ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 541.183.5+548.571

АНАЛИЗ РАДИАЦИОННОГО ПОГЛОЩЕНИЯ АКУСТИЧЕСКИХ ВОЛН ЛЭМБА В ПЛАСТИНАХ, НАГРУЖЕННЫХ НЕВЯЗКОЙ НЕПРОВОДЯЩЕЙ ЖИДКОСТЬЮ¹

© 2023 г. Н. А. Агейкин^{а,} *, В. И. Анисимкин^а, Н. В. Воронова^b, А. В. Смирнов^а

^а Институт радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11, корп. 7, Москва, 125009 Российская Федерация ^b Научно-исследовательский институт молекулярной электроники, ул. Академика Валиева, 6/1, Москва, Зеленоград, 124460 Российская Федерация *E-mail: ageykin_niki@mail.ru Поступила в редакцию 17.05.2023 г.

После доработки 17.05.2023 г. Принята к публикации 25.05.2023 г.

Экспериментально исследована зависимость радиационных потерь в жидкость от величины, нормальной к пластине компоненты смещения U_3 на поверхности пьезоэлектрической пластины для волн Лэмба различных порядков. Рассмотрены волны, у которых фазовая скорость V_n в пластине больше, чем скорость продольной объемной акустической волны в жидкости V_{*} . Показано, что при малых значениях U_3 излучение в жидкость отсутствует и величина радиационных потерь близка к нулю даже при $V_n > V_{*}$, при больших значениях U_3 величина радиационных потерь велика и у волн Лэмба в пластине YZ-LiNbO₃ при нормированной на длину волны толщине 1.75 и частоте 16.97 МГц она достигает значения 4 дБ/мм, сравнимого с радиационными потерями поверхностных акустических волн в том же материале.

DOI: 10.31857/S0033849423100029, EDN: DOAZHJ

введение

Потребность в миниатюрных высокочувствительных датчиках свойств жидкости стимулирует их разработку с использованием различных физических принципов. Одним из таких принципов, является акустоэлектронный метод [1]. В датчиках акустоэлектронного типа измерение каждого параметра жидкости (плотности, вязкости, проводимости, температуры и т.д.) производится с помощью специально подобранной акустической волны. Подобная волна, с одной стороны, должна иметь возможность распространяться в присутствии жидкости, а с другой стороны, обладать высокой чувствительностью к конкретному свойству исследуемой жидкости. Этим требованиям в полной мере отвечают акустические волны Лэмба различных порядков *n*, распространяющиеся в пьезоэлектрических пластинах толщиной h [2]. С увеличением параметра h/λ (λ – длина волны) количество волн Лэмба различных порядков увеличивается, а их фазовая скорость становится тем выше, чем выше порядок волны [2, 3]. Данные волны обладают значительным разнообразием свойств и

по-разному реагируют на одно и то же внешнее воздействие [4, 5].

Процесс оптимизации акустических колебаний в акустоэлектронных датчиках жидкости предусматривает также оценку величины поглощения, которое испытывает акустическая волна под действием тестируемой жидкости. Это поглощение обусловлено вязкоупругими потерями, акустоэлектронным взаимодействием и излучением (радиацией) волн в жидкость, которое возникает при высокой скорости распространения волны в пластине по сравнению со скоростью продольной объемной акустической волны в жидкости ($V_n > V_{*}$) [6–8].

Долгое время считалось, что высокоскоростные волны Лэмба, имеющие большие значения V_n (n — номер акустической моды) и нормальной компоненты смещения, перпендикулярной плоскости пластины U_3 , должны поглощаться жидкостью полностью, как это происходит с поверхностными акустическими волнами (ПАВ) [2]. Однако в работе [9] было показано, что такие волны все же существуют, а их аналогия с ПАВ не совсем корректна. Это связано с тем, что механические смещения, сопровождающие волны Лэмба, распределены по всей толщине пластины в несколько со-

¹ Работа удостоена премии на 19-м конкурсе молодых ученых имени Ивана Анисимкина.

Рис. 1. Схематическое изображение экспериментального образца, содержащего пьезоэлектрическую пластину, встречно-штыревые преобразователи (ВШП), кювету для тестируемой жидкости: *L* – длина кюветы, δ – глубина проникновения волны в жидкость, *A* – высота жидкостного слоя, λ – длина волны, равная периоду ВШП.

