К 70-ЛЕТИЮ ИРЭ ИМ. В.А. КОТЕЛЬНИКОВА РАН

УДК 517.518.34

ПОСТРОЕНИЕ ВЕЙВЛЕТОВ НА ОСНОВЕ ЭКСПОНЕНЦИАЛЬНЫХ АТОМАРНЫХ ФУНКЦИЙ $hup_a(x)$ И ГАРМОНИЧЕСКИХ $scup_b(x)$ И $g_k(x)$

© 2023 г. В. Ф. Кравченко^{*a*}, Я. Ю. Коновалов^{*b*, *}

 ^а Институт радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11, корп. 7, Москва, 125009 Российская Федерация
 ^b Московский государственный технический университет им. Н.Э. Баумана, ул. 2-я Бауманская, 5, Москва, 105005 Российская Федерация *E-mail: kon20002000@mail.ru Поступила в редакцию 28.04.2023 г. После доработки 28.04.2023 г. Принята к публикации 25.05.2023 г.

Исследована возможность построения вейвлетов на основе сверток с прямоугольным импульсом экспоненциальных и гармонических атомарных функций. Рассмотрены некоторые свойства экспоненциальных и гармонических атомарных функций. Вычислены значения констант неопределенности построенных вейвлетов.

DOI: 10.31857/S003384942310008X, EDN: DOZFOB

введение

Вейвлеты нашли широкое применение в различных приложениях [1, 2]. Одной из широко известных конструкций вейвлетов является конструкция Мейера. В работе рассмотрена модификация вейвлетов Мейера на основе сверток финитных (с компактным носителем) функций с прямоугольным импульсом. Построены вейвлеты на основе сверток экспоненциальных $hup_a(x)$ и гармонических атомарных функций scup_b(x) и g_k(x) с прямоугольным импульсом. Найдены значения констант неопределенности.

1. КОНСТРУКЦИЯ ВЕЙВЛЕТОВ МЕЙЕРА И ЕЕ ОБОБЩЕНИЕ

Рассмотрим последовательность построения вейвлетов Мейера [1, 2]. На первом этапе выбирается преобразование Фурье масштабирующей функции $\hat{\varphi}(\omega)$, удовлетворяющее следующим требованиям:

1) $\hat{\varphi}(\omega)$ четная неотрицательная функция, с носителем $\left[-\frac{4\pi}{3};\frac{4\pi}{3}\right]$,

2)
$$\hat{\varphi}(\omega) \equiv 1$$
 на отрезке $\left[-\frac{2\pi}{3};\frac{2\pi}{3}\right]$,
3) $\sum_{n\in\mathbb{Z}} \left|\hat{\varphi}(\omega+2\pi n)\right|^2 = 1$.

Затем строится сопряженный зеркальный фильтр

$$H_0(\omega) = \hat{\varphi}(2\omega)/\hat{\varphi}(\omega) = \hat{\varphi}(2\omega).$$

Далее функция $H_0(\omega)$ периодически продолжается с периодом 2π для выполнения условия

$$|H_0(\omega)|^2 + |H_0(\omega + \pi)|^2 = 1,$$

обеспечивающего ортогональность базиса. После этого преобразование Фурье вейвлета может быть найдено в виде

$$\hat{\psi}(\omega) = \exp\left(\frac{i\omega}{2}\right) H_0\left(\frac{\omega}{2} + \pi\right) \hat{\varphi}\left(\frac{\omega}{2}\right).$$
 (1)

Таким образом, вейвлет Мейера полностью определяется выбором $\hat{\varphi}(\omega)$. При построении вейвлетов Мейера [1, 2] в качестве $\hat{\varphi}(\omega)$ используются тригонометрические многочлены специального вида. Использование в качестве $\hat{\varphi}(\omega)$ других функций, удовлетворяющих перечисленным выше условиям, позволяет получить новые вейвлеты, представляющие собой обобщения вейвлетов Мейера и, возможно, обладающие лучшими физическими характеристиками.

