ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 537.525;533.9.07

ПОТОК ПОЛОЖИТЕЛЬНЫХ ИОНОВ КИСЛОРОДА С ВЫСОКОЙ ЭНЕРГИЕЙ ИЗ ПЛАЗМЫ НА ПОДЛОЖКУ В ИМПУЛЬСНОМ МАГНЕТРОННОМ РАЗРЯДЕ С ГОРЯЧЕЙ МИШЕНЬЮ¹

© 2023 г. Д. В. Колодко^{а, b, c, *}, А. В. Казиев^b, Д. Г. Агейченков^b, В. Ю. Лисенков^b

^а Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация

^b Национальный исследовательский ядерный университет "МИФИ", Каширское шос., 31, Москва, 115409 Российская Федерация

^c Физический институт им. П.Н. Лебедева РАН, Ленинский просп., 53, Москва, 119991 Российская Федерация

*E-mail: dobrynya_kol@mail.ru

Поступила в редакцию 17.05.2023 г.
После доработки 17.05.2023 г.
Принята к публикации 25.05.2023 г.

Зарегистрирована группа высокоэнергетичных положительных ионов O^+ в потоке из плазмы сильноточного импульсного магнетронного разряда с горячей мишенью в газовой смеси Ar/O_2 . Механизмом возникновения ускоренных ионов O^+ может выступать конверсия ускоренных в катодном слое отрицательных ионов $O^- \to O^+$ в процессах перезарядки или ионизации электронным ударом.

DOI: 10.31857/S0033849423100078, EDN: DPCDQT

ВВЕДЕНИЕ

В настоящее время создание тонких пленок играет важнейшую роль во многих областях науки и передовых технологий. С увеличением сложности решаемых задач повышаются требования к качеству и характеристикам покрытий. Вместе с увеличением возможностей создаваемых функциональных покрытий растет и сложность их изготовления. При этом чрезвычайную актуальность имеет решение проблем, связанных с высокоэффективным осаждением многокомпонентных покрытий высокого качества. К таким покрытиям относится широкий класс оксидных и нитридных пленок, которые обладают широким диапазоном свойств, стимулирующих их использование в оптике, электронике, машиностроении [1, 2].

Свойства покрытий, в особенности многокомпонентных, существенно зависят от условий осаждения. Например, в работах [3, 4] исследуется массовый и энергетический составы ионных потоков на подложку и показано, что они в значительной мере определяют структуру покрытия. С одной стороны, во многих случаях повышение энергии частиц приводит к улучшению адгезии пленок и увеличению плотности покрытий [1]. С другой стороны, присутствие в потоке на подложку ионов с высокими энергиями (выше 100 эВ) приводит к образованию дефектов в покрытиях, к примеру снижает проводимость проводящих прозрачных покрытий [5, 6]. По этим причинам большое количество современных исследований посвящено изучению потоков частиц (ионов/нейтралов) в разнообразных установках для осаждения покрытий, особенно в магнетронных распылительных системах.

Цель данной работы — экспериментально исследовать состав ионных потоков из плазмы сильноточного импульсного магнетронного разряда с горячей мишенью, формируемого в газовой смеси Ar/O_2 .

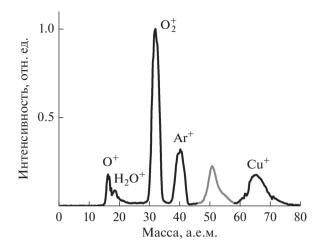
1. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Разряд создавался в специальной магнетронной системе с теплоизолированной медной мишенью [7, 8]. На мишень подавалось напряжение от источника питания APEL-M-5HPP-1200, способного формировать импульсы напряжения до 1200 В с длительностью до 1 мс. Для диагностики ионных потоков из плазмы были использованы магнитный секторный масс-анализатор [9, 10] и электростатический сферический энергоанализатор. Конструкция магнитного секторного анализатора позволяла регистрировать ионы с максимальным значением $W \times M = 2 \times 10^5$ эВ а.е.м.,

¹ Работа удостоена премии на 19-м конкурсе молодых ученых имени Ивана Анисимкина.

где W — энергия иона, а M — его атомная масса. Ионы отбирались из области плазмы посредством трехэлектродного экстрактора, размещенного в зоне расположения подложки напротив зоны эрозии. Ток пучка после прохождения массили энергоанализатора усиливался с помощью вторичного электронного умножителя и регистрировался амперметром Keithley. Максимально возможное ускоряющее напряжение $V_{\rm ac}$ составляло 2000 В относительно заземленных стенок вакуумной камеры.

Типичный массовый спектр, зарегистрированный при мощности разряда 500 Вт, времени импульса 200 мкс, частоте повторения 1 кГц, давлении 1 Па (поток Ar 0.9 л/ч, $\rm O_2$ 1.44 л/ч) представлен на рис. 1.


На всех массовых спектрах при работе на газовой смеси ${\rm Ar/O_2}$, при доле кислорода более 50% наблюдается ярко выраженный неидентифицируемый пик, который не соответствует массе ни одного из ожидаемых сортов ионов в плазме. Его положение на спектре зависит от условий эксперимента, в частности, от напряжения разряда и ускоряющего напряжения $V_{\rm ac}$ в системе экстракции.

Эксперименты с использованием электростатического энергоанализатора показывают присутствие в потоке ускоренных ионов с энергией, близкой к $eV_{\rm d}$, где e — элементарный заряд, $V_{\rm d}$ — напряжение разряда. Типичное значение измеренной энергии этой группы ионов составляет 800...1000 эВ.

Комбинируя данные, полученные с помощью масс- и энергоанализатора, мы определили массу высокоэнергетичных положительных ионов: 16 а.е.м., что соответствует потоку атомарных ионов кислорода.

Следует отметить, что для одной из наиболее распространенных конфигураций — униполярного магнетрона — характерна генерация отрицательных ионов кислорода O^- , ускоренных до сходных высоких значений энергии, движущихся по нормали к поверхности катода [5, 6, 11–16]. Это явление изучено достаточно подробно, и очевидным механизмом приобретения энергии является ускорение O^- в катодном слое.

Возможное объяснение существования ускоренных положительных ионов в униполярном магнетронном разряде может состоять в том, что отрицательные ионы кислорода, ускоренные в катодном слое, на пути к экстрактору рассеиваются на газово-плазменной мишени и приобретают положительный заряд без существенной потери энергии. Наиболее вероятными процессами, приводящими к такой конверсии $O^- \to O^+$, являются комбинации малоуглового рассеяния с перезарядкой и ионизации электронным ударом.

Рис. 1. Компонентный состав ионного потока из плазмы магнетронного разряда в газовой смеси Ar/O_2 с горячей медной мишенью; серым выделен пик, не соответствующий ожидаемым частицам в плазме.

Процессы конверсии отрицательных ионов кислорода могут наблюдаться не только в сильноточном импульсном магнетронном разряде. Группа высокоэнергетичных ионов О+ обнаружена также и в магнетронном разряде постоянного тока с горячей мишенью, однако интенсивность всех ионных потоков в этом случае ниже, поскольку степень ионизации плазмы чрезвычайно мала. Это позволяет сделать предположение о наличии сгенерированных по описанному механизму положительных ионов в других типах газового разряда, где существует группа быстрых отрицательных ионов. Кроме того, выдвинутые предположения относятся не только к кислородосодержащей плазме, но также и к плазме, содержащей другие электроотрицательные элементы (хлор, фтор).

ЗАКЛЮЧЕНИЕ

Обнаружена ускоренная до энергии ~ 1000 эВ компонента потока ионов кислорода O^+ из плазмы сильноточного импульсного магнетронного разряда с горячей мишенью в область размещения подложки. Такие ионы наблюдаются при значительном содержании кислорода в смеси Ar/O_2 . Исследование обнаруженного потока ионов с высокой энергией имеет большую важность, поскольку процессы формирования оксидных пленок существенно зависят от характеристик бомбардирующих подложку частиц.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 18-79-10242).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Handbook of Thin Film Deposition* / Eds K. Seshan, D. Schepis. 4th ed. Amsterdam: Elsevier, 2018.
- 2. *Mattox D.M.* Handbook of Physical Vapor Deposition (PVD) Processing. Amsterdam: Elsevier, 2010.
- Aghda S.K., Holzapfel D.M., Music D. et al. // Acta Mater. 2023. V. 250. P. 118864.
- Greczynski G., Petrov I., Greene J.E. et al. // J. Vac. Sci. Technol. Amer. Vacuum Soc. 2019. V. 37. № 6. P. 060801.
- Ellmer K., Welzel T. // J. Mater. Res. 2012. V. 27. № 5. P. 765.
- Welzel T., Ellmer K. // Vak. Forsch. Prax. 2013. V. 25. № 2. P. 52.
- 7. Kaziev A.V., Kolodko D.V., Tumarkin A.V. et al. // Surf. Coatings Technol. 2021. V. 409. P. 126889.
- 8. Tumarkin A.V., Kaziev A.V., Kharkov M.M. et al. // Surf. Coatings Technol. 2016. V. 293. P. 42.

- 9. Kolodko D.V., Ageychenkov D.G., Kaziev A.V. et al. // J. Instrum. 2019. V. 14. № 10. P. P10005.
- 10. *Kolodko D.V., Kaziev A.V., Tumarkin A.V.* // 8th Int. Congress on Energy Fluxes and Radiation Effects. Tomsk. 2–8 Oct., 2022. Tomsk: TPU Publishing House, 2022. P. 1028.
- 11. *Hippler R., Cada M., Stranak V. et al.* // J. Phys. Commun., 2019. V. 3. № 5. P. 055011.
- 12. *Hippler R., Cada M., Stranak V. et al.* // J. Appl. Phys. 2019. V. 125. № 1. P. 013301.
- 13. *Pokorný P., Bulíř J., Lančok J. et al.* // Plasma Process. Polym. 2010. V. 7. № 11. P. 910.
- Pokorný P., Musil J., Lančok J. et al. // Vacuum. 2017.
 V. 143. P. 438.
- 15. *Hippler R.*, *Denker C.* // Plasma Sources Sci. Technol. 2019. V. 28. № 3. P. 035008.
- 16. *Pokorný P., Mišina M., Bulíř J. et al.* // Plasma Process. Polym. 2011. V. 8. № 5. P. 459.