тен микрон, а в случае ПАВ эти смещения сконцентрированы в тонком приповерхностном слое подложки толщиной порядка нескольких микрон.

Зависимость радиационных потерь от соотношения скоростей акустических волн в пластине V_n и жидкости V_{*} подробно изучена в работе [8]. На примере антисимметричной волны Лэмба нулевого порядка показано, что при $V_n < V_{*}$ затухание волны, связанное с излучением в жидкость, отсутствует, при $V_n = V_{*}$ оно возникает и при $V_n > V_{*}$ вначале растет, а затем монотонно снижается. При этом влияние поляризации волны на величину радиационного поглощения не рассматривалось.

Недавно появились работы, в которых обнаружены и исследованы акустические волны в пьезоэлектрических пластинах с практически нулевой компонентной U_3 [10, 11], либо волны с эллиптической поляризацией, причем эллипс лежит в плоскости пластины [12–14]. Очевидно, что данные волны могут эффективно использоваться для создания датчиков жидкости. Однако подробного исследования зависимости радиационных потерь этих волн от их поляризации и скорости не проводилось.

Цель данной работы — исследовать зависимость радиационных потерь из-за присутствия невязкой и непроводящей жидкости для волн Лэмба нулевого и высших порядков от их поляризации и фазовой скорости.

1. МЕТОДИКА ИЗМЕРЕНИЙ И РАСЧЕТОВ

Для проведения экспериментальных исследований влияния жидкости на радиационные потери волн Лэмба нулевого и высших порядков были использованы линии задержки на основе промышленно выпускаемых пластин:

– LiTaO₃ поворотного 64°Y-среза (углы Эйлера 0°, –26°, 0°), поворотного 36°Y-среза (0°, –54°, 0°) и YZ-среза (0°, 90°, 90°),

- LiNbO₃ поворотного 128°Y-среза (0°, 37.86°, $\Theta = 30^{\circ} \mu 90^{\circ}$),

$$-$$
 YZ-LiNbO₃ (0°, 90°, $\Theta = 90°$ и 120°)

- ST-кварца (0°, 132.75°, 0°).

Толщина использованных пластин *h* составляла 350 или 500 мкм. Все пластины имели одну шлифованную (верхняя) и одну полированную (нижняя) поверхности. На полированной поверхности (оптический класс 14, горизонтальные и вертикальные неровности 0.01 и 0.05 мкм соответственно) были расположены входной и выходной встречно-штыревые преобразователи (ВШП), период которых составлял $\lambda = 200$, 300 или 400 мкм. Преобразователи имели по 40 пар электродов из Cr (100 нм) и Al (1200 нм), что обеспечивало их узкую полосу пропускания (2.5%) и хорошее частотное разрешение соседних акустических мод с близкими скоростями V_n .

На шлифованной поверхности (оптический класс 10, горизонтальные и вертикальные неровности 0.16 и 0.8 мкм соответственно) располагалась жидкостная кювета из тефлона с объемом 500 мкл, ширина которой превышала апертуру акустического пучка, что снижало влияние ее стенок и склейки на распространение акустического пучка. В качестве склейки для кюветы использовали салол. Длина кюветы соответствовала длине пробега волны от начала одного до начала другого преобразователя и составляла L = 8, 11 и 14 мм при $\lambda = 200$, 300 и 400 мкм соответственно (рис. 1).

В качестве тестируемой жидкости использовали дистиллированную воду, которая благодаря своей малой вязкости (1.003 сПуаз), малой электропроводности (менее 0.1 Сим/м) и большой диэлектрической проницаемости ($\varepsilon/\varepsilon_0 = 79.3$) минимизировала нежелательные вклады в измеряемые потери от вязкоупругого и акустоэлектронного механизмов поглощения, позволяя исследовать радиационную составляющую в чистом виде.

Эксперименты проводили с помощью анализатора четырехполюсников KEYSIGHT 5061B, который работал в амплитудно-частотном режиме и измерял частотные зависимости вносимых потерь $S_{21}(f)$ мод разных порядков *n* на соответствующих

Рис. 2. Измеренные амплитудно-частотные характеристики волн Лэмба различных порядков, распространяющихся в пластине 36° YX-LiTaO₃ толщиной $h/\lambda = 1.67$: I – пластина без жидкости, 2 – пластина с дистиллированной водой между преобразователями; толстыми стрелками указаны моды с большими радиационными потерями.

частотах $f_n = V_n/\lambda$. Измерения $S_{21}(f)$ проводили при комнатной температуре и нормальном давлении. Вначале зависимость $S_{21}(f)$ измеряли без жидкостной нагрузки (на воздухе), а затем с дистиллированной водой. Откликом мод на излучение в дистиллированную воду служили величины разности $\Delta S_{21} = S_{21}(H_2O) - S_{21}(воздух)$. Точность измерений составляла ±0.1 дБ.

Измеренные отклики $\Delta S_{21} = S_{21}(H_2O) - S_{21}(воз$ дух) сопоставляли с тремя упругими смещениями $соответствующих мод {<math>U_1$, U_2 , U_3 } на поверхности пластины, которые численно рассчитывали с использованием программы [15] и материальных констант кварца, LiNbO₃ и LiTaO₃ из работы [16]. Как обычно, сдвигово-горизонтальное U_2 в плоскости пластины и нормальное к плоскости пластины U_3 смещения мод нормировались на величину продольной компоненты U_1 на поверхности пластины. Идентификацию мод осуществляли по совпадению расчетного V_n^{th} и экспериментального V_n значений скоростей.

2. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате проведения экспериментальных исследований были получены амплитудно-частотные характеристики для различных срезов и направлений распространения акустических волн Лэмба в пластинах танталата и ниобата лития и кварца. В качестве примера на рис. 2 представле-

ны типичные амплитудно-частотные характеристики волн Лэмба высших порядков, распространяющихся в пластине 36°YX-LiTaO₃ без жидкости (на воздухе) и с жидкостной нагрузкой. Разным пикам соответствуют моды разных порядков *n*. Видно, что с ростом частоты мод f_n или их скорости V_n монотонного снижения или увеличения радиационных потерь ΔS_{12} не наблюдается, т.е. при *f_n* = 10.83, 13.84, 16.88, 20.5 и 26.21 МГц величины $\Delta S_{12} = 24, 33, 29, 3$ и 25 дБ соответственно. Немонотонный характер зависимости ΔS_{12} от V_n мы связываем с влиянием нормальной компоненты смещения U_3 , которая у всех мод различна и составляет 1.5, 1.8, 9, 0.17 и 0.91 соответственно. Таким образом, можно сделать вывод о корреляции величины радиационных потерь ΔS_{12} и нормальных смещений U₃.

Для подтверждения этого вывода в табл. 1 приведены численные значения наибольших радиационных потерь ΔS_{12} , измеренные в каждой из пластин. Видно, что:

— все моды с большими потерями ΔS_{12} обладают большими значениями нормальных компонент U_3 на поверхности пластины,

— максимальная величина ΔS_{12} достигает 32 дБ или 4 дБ/мм для YZ-LiNbO₃ ($h/\lambda = 1.75$, $f_n = 16.97$ МГц), что сравнимо с радиационными потерями поверхностных акустических волн,

— большими радиационными потерями ΔS_{12} обладают как моды с высокими частотами $f_n =$ = 30...55 МГц и большими отношениями $V_n/V_{\rm w} =$ = 4...7, так и моды с низкими частотами $f_n =$ = 10...15 МГц и малыми отношениями $V_n/V_{\rm w} = 2...3$.

В связи с этим можно сделать вывод о том, что радиационные потери при распространении акустической волны в контакте с жидкостью зависят не только от соотношения $V_n/V_{\rm w}$, но и от величины нормальной компоненты смещения U_3 на границе пластины с жидкостью, т.е. чем больше U_3 , тем, вообще говоря, выше радиационные потери ΔS_{12} при том же значении $V_n/V_{\rm w}$, и наоборот.

Дополнительным аргументом в пользу роли U_3 служат зависимости и данные, приведенные на рис. 3 и в табл. 1. На рис. 3 приведены амплитудно-частотные характеристики волн Лэмба в пластине ST, X-SiO₂ при $h/\lambda = 1.67$. Видно, что в данной пластине существуют моды с большими ΔS_{12} и U_3 ($f_n = 10.38$ и 11.66 МГц) и моды с пренебрежимо малыми ΔS_{12} и U_3 ($f_n = 33.06, 36.22, 42.91$ МГц). Анализ показал, что при малых U_3 излучение в жидкость отсутствует и величина радиационных потерь близка к нулю даже при $V_n > V_{x}$, а при больших U_3 – она велика и достигает значений 1.7 дБ/мм. По нашему мнению, столь низкие радиационные потери для трех последних мод на-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

•			-	-		
Материал	h/λ	<i>f_n</i> , МГц	$V_n^{\mathrm{T}}, \mathrm{M/c}$	$V_n/V_{\rm x}$	$\Delta S_{12},$ дБ ($\Delta S_{12}/L,$ дБ/мм)	$\{U_1^{\mathrm{T}}, U_2^{\mathrm{T}}, U_3^{\mathrm{T}}\}$
	Акустичес	кие моды с бо.	льшими радиа	ционными пот	терями	
36°YX-LiTaO3	1.67	10.83	3250	2.17	24 (2.2)	1; 0.07; 1.5
-		13.84	4150	2.77	33 (3)	1; 0.98; 1.8
		16.88	5060	3.37	29 (2.6)	1; 12; 9
		26.21	7860	5.25	25 (2.3)	1; 0.34; 0.91
64°YX-LiTaO ₃	0.875	10.64	2130	1.42	20 (1.4)	1; 0.8; 1.7
ST, X-SiO ₂	1.67	10.38	3100	2.07	15.5 (1.4)	1; 0.25; 1.5
		11.66	3500	2.33	19 (1.7)	1; 0.2; 1.5
YZ-LiNbO ₃	1.67	11.2	3360	2.25	21 (1.9)	1; 0; 1.5
YZ-LiNbO ₃	1.75	16.97	3400	2.27	32 (4)	1; 0; 1.5
		54.9	10100	6.75	20.5 (2.6)	1; 0; 0.91
YZ+30°-LiNbO ₃	1.75	17	3400	2.27	29 (3.6)	1; 0.5; 1.4
128°YX+30°-LiNbO3	1.75	18.85	3800	2.53	21 (2.6)	1; 0.8; 1.3
128°YX+90°-LiNbO3	2.5	25.8	5160	3.44	20.5 (2.6)	1; 21; 11
		29.18	5850	3.9	22 (2.75)	1; 24; 18
YZ -LiTaO ₃	2.5	56.67	11 3 5 0	7.57	22 (2.75)	1; 0; 2.2
	Акустиче	еские моды с м	алыми радиац	ионными поте	рями	1
ST, X-SiO ₂	1.67	33.06	9900	6.6	0	1; 1.5; 0.17
ST, X-SiO ₂	1.67	36.22	10900	7.3	2	1; 2.1; 0.042
ST, X-SiO ₂	1.67	42.91	12900	8.6	0.2	1; 7.7; 1.1

Таблица 1. Акустические моды с большими и малыми радиационными потерями

Примечание. Тестируемая жидкость – дистиллированная вода, скорость ПАВ в жидкости $V_{x} = 1500 \text{ м/c}, V_{n}^{\text{T}} \text{ и } V_{n}$ – теоретически рассчитанная и экспериментально измеренная скорости акустических волн Лэмба соответственно, U^{T} – теоретически рассчитанные компоненты механического смещения для исследуемых волн Лэмба на поверхности пластины в отсутствие жидкости. Полужирным выделены значения ΔS_{12} с большими потерями, обладающие большими значениями U_3 .

Рис. 3. Измеренные амплитудно-частотные характеристики волн Лэмба различных порядков, распространяющихся в пластине в пластине ST, X-SiO₂ толщиной $h/\lambda = 1.67$: I - пластина без жидкости, 2 - пластина с дистиллированной водой между преобразователями; толстыми стрелками указаны моды с большими радиационными потерями.

мод представляет собой эллипс, плоскость кото-50 рого почти перпендикулярна направлению распространения и поверхности пластины.

лого смещения U_3 .

ЗАКЛЮЧЕНИЕ

блюдаются именно благодаря одновременному

влиянию большой разницы скоростей V_n/V_ж и ма-

тянутый вдоль компоненты U_3 . Вместе с тем обе сильно излучающие моды в пластине 128°YX +

+ 90°-LiNbO₃ (h/λ = 2.5) и одна из мод (16.88 МГц) в пластине 36°YX-LiTaO₃ (h/λ = 1.67) (см. табл. 1)

обладают необычной поляризацией. У этих мод $U_1 \ll U_2$, U_3 и сдвиг фаз между U_2 и U_3 близок $\pi/2$.

В связи с этим результирующее смещение данных

Поляризация большинства мод, сильно излучающих в жидкость, представляет собой эллипс, близкий к сагиттальной плоскости (U_1, U_3) и вы-

Радиационные потери ΔS_{12} высокоскоростных волн Лэмба в пьезоэлектрической пластине, контактирующей с жидкостью, зависят от нормальной компоненты смещения U_3 на поверхности пластины. Эта зависимость прослеживается как для мод нулевого и высших порядков, распространяющихся в одной и той же пластине, так и для мод, существующих в пластинах из разных материалов и толщин. Благодаря зависимости от U_3 изменение ΔS_{12} с частотой мод f_n приобретает немонотонный характер, а диапазон изменений колеблется от 0 до 4 дБ/мм, в своем верхнем пределе приближаясь к значению радиационных потерь для поверхностных акустических волн в тех же материалах.

Поляризация мод, сильно излучающих в жидкость, представляет собой эллипс, сильно вытянутый вдоль компоненты U_3 . У большинства мод плоскость эллипса близка сагиттальной плоскости, но у части из них она почти перпендикулярна этой плоскости и поверхностям платины. Моды с такой поляризацией — это новая модификация волн Лэмба.

С практической точки зрения волны Лэмба, обладающие большими радиационными потерями, должны обладать и высокой чувствительностью к адсорбции водяных паров. В связи этим такие волны привлекательны для датчиков влажности, не требующих дополнительных влагочувствительных покрытий. Напротив, волны Лэмба с низкими радиационными потерями и, следовательно, низкой чувствительностью к адсорбции водяных паров, могут быть полезны для невакуумированных акустоэлектронных устройств, в случае необходимости снижения зависимости их работы от влажности окружающей среды.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 20-19-00708П).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фрайден Дж*. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
- 2. Викторов И.А. Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
- 3. *Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al.* // Ultrasonics. 2004. V. 42. № 1–9. P. 179. https://doi.org/10.1016/j.ultras.2004.01.006
- 4. *Smirnov A., Anisimkin V., Voronova N. et al.* // Sensors. 2022. V. 22. № 19. P. 7231. https://doi.org/10.3390/s22197231
- 5. *Caliendo C.* // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
- Terakawa Y., Kondoh J. // Jpn. J. Appl. Phys. 2020. V. 59. SKKC08. https://doi.org/10.35848/1347-4065/ab84ae
- White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162. https://doi.org/10.1109/T-UFFC.1987.26928
- Kuznetsova I.E., Zaitsev B.D., Joshi S.G., Teplykh A.A. // Acoust. Phys. 2007. V. 53. № 5. P. 557. https://doi.org/10.1134/S1063771007050041
- 9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487. https://doi.org/10.1109/TUFFC.2006.1665106
- 10. *Hamidullah M., Elie-Caille C., Leblois T.* // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003. https://doi.org/10.1088/1361-6463/ac39c5
- 11. *Mansoorzare H., Shahraini S., Todi A. et al.* // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210–1218. https://doi.org/10.1109/TUFFC.2019.2955402
- 12. Anisimkin V, Shamsutdinova E., Li P. et al. // Sensors. 2022. V. 22. № 7. P. 2727. https://doi.org/10.3390/s22072727
- Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496. https://doi.org/10.1016/j.ultras.2021.106496
- 14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. P. 919.
- 15. *Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K.* // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
- Slobodnik A.J., Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Am. 1974. V. 56. № 4. P. 1307.