Для упрощения процедуры построения $\hat{\varphi}(\omega)$ удобно ввести промежуточную функцию $\chi(\omega) = -\hat{\alpha}^2(\omega)$ со словности и сробстронии

 $= \hat{\phi}^2(\omega)$ со следующими свойствами:

1) $\chi(\omega)$ четная неотрицательная функция с носителем supp($\chi(\omega)$) = $\left[-\frac{4\pi}{3};\frac{4\pi}{3}\right]$, 2) $\chi(\omega)$ = 1 на отрезке $\left[-\frac{2\pi}{3};\frac{2\pi}{3}\right]$, 3) $\sum_{n \in \mathbb{Z}} \chi(\omega + 2\pi n) = 1$. В данной работе рассмотрены два подхода к построению $\chi(\omega)$. Первый, предложенный в 2008 г. [3-6] и использовавшийся в [7], предполагает выбор в качестве $\chi(\omega)$ конечной суммы сдвигов финитных функций, образующих разложение единицы, чем и обеспечивается выполнение условий 2 и 3. Значения $\chi(\omega)$ в этом случае могут быть вычислены как непосредственно, так и путем раз-

ложения $\chi(\omega)$ в ряд Фурье на отрезке $\left[-\frac{4\pi}{3};\frac{4\pi}{3}\right]$:

$$\chi(\omega) = \frac{3}{4\pi} \left(\pi + \sum_{k=1}^{\infty} \hat{\chi} \left(\frac{3}{4} k \right) \cos \left(\frac{3}{4} k x \right) \right) \approx$$

$$\approx \frac{3}{4\pi} \left(\pi + \sum_{k=1}^{K} \hat{\chi} \left(\frac{3}{4} k \right) \cos \left(\frac{3}{4} k x \right) \right),$$
(2)

где $\hat{\chi}(\omega)$ равно спектру использованной для построения финитной функции, умноженному на сумму фазовых множителей, порожденных сдвигами в сумме.

Второй подход, состоящий в использовании в качестве $\chi(\omega)$ свертки финитных функций с прямоугольным импульсом, уже был применен в [8–10]. В этом случае $\chi(\omega)$ строится как свертка $\chi(\omega) = \Theta_0 (\omega/2\pi) * g(\omega)$, где

$$\Theta_0(x) = \begin{cases} 1 & |x| < 0.5, \\ 0.5 & |x| = 0.5, \\ 0 & |x| > 0.5, \end{cases}$$

- стандартный прямоугольный импульс, а g(x) - четная неотрицательная функция с носителем $\left[-\frac{\pi}{3};\frac{\pi}{3}\right]$ и интегралом, равным единице. Тогда выполнение требований, предъявляемых к $\chi(\omega)$, будет обеспечиваться свойствами свертки. Поэтому нет необходимости в том, чтобы сдвиги g(x) обеспечивали разложение единицы. Для вычисления значений $\chi(\omega)$ целесообразно воспользоваться рядом (2), где $\hat{\chi}(t) = 2\pi \operatorname{sinc}(\pi t)\hat{g}(t)$.

После того как $\chi(\omega)$ построена тем или иным способом, находим $\hat{\varphi}(\omega) = \sqrt{\chi(\omega)}$. Преобразование Фурье вейвлета $\hat{\psi}(\omega)$ строится по формуле (1). Значения вейвлета $\psi(x)$ могут быть найдены с помощью интеграла Фурье

$$\psi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(\frac{i\omega}{2}\right) (\hat{\varphi}(\omega - 2\pi) + \hat{\varphi}(\omega + 2\pi)) \hat{\varphi}\left(\frac{\omega}{2}\right) \exp(i\omega x) d\omega.$$

Если учесть четность подынтегральной функции, носители сомножителей и то, что $\hat{\varphi}(\omega - 2\pi) = 1$ при $\omega \in \left[\frac{4\pi}{3}; \frac{8\pi}{3}\right]$, а $\hat{\varphi}(\omega/2) = 1$ при $\omega \in \left[-\frac{4\pi}{3}; \frac{4\pi}{3}\right]$, можно получить

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

$$\psi(x) = \frac{1}{\pi} \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} \hat{\varphi}(\omega - 2\pi) \cos \omega \left(x + \frac{1}{2}\right) d\omega + \frac{1}{\pi} \int_{\frac{4\pi}{3}}^{\frac{8\pi}{3}} \hat{\varphi}\left(\frac{\omega}{2}\right) \cos \omega \left(x + \frac{1}{2}\right) d\omega.$$

Для оценки качества частотно-временной локализации полученных вейвлетов найдем их константы неопределенности [1, 2]. Для f(t)

$$\Delta_f = \frac{1}{\|f(t)\|} \sqrt{\int_{-\infty}^{\infty} \left(t - t_f^*\right)^2 \left|f(t)\right|^2 dt},$$

где t_f^* – центр функции f(x), определяемый как

$$t_f^* = \frac{1}{\|f(t)\|^2} \int_{-\infty}^{\infty} t |f(t)|^2 dt.$$

Отметим, что в работе [7] доказано, что при построении вейвлетов на основе первого подхода имеет место $\|\hat{\varphi}(\omega)\|^2 = 2\pi$, $\|\hat{\psi}(\omega)\|^2 = 2\pi$, $\|\varphi(\omega)\|^2 = 1$, $\|\psi(\omega)\|^2 = 1$, центром вейвлета $\psi(x)$ является $t_{\psi}^{*} = -1/2$, центры $\phi(x)$, $\hat{\phi}(\omega)$, $\hat{\psi}(\omega)$ находятся в нуле. В работах [8, 9] аналогичный результат получен для конструкции на основе свертки. Эти факты позволяют существенно упростить вычисление констант неопределенности. О качестве построенных вейвлетов будем судить по значениям произведений [1, 2] $\Delta_{\phi}\Delta_{\hat{\phi}}$ и $\Delta_{\psi}\Delta_{\hat{\psi}}$. Лучшим вейвлетам соответствуют меньшие значения. В качестве пороговых значений используем $\Delta_{\psi}\Delta_{\hat{\psi}} = 3.278$ и $\Delta_{\phi}\Delta_{\hat{\phi}} = 1.0115$, соответствующие вейвлету Мейера [2].

2. АТОМАРНЫЕ ФУНКЦИИ И ПОСТРОЕНИЕ ВЕЙВЛЕТОВ НА ИХ ОСНОВЕ

2.1. Полиномиальные атомарные функции

По определению [4, 11—13] атомарные функции представляют собой финитные решения функционально-дифференциальных уравнений специального вида. Простейшей атомарной функцией является up(x), заданная уравнением

$$y'(x) = 2y(2x+1) - 2y(2x-1).$$
 (3)

Ее преобразование Фурье представляется в виде бесконечного произведения

$$\widehat{\operatorname{up}}(t) = \prod_{k=1}^{\infty} \operatorname{sinc}\left(\frac{t}{2^k}\right).$$
(4)

Известно [11–13], что сумма сдвигов up(x) обеспечивает разложение единицы и точное выражение многочленов. В частности,

$$\sum_{n=-\infty}^{\infty} \operatorname{up}(x-n) \equiv 1.$$
 (5)

В [3, 4] строится вейвлет на основе суммы сдвигов атомарных функций up(x)

$$\chi(\omega) = \mathrm{up}\left(\frac{3\omega}{2\pi} + 1\right) + \mathrm{up}\left(\frac{3\omega}{2\pi}\right) + \mathrm{up}\left(\frac{3\omega}{2\pi} - 1\right). \tag{6}$$

В [8-10] построен вейвлет на основе свертки

$$\chi(\omega) = \Theta_0 \left(\frac{\omega}{2\pi}\right) * \frac{3}{\pi} \operatorname{up}\left(\frac{3}{\pi}\omega\right)$$
(7)

и показано, что $\chi(\omega)$, заданные (7) и (6), совпадают и, соответственно, порождают один и тот же вейвлет.

Естественным обобщением функции up(x) является семейство функций h_a(<math>x). При каждом вещественном a > 1 функция h_a(<math>x) является финитным решением уравнения</sub></sub>

$$y'(x) = \frac{a^2}{2}(y(ax+1) - y(ax-1))$$

с носителем $\left[-\frac{1}{a-1};\frac{1}{a-1}\right]$ и единичным интегра-

лом. Спектр функции $h_a(x)$ имеет вид

$$\hat{\mathbf{h}}_a(t) = \prod_{k=1}^{\infty} \operatorname{sinc}\left(\frac{t}{a^k}\right).$$

Легко заметить, что $h_2(x) \equiv up(x)$. Аналогично (5) имеет место

$$\sum_{n=-\infty}^{\infty} \mathbf{h}_a \left(x - \frac{2n}{a} \right) \equiv \frac{a}{2}.$$

В [8–10] на основе функций $h_a(x)$ при каждом *a* > 1 построен вейвлет на основе свертки

$$\chi(\omega) = \Theta_0 \left(\frac{\omega}{2\pi}\right) * \frac{3}{\pi(a-1)} h_a \left(\frac{3}{\pi(a-1)}\omega\right).$$
(8)

Эти вейвлеты образуют непрерывное семейство, параметризованное *a*. Кроме того, в [8–10] установлено, что при

$$a = \frac{r+4}{r+1}, \quad \text{где} \quad r \in \mathbb{Z}_+, \tag{9}$$

 $\chi(\omega)$ представима в виде суммы сдвигов функции $h_{a}(x)$:

$$\chi(\omega) = \frac{2}{a} \sum_{k=0}^{r} h_a \left(\frac{3}{a\pi(a-1)} \omega + \frac{r-2k}{a} \right).$$

В этих случаях вейвлеты совпадают с представленными ранее в [4–6]. Таким образом, в данном случае, множество вейвлетов, построенных для *a*,

заданного (9), образует счетное подсемейство в непрерывном семействе вейвлетов, построенных на основе (8).

Аналогичными свойствами обладают и многие другие атомарные функции, в том числе рассмотренные в [8–10]. Атомарные функции, обеспечивающие разложение единицы и многочленов, называются полиномиальными.

2.2. Экспоненциальные атомарные функции

Атомарные функции, суммы сдвигов которых точно выражают экспоненту, называются экспоненциальными. Рассмотрим некоторые из них.

Простейшими экспоненциальными атомарными функциями являются $eup_a(x)$ [12–14]. Они являются решениями уравнения

$$y'(x) - (\ln a) y(x) =$$

= $\frac{2 \ln a}{a - 1} (y(2x + 1) - ay(2x - 1)),$ (10)

где a – положительное вещественное число, $a \neq 1$. Все $eup_a(x)$ имеют носитель [-1;1] и единичный интеграл. Их спектр представляется формулой

$$\widehat{\operatorname{eup}}_{a}(t) = \prod_{k=1}^{\infty} \frac{\operatorname{shc}\left(\frac{\ln a}{2} - \frac{it}{2^{k}}\right)}{\operatorname{shc}\left(\frac{\ln a}{2}\right)},$$
(11)

где $\operatorname{shc}(t) = \operatorname{sh}(t)/t$. Легко заметить, что $\operatorname{eup}_a(x) = \operatorname{eup}_{1/a}(-x)$.

При $a \rightarrow 1$ уравнение (10) переходит в (3), а (11) в (4), следовательно, можно определить $eup_1(x) = up(x)$.

При $a = \exp(k)$ функция $\exp_a(x)$ совпадает с предложенной в [15] и далее рассматривавшейся в [16–19] функцией pe(x), удовлетворяющей уравнению

$$y'(x) - ky(x) = \frac{k}{\operatorname{sh}\frac{k}{2}} \times \left(\exp\left(-\frac{k}{2}\right) y(2x+1) - \exp\left(\frac{k}{2}\right) y(2x-1) \right),$$

имеющей носитель [-1;1] и спектр

>

$$\widehat{\text{pe}}(t) = \prod_{n=1}^{\infty} \frac{\operatorname{shc}\left(\frac{k}{2} + it2^{-n}\right)}{\operatorname{shc}\left(\frac{k}{2}\right)}$$

Сумма целочисленных сдвигов $eup_a(x)$ обеспечивает точное выражение экспоненты

$$\sum_{k=-\infty}^{\infty} a^k \exp_a(x-k) = a^x \exp_a(0).$$
(12)

Рис. 1. Графики $eup_{\rho}(x)$ и ее производной.

Рассмотрим построенную в [12–14] на ее основе неотрицательную четную функцию

$$hup_a(x) = eup_a(x) * eup_a(-x).$$

Носителем функции $hup_a(x)$ является отрезок [-2; 2]. Используя свойства свертки и выражение

$$hup_a(x) = eup_a(x) * eup_{1/a}(x)$$

легко получить явный вид уравнения

$$y''(x) - (\ln^2 a)y(x) = \frac{2\ln^2 a}{(a-1)^2} \times (ay(2x+2) - (a^2+1)y(2x) + ay(2x-2))$$

Кроме того, $hup_a(x) = hup_{1/a}(-x)$. Спектр функции $hup_a(x)$ имеет вид

$$\widehat{\operatorname{hup}}_{a}(t) = \prod_{k=0}^{\infty} \frac{a^{2} + 1 - 2a\cos(t2^{-k})}{(a-1)^{2} \left(1 + \frac{t^{2}}{2^{2k}\ln^{2}a}\right)}.$$

Из (12) следует

$$\sum_{k=-\infty}^{\infty} a^k \operatorname{hup}_a(x-k) = \gamma a^x,$$
$$\sum_{k=-\infty}^{\infty} = a^{-k} \operatorname{hup}_a(a-k) = \gamma a^{-x},$$
$$\sum_{k=-\infty}^{\infty} = \operatorname{ch}(k) \operatorname{hup}_a(a-k) = \gamma \operatorname{ch}(x),$$
$$\sum_{k=-\infty}^{\infty} = \operatorname{sh}(k) \operatorname{hup}_a(a-k) = \gamma \operatorname{sh}(x),$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

Рис. 2. Графики $hup_e(x)$ и ее второй производной.

где $\gamma = hup_a(0) + (a + a^{-1}) hup_a(1)$. На рис. 2 представлен вид графика функции $hup_a(x)$ и ее второй производной при a = e.

Осуществим построение вейвлетов на основе свертки

$$\chi(\omega) = \Theta_0 \left(\frac{\omega}{2\pi}\right) * \frac{6}{\pi} hup_a \left(\frac{6\omega}{\pi}\right).$$
(13)

При этом спектр $\chi(\omega)$ будет иметь вид

$$\hat{\chi} = 2\pi \operatorname{sinc}(\pi t) \widehat{\operatorname{hup}}_a\left(\frac{\pi t}{6}\right).$$

Вычислим $\chi(\omega)$ по формуле (2) и построим вейвлеты по описанной выше схеме. На рис. 3 представлены значения констант неопределенности полученных вейвлетов (сплошная линия) при $a \in [1;9]$. Видно, что минимум достигается при a = 1, далее значения увеличиваются с ростом a и при a > 3 превышают порог (пунктирная линия), определенный по вейвлету Мейера. Из этого можно сделать вывод, что атомарная экспоненциальная функция hup_a(x) малопригодна для построения вейвлетов по предложенной в [8–10] методике.

2.3. Гармонические атомарные функции

Рассмотрим семейство атомарных функций $scup_b(x)$. Данное семейство [12, 13, 20] может быть получено формальной подстановкой $a = \exp(2i\pi b)$ в $hup_a(x)$. Тогда $scup_b(x) = hup_{\exp(2i\pi b)}(x)$ имеет но-ситель [-2; 2] и удовлетворяет уравнению

$$\frac{y''(x)}{4\pi^2 b^2} + y(x) =$$

= $\frac{y(2x+2) - 2\cos(2\pi b)y(2x) + y(2x-2)}{1 - \cos(2\pi b)}$

Рис. 3. Значения констант неопределенности $\Delta_{\psi}\Delta_{\hat{\psi}}$ для вейвлетов, построенных на основе сверток с прямоугольным импульсом экспоненциальных атомарных функций hup_a(x); штриховой линией показан уровень $\Delta_{\psi}\Delta_{\hat{\psi}} = 3.278$, соответствующий вейвлету Мейера.

Из уравнения видно, что при целых значениях b, отличных от нуля, функция scup_b(x) не определена. Если домножить правую и левую части уравнения на $1 - \cos(2\pi b)$, то при стремлении $b \rightarrow 0$, в пределе получим уравнение

$$y''(x) = 2y(2x+2) - 4y(2x) + 2y(2x-2),$$

определяющее атомарную функцию $\operatorname{cup}(x) = \operatorname{up}(x) * \operatorname{up}(x)$. Кроме того, так как при $\lim_{b\to 0} a = \lim_{b\to 0} \exp(2i\pi b) = 1$, в пределе имеем $\operatorname{scup}_0(x) =$ $= \operatorname{hup}_1(x) = \operatorname{cup}(x)$. Согласно [12, 13, 20] спектр $\operatorname{scup}_b(x)$ имеет вид

$$\widehat{\operatorname{scup}}_{b}(t) = \prod_{k=1}^{\infty} \frac{\cos(t2^{1-k}) - \cos(2\pi b)}{(1 - \cos(2\pi b))\left(1 - \frac{t^{2}}{2^{2k}\pi^{2}b^{2}}\right)}.$$
 (14)

Имеет место $scup_b(x) = scup_{-b}(x)$. Кроме того, из (12) следует, что сдвиги $scup_b(x)$ обеспечивают точное представление гармонических функций

$$\sum_{k=-\infty}^{\infty} \cos(2\pi bk) \operatorname{scup}_{b}(x-k) = \gamma \cos(2\pi bx),$$
$$\sum_{k=-\infty}^{\infty} \sin(2\pi bk) \operatorname{scup}_{b}(x-k) = \gamma \sin(2\pi bx),$$

Рис. 4. График функции scup_{0.5}(*x*).

соответственно, сами атомарные функции scup(x) также можно назвать гармоническими.

В то время как $hup_a(x)$ при всех значениях *а* представляет собой неотрицательную колоколообразную функцию, форма графика $scup_b(x)$ значительно меняется в зависимости от *b*. В частности, функция может иметь корни и принимать отрицательные значения. Поскольку в дальнейшем для построения вейвлетов нам потребуются неотрицательные функции, рассмотрим вопрос, при каких значениях *b* будет выполняться $scup_b(x) \ge 0$.

Анализ поведения $scup_b(x)$ при произвольных значениях параметра *b* является трудной задачей, однако в некоторых частных случаях, когда уравнение функции приобретает специальный вид, она заметно упрощается. Сформулируем некоторые утверждения относительно свойств функции $scup_b(x)$ при определенных значениях *b*.

Утверждение 1. При b = (2n+1)/2, $n \in \mathbb{Z}$, имеет место равенство

$$(2n+1) \operatorname{scup}_{n+0.5}(x) = \operatorname{scup}_{0.5} ((2n+1)x + 4n) + + \sum_{k=-2n+1}^{2n-1} 2 \operatorname{scup}_{0.5} ((2n+1)x - 2k) + + \operatorname{scup}_{0.5} ((2n+1)x - 4n) + + (2n-1) \operatorname{scup}_{n-0.5} \left(\frac{2n+1}{2n-1}x\right).$$
(15)

На рис. 4 приведен график функции $scup_{0.5}(x)$. Свойство (15) при n = 2 проиллюстрировано на рис. 5, видно, что $scup_{2.5}(x)$ (внешний контур рисунка) представляет собой сжатую $scup_{1.5}(x)$, поднятую на пьедестал (жирная линия), составленный из сдвигов сжатой $scup_{0.5}(x)$. Из (15) можно получить выражение $scup_{n+0.5}(x)$ непосредственно через $scup_{0.5}(x)$:

$$scup_{n+0.5}(x) =$$

$$= \sum_{k=-2n}^{2n} \frac{2n+1-|k|}{2n+1} scup_{0.5} ((2n+1)x-2k).$$
(16)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

Иллюстрация (16) приведена на рис. 6, пространство под графиком функции $scup_{2.5}(x)$ заполнено масштабированными копиями $scup_{0.5}(x)$.

Следствием (16) является то, что при всех b = 0.5 + n, где, функция $scup_b(x)$ является неотрицательной и строго положительной на интервале (-2; 2). При этом график функции приобретает форму ступенчатой пирамидки с 2n + 1 ступенькой и максимумом $scup_{n+0.5}(0) = 0.5$.

Другим следствием данного утверждения является то, что $scup_{n+0.5}(x)$ образует разложение единицы, а именно

$$\sum_{k=-\infty}^{\infty} \operatorname{scup}_{n+0.5}(x-2k) \equiv 0.5.$$

В общем случае $scup_b(x)$ подобным свойством не обладает.

Утверждение 2. При b = (2n + 1)/4, $n \in \mathbb{Z}$, имеет место равенство

$$\operatorname{scup}_{b}(x) = \sum_{k=-n}^{n} \operatorname{scup}_{0.25}((2n+1)x - 4k).$$

В этом случае график функции приобретает вид гребенки (рис. 7), состоящей из 2n + 1 зуба. Функция является неотрицательной, но не строго положительной на внутренности своего носителя.

Численное исследование показывает, что в окрестности целых значений b функции scup_k(x)</sub> демонстрируют сингулярное поведение и заведомо непригодны для построения вейвлетов. В то же время в окрестности значений b = n + 0.5 функции $scup_b(x)$ заведомо неотрицательны. В большинстве случаев $scup_b(x)$ перестает принимать отрицательные значения, если b отличается от ближайшего целого больше чем на 1/4, при этом описанные выше b = (2n + 1)/4 служат своего рода границей межлу лиапазонами значений параметра *b*, соответствующими регулярному и сингулярному поведению функций. Однако существуют участки, например [3.25; 3.75] или [7.25; 7.75], на которых функции принимают отрицательные значения даже при b, близких к n + 0.5. Поэтому выделить вокруг точек *n* + 0.5 диапазоны значений параметра b, при которых $\operatorname{scup}_{b}(x)$ заведомо пригодна для построения вейвлетов, не удается. Впрочем, это и не требуется, так как при построении вейвлетов на основе свертки

$$\chi(\omega) = \Theta_0 \left(\frac{\omega}{2\pi}\right) * \frac{6}{\pi} \operatorname{scup}_b \left(\frac{6\omega}{\pi}\right)$$
(17)

минимальные значения констант неопределенности соответствуют именно значениям b = n + 0.5. Таким образом, целесообразно строить счетное семейство вейвлетов на основе сверток с прямо-

Рис. 5. Функция $scup_{2.5}(x)$ (внешний контур рисунка), выраженная формулой (15). Содержащиеся в правой части (15) масштабированные сдвиги $scup_{0.5}(x)$ показаны штриховыми линиями, их сумма – сплошной толстой линией.

Рис. 6. Функция $scup_{2.5}(x)$ (жирная линия), представленная в виде суммы сдвигов сжатой $scup_{0.5}(x)$ (тонкие линии).

Рис. 7. График функции scup_{0.75}(*x*).

КРАВЧЕНКО, КОНОВАЛОВ

b	Суммы		Свертки	
	$\Delta_{\phi}\Delta_{\hat{\phi}}$	$\Delta_\psi \Delta_{\hat\psi}$	$\Delta_{\phi}\Delta_{\hat{\phi}}$	$\Delta_\psi \Delta_{\hat\psi}$
0.5	0.976058	3.163447	0.914379	2.963676
1.5	1.163484	3.771625	0.847842	2.748229
2.5	1.230965	3.990492	0.833556	2.701945
3.5	1.272473	4.125094	0.827386	2.681951
4.5	1.302355	4.221982	0.823949	2.670806
5.5	1.325636	4.297440	0.821759	2.663690
6.5	1.344664	4.358955	0.820242	2.658736
7.5	1.360729	4.410751	0.819129	2.655000
8.5	1.374612	4.455349	0.818277	2.652098
9.5	1.386825	4.493878	0.817605	2.649798
10.5	1.397716	4.528119	0.817060	2.647923
11.5	1.407539	4.559336	0.816610	2.646351
12.5	1.416479	4.580683	0.816232	2.644827
13.5	1.424675	4.568384	0.815910	2.642820
14.5	1.432232	4.582385	0.815632	2.641424
15.5	1.439191	4.596436	0.815386	2.640271
16.5	1.445812	4.611970	0.815164	2.639214
17.5	1.451935	4.624895	0.814974	2.638444
18.5	1.457696	4.637261	0.814806	2.637786
19.5	1.463125	4.648679	0.814656	2.637220

Таблица 1. Значения констант неопределенности $\Delta_{\phi} \Delta_{\hat{\psi}}$ и $\Delta_{\psi} \Delta_{\hat{\psi}}$ вейвлетов, построенных на основе сверток с прямоугольным импульсом и сумм сдвигов функций scup_{*n*+0} ₅(*x*)

угольным импульсом функций $scup_b(x)$ при $b = n + 0.5, n \in \mathbb{N}$. Спектр $\chi(\omega)$, заданного (17), имеет вид

960

$$\hat{\chi} = 2\pi \operatorname{sinc}(\pi t) \widehat{\operatorname{scup}}_b\left(\frac{\pi t}{6}\right).$$
 (18)

Значения констант неопределенности полученных вейвлетов приведены в табл. 1. Графики $\chi(\omega)$, заданного (17) при b = 2.5 и соответствующего $\hat{\varphi}(\omega)$, приведены на рис. 8. В силу следствия утверждения 2 возможно построение вейвлетов на основе сверток с прямоугольным импульсом функций $scup_b(x)$ при $b = (2n+1)/4, n \in \mathbb{N}$. При этом $\chi(\omega)$ и $\hat{\chi}(\omega)$ также будут иметь вид (17) и (18). Однако в этом случае значения констант неопределенности (табл. 2) оказываются заметно больше.

Отметим, что выражение (14) оказалось непригодным для построения новых вейвлетов, так как при вычислении $\chi(\omega)$ по формуле (2) с учетом

Рис. 8. Графики $\chi(\omega)$ заданного сверткой (17) при b = 2.5 (жирная линия) и соответствующего $\hat{\varphi}(\omega)$ (тонкая линия).

(18) требуется находить значения $scup_b(t)$ при *t* кратных $\pi/4$. При таких *t* и *b* кратных 2^{-n} произведение (14) заведомо содержит сомножители со знаменателями, равными нулю. Чтобы преодолеть это затруднение, выражение (14) было преобразовано к виду

$$\widehat{\operatorname{scup}}_{b}(t) = \prod_{k=1}^{\infty} \frac{\operatorname{sinc}(\pi b - t2^{-k})\operatorname{sinc}(\pi b + t2^{-k})}{\operatorname{sinc}^{2}(\pi b)}.$$
 (19)

При правильном задании функции sinc(x) формула (19) позволяет вычислить спектр $scup_b(t)$ при любых *t* и всех допустимых значениях *b*.

Так как при b = n + 0.5 сдвиги scup_b(x) образуют разложение единицы, возможно построение вейвлетов по методике [3–7]. Для этого рассмотрим сумму

$$\chi(\omega) = \operatorname{scup}_{b}\left(\frac{3\omega}{\pi} + 2\right) + \tag{20}$$

+
$$\operatorname{scup}_{b}\left(\frac{3\omega}{\pi}\right)$$
 + $\operatorname{scup}_{b}\left(\frac{3\omega}{\pi}-2\right)$.

При этом спектр $\chi(\omega)$ будет иметь вид

$$\hat{\chi} = \frac{2\pi}{3} \left(1 + 2\cos\frac{2\pi t}{3} \right) \widehat{\operatorname{scup}}_b \left(\frac{\pi t}{3} \right).$$

Константы неопределенности полученных на основе (20) вейвлетов приведены в табл. 1. В этом случае они оказываются значительно большими чем для вейвлетов, построенных на основе свертки (17). Отметим, что аналогичная ситуация наблюдается и при построении вейвлетