и соответствующих электронных узлов.

Если подставить в (3) экспериментальные значения V_n и q, то получается $B_1 = 0.23 \times 10^{-4}$ Тл. Расчетное значение $2B_1$ в соответствии с [29, 30] надо сравнивать с экспериментальным, которое получено при неоднородности поля $\times 10^{-3}$ см⁻¹ и значительно отличается (табл. 1). В предлагаемой формуле (3) для расчета B_1 есть одно несоответствие по сравнению с экспериментом – не учитывается диаметр катушки нутации d_n , который может быть в несколько раз больше $d_{\rm T}$, используемого для определения V_n .

Создаваемое катушкой нутации радиочастотное поле B_1 оказывает воздействие на текущую жидкость также за пределами катушки по длине трубопровода на расстоянии до диаметра ее намотки d_n от каждого края. Данное расстояние зависит от соотношения между L_n и d_n , а также от коэффициента заполнения η жидкой средой катушки нутации [29]. В табл. 1 представлен результат расчета B_1^{3p} с учетом зоны действия поля B_1 за пределами катушки нутации (при вычислении V_n используется длина $L_n + 2d_n$). Расхождение с экспериментом при неоднородности 10^{-3} составляет в данном случае менее 10%.

Проведенные нами эксперименты показали, что расстояние действия поля B_1 на намагниченную текущую жидкость за пределами катушки нутации определяется не только ее параметрами – L_n и d_n – и η , но и величиной неоднородности магнитного поля ΔB_0 в зоне размещения катушки нутации. Например, если в катушке нутации $B_1 \leq \Delta B_0/100$, то действием поля B_1 на намагниченную текущую жидкость за ее пределами (на длине, равной $d_n/10$ и более от ее края) можно пренебречь.

В табл. 1 представлены результаты расчета B_1^{3p} , в которых при увеличении неоднородности маг-

Рис. 4. Форма линии нутации регистрируемого сигнала ЯМР от водопроводной воды при $B_0 = 1.1301$ Тл и при различных напряженности поля (мТл) и неоднородности магнитного поля в зоне размещения катушки нутации (см⁻¹) соответственно: 0.0127, 0.01 (а), 0.0146, 0.0296 (б), 0.0183, 0.0616 (в), 0.0241, 0.0945 (г).

нитного поля в зоне размещения катушки нутации учитывалось также соотношение между B_1 и

 ΔB_0 . Расхождение B_1^{3p} с экспериментом при неоднородности $10^{-4}...10^{-3}$ см⁻¹ составляет менее 10%. При увеличении значения ΔB_0 в зоне размещения катушки нутации несоответствие теории и эксперимента возрастает. Учесть при расчете B_1 по формуле (3) величину ΔB_0 при больших значениях B_0 и степени неоднородности очень сложно, так как при выводе (3) из уравнений (1) считалось, что магнитное поле однородно по всей длине катушки нутации, а действие поля B_1 за пределами катушки нутации на текущую жидкость незначительно.

На рис. 4 в качестве примера представлены экспериментальные линии нутации водопроводной воды при $T = 18.1^{\circ}$ С при расходе q = 1.82 мл/с для различных значений неоднородности ΔB_0 магнитного поля в зоне размещения катушки нутации. Значение B_1 соответствует максимальной амплитуде регистрируемого сигнала ЯМР с инверсией

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

намагниченности. Величина магнитного поля B_0 поддерживается постоянной в зоне размещения катушки нутации с использованием регулировки тока в обмотках электромагнита. Контроль B_0 осуществляется по частоте f_n .

На основе экспериментальных данных установлено, что амплитуда регистрируемого сигнала ЯМР с инверсией намагниченности уменьшается при увеличении ΔB_0 , компенсировать данное уменьшение до какого-то момента можно увеличением B_1 , пока позволяют параметры катушки нутации (см. рис. 4, кривая 4). Кроме того, увеличение ΔB_0 уширяет линию нутации — Δf_n возрастает. Также было установлено, что для определенного диапазона изменения неоднородности магнитного поля существуют оптимальные значения параметров катушки нутации (длина, диаметр, число витков и т.д.), позволяющие, изменяя В₁, получать максимальное значение крутизны склона линии нутации (максимальное отношение С/Ш), которое обеспечивает проведение измерений с погрешностью не выше 1%.

Оценить оптимальную величину B_1 с учетом влияния неоднородности магнитного поля ΔB_0 , используя уравнения (3), как было показано выше, невозможно. Представленные в табл. 1 данные это подтверждают.

Поэтому, чтобы описать в уравнениях (1) наблюдаемое на практике влияние ΔB_0 на амплитуду и ширину линии нутации, ряд авторов [32–35] предлагают учесть ΔB_0 в уравнениях (1), используя стандартную формулу для определения T_2 в регистрирующем устройстве по сигналу ЯМР [29]:

$$\frac{1}{T_{2}^{*}} = \frac{1}{T_{2}} + \gamma \frac{\Delta B_{0}}{\pi},$$
(4)

где T_2^* — эффективное время поперечной релаксации, которое вычисляется по спаду сигнала свободной индукции.

В табл. 1 представлены результаты расчета оп-

тимальных значений поля B_1^{4p} с помощью уравнений (1), в которых неоднородность магнитного поля учитывается с помощью (4). Анализ полученных данных показывает, что незначительное расхождение с экспериментальными результатами наблюдается только при небольших значениях неоднородности 10^{-3} см⁻¹ и напряженности магнитного поля B_0 . В этих случаях также можно для оценки B_1 использовать (3), что ранее было рассмотрено. При увеличении ΔB_0 расхождение увеличивается до 2.5 раз и более.

Если при расчете линии нутации с помощью уравнений (1) с учетом в них неоднородности через (4), использовать значения магнитных полей и неоднородностей магнитной системы ускорителя, для измерения которых успешно применяется ЯМР-магнитометр на текущей жидкости, а также времена релаксаций специальных растворов, которые используются в этих магнитометрах ($T_1 \ge 5$ с, $T_2 \ge 0.6$ с), то можно еще раз убедиться, что данная теория не подтверждается экспериментом.

3. НОВЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ВЕКТОРА НАМАГНИЧЕННОСТИ В КАТУШКЕ НУТАЦИИ

На основании анализа различных теоретических моделей [3, 29, 30], а также проведенных ранее экспериментальных исследований [14–16, 21, 22, 24, 31] было сделано предположение, что неоднородность магнитного поля ΔB_0 в уравнениях движения вектора намагниченности в катушке нутации (1) необходимо рассматривать в одном слагаемом с $\Delta \omega$. Движение вектора намагниченности в этом случае рассматривается в системе координат с осями *x*, *y* и *z*, вращающимися с частотой ω_n ($f_n = \omega_n/2\pi$), вместе с полем B_1 вокруг оси *z*, по которой направлено постоянное магнитное поле B_0 . Тогда предлагаемая нами система уравнений, в которой учитывается ΔB_0 , принимает следующий вид:

$$dM_x/dt + M_x/T_2 + (\Delta\omega + (\Delta B_0/t_n)\gamma t)M_y = 0,$$

$$dM_y/dt + M_y/T_2 - (\Delta\omega + (\Delta B_0/t_n)\gamma t)M_x + \gamma B_1M_z = 0,$$

$$dM_z/dt + M_z/T_1 - \gamma B_1M_y - M_0/T_1 = 0.$$
(5)

В рассматриваемой авторами системе уравнений (5) предлагается использовать линейную зависимость изменения величины ΔB_0 по длине катушки нутации. В ЯМР-магнитометрах применяются катушки нутации длиной не более $L_n = 3$ мм, которые размещаются на значительном расстоянии L_s от магнитных систем поляризатора и анализатора (более 1 м). На таком небольшом отрезке, как длина катушки нутации, аппроксимирующие кривые изменения ΔB_0 от расстояния (линейная, квадратичная и т.д.) незначительно отличаются друг от друга по характеру траектории в направлении движения жидкости по катушке нутации.

Проведенные авторами эксперименты показали, что при большой величине неоднородности магнитного поля ΔB_0 уменьшается зона воздействия поля B_1 в катушке нутации, в которой происходит поворот вектора намагниченности текущей жидкости под действием поля B_1 . Введенное в уравнения (5) время t_n позволяет учесть изменение этой зоны действия поля B_1 в катушке нутации и определяется следующим соотношением:

$$t_n = \pi d_T(k)^{1/2} / (\gamma B_0 \Delta_n q)^{1/2},$$
 (6)

где Δ_n — неоднородность магнитного поля в зоне размещения катушки нутации, k — корень характеристического уравнения, учитывающего изменение ширины линии нутации при изменении неоднородности магнитного поля.

Данное характеристическое уравнение было получено авторами из аналитического решения (1) относительно M_z , M_y , M_x при выполнении следующих условий: $M_z = 1$ при $\Delta \omega = 0$, $M_z = 0$ при $\Delta \omega =$ $= \gamma \Delta B_0$. В данном случае характеристическое уравнение получается следующего вида:

$$\cos(\pi(1+k^2)^{1/2}) = -k^2$$

Корни решения уравнения $k = \pm 0.81$. Для определения t_n используется k = 0.81.

На рис. 5 представлены результаты расчета линий нутации на основании решения уравнений (5) для T_1 и T_2 , соответствующих водопроводной воде при T = 18.1°С и экспериментально измеренным значениям ΔB_0 и t_a – время воздействия B_1 на текущую жидкость. Значение B_1 на представленных графиках соответствует максимальной амплитуде

Рис. 5. Расчетная форма линии нутации сигнала ЯМР при $T_1 = 1.23$ с, $T_2 = 2.03$ мс, $B_0 = 1.1301$ Тл и различных B_1 (мТл) и неоднородности магнитного поля в зоне размещения катушки нутации (см⁻¹) соответственно: 0.0145, 0.01 (a); 0.0164, 0.0296 (6); 0.0202, 0.0616 (в); 0.0272, 0.0945 (г).

сигнала ЯМР с инверсией намагниченности для различных значений неоднородности ΔB_0 . Значение B_0 не изменяется.

Полученные результаты расчета показывают, что при увеличении неоднородности ΔB_0 происходит уширение линии нутации – величина Δf_n возрастает. Кроме того, при изменении B_1 происходит компенсация уменьшения амплитуды сигнала ЯМР с инверсией намагниченности при увеличении ΔB_0 . На представленных графиках (см. рис. 5) амплитуды сигналов ЯМР с инверсией намагниченности почти не изменяются в случае создания в катушке нутации определенных (оптимальных) полей B_1 , что отображает характер процесса нутации, наблюдаемый в эксперименте.

В табл. 1 представлены результаты расчета B_1^{5p} с использованием (5). Сравнение результатов

значения на 20...50% в зависимости от решаемых задач и условий эксплуатации ЯМР магнитомет-

ра. Это позволяет избежать различных сбоев как при его длительной работе, так и при изменении внешних факторов (например, повышение температуры и т.д.). Поэтому расхождение эксперимен-

расчета значений B_1 (см. рис. 5) с полученными

значениями радиочастотного поля в результате

эксперимента (см. рис. 4), а также данные табл. 1

показывают, что различие между величинами B_1^3

и B_1^{5p} не превышает 20%. Полученные нами с по-

мощью (5) оптимальные значения B_1 являются

ориентировочными для разработчиков ЯМР-

магнитометров и полностью удовлетворяют их

требованиям, в соответствии с которыми при изго-

товлении катушки нутации необходимо предусмот-

реть возможность увеличения B_1 от оптимального

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

тальных и расчетных значений *B*₁ в действующей конструкции ЯМР-магнитометра может быть легко компенсировано.

ЗАКЛЮЧЕНИЕ

Анализ полученных результатов исследований позволяет сделать вывод о том, что предложенные авторами уравнения (5) позволяют адекватно описать процесс формирования линии нутации в ЯМР-измерителях с текущей жидкостью для любой величины индукции и неоднородности магнитного поля в зоне размещения катушки нутации, что не позволяли сделать ранее используемые уравнения (1).

По результатам расчетов с использованием (5) можно определить параметры катушки нутации и электронных схем, которые к ней подключаются при разработке новых или модернизации действующих ЯМР-магнитометров. Это позволило проводить измерения параметров сильных неоднородных магнитных полей (индукции и неоднородности) с погрешностью 0.5%. Ранее погрешность измерения этих величин в ЯМР-магнитометрах составляла порядка 1.5...2.0%, так как параметры катушки нутации подбирали в основном опытным путем, что значительно затрудняло решение многих задач. Кроме того, оптимизация параметров катушки нутации позволяет в конструкциях ЯМР-магнитометров в два раза увеличить расстояние, на котором ее можно расположить от магнитных систем поляризатора и анализатора при измерении параметров магнитных полей в сложных условиях. Расстояние от защитной зоны, где размещена измерительная аппаратура, и точкой контроля параметров магнитного поля при решении многих задач является определяющим при выборе прибора [12-15, 21-24, 31, 32, 36]. Полученный результат существенно расширяет возможности использования ЯМР-магнитометра на текущей жидкости.

Наибольший интерес для читателей представлял бы вывод аналитического выражения для B_1 при решении предложенных нами уравнений (5), как это сделано в [3, 32–35] для случая размещения катушки нутации в однородном магнитном поле B_0 , так как компьютерные методы, которые мы применили, не могут заменить в полном объеме аналитическое выражение для B_1 . Решение этой задачи будет предметом наших дальнейших исследований.

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пряхин А.Е., Шушкевич С.С., Оробей И.О. // ПТЭ. 1983. № 6. С. 186.
- 2. Давыдов В.В., Семенов В.В. // РЭ. 1999. Т. 44. № 12. С. 1528.
- 3. Мефед А.Е. // ЖЭТФ. 1984. Т. 86. № 1. С. 302.
- 4. *Gizatullin B., Gafurov M., Murzakhanov F. et al.* // Langmuir. 2021. V. 37. № 22. P. 6783.
- 5. *Марусина М.Я., Базаров Б.А., Галайдин П.А. и др. //* Измерит. техника. 2014. № 5. С. 68.
- 6. *Marusina M.Y., Karaseva E.A.* // Asian Pacific J. Cancer Prevention, 2018. V. 19. № 10. P. 2771.
- 7. *Gizatullin B., Gafurov M., Vakhin A. et al.* // Energy and Fuels. 2019. V. 33. № 11. P. 10923.
- 8. *Неронов Ю.И., Серегин Н.Н. //* Измерит. техника. 2012. № 11. С. 41.
- 9. O'Neill K.T., Brancato L., Stanwix P.L. et al. // Chem. Engineering Sci. 2019. V. 202. P. 222.
- Davydov V.V., Dudkin V.I., Karseev A.U. // Optical Memory & Neural Networks (Inform. Opt.). 2013. V. 22. № 2. P. 112.
- 11. Семенихин А.В., Саунин Ю.В., Рясный С.И. // Атомная энергия. 2018. Т. 124. № 1. С. 8.
- 12. Дьяченко С.В., Жерновой А.И. // ЖТФ. 2016. Т. 61. № 12. С. 78.
- 13. Витковский О.С., Марусина М.Я. // Измерит. техника. 2016. Т. 59. № 3. С. 31.
- 14. Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // ПТЭ. 2015. № 6. С. 84.
- 15. Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // ЖТФ. 2015. Т. 85. № 3. С. 138.
- 16. Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // ПЖТФ. 2015. Т. 41. № 7. С. 103.
- ГОСТ 8.095–73. Государственный первичный эталон и общесоюзная поверочная схема для средств измерения магнитной индукции. М.: Изд-во стандартов, 1973.
- ГОСТ 8.144—75. Государственный специальный эталон и общесоюзная поверочная схема для средств измерения магнитной индукции в диапазоне 0.05-2 Тл. М.: Изд-во стандартов, 1975.
- 19. Симонов В.М., Ягола В.К. // Измерит. техника. 1975. № 10. С. 76.
- 20. Ягола Г.К., Казанцев Ю.И., Симонов В.М. и др. // Измерит. техника. 1976. № 3. С. 52.
- 21. Дьяченко С.В., Лебедев Л.А., Сычев М.М., Нефедова Л.А. // ЖТФ. 2018. Т.63. № 7. С. 1018.
- 22. Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // Изв. вузов. Физика. 2015. Т. 58. № 2. С. 8.
- 23. Жерновой А.И., Дьяченко С.В. // ЖТФ. 2015. Т. 60. № 4. С. 118.
- 24. Давыдов В.В., Дудкин В.И., Величко Е.Н., Карсеев А.Ю. // Измерит. техника. 2015. Т. 58. № 5. С. 56.
- 25. *Girard S., Kuhnhenn J., Gusarov A., Brichard B. et al.* // IEEE Trans. 2013. V. NS-60. № 3. P. 2015.
- 26. *Kashaykin P.F., Tomashuk A.L., Salgansky M.Y. et al.* // J. Appl. Phys. 2019. V. 121. № 21. P. 213104.

- 27. Dmitrieva D.S., Pilipova V.M., Rud V.Y. // Lecture Notes in Computer Science (LNCS) (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. V. 12526. P. 348.
- Ignatiev V.K., Lebedev N.G., Orlov A.A., Perchenko S.V. // J. Magn. Magn. Mater. 2020. V. 494. P. 165658.
- 29. Leshe A. Nuclear Induction. Berlin: Verlag Wissenschaften, 1963.
- 30. *Abragam A*. The Principles of Nuclear Magnetism. Oxford: Qxford Clarendon Press, 1961.
- 31. Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // Измерит. техника. 2015. Т. 58. № 3. С. 48.

- 32. Жерновой А.И. Измерение магнитных полей методом нутации. Л.: Энергия, 1979.
- 33. Жерновой А.И. Ядерно-магнитные расходомеры. Л.: Машиностроение, 1985.
- 34. *Чижик В.И.* Ядерная магнитная релаксация. Л.: Изд-во ЛГУ, 1991.
- Бородин П.М., Володичев М.И., Москалев В.В., Морозов А.А. Ядерный магнитный резонанс. Л.: Изд-во ЛГУ, 1982.
- 36. Давыдов В.В., Семенов В.В. // ПТЭ. 1999. № 3. С. 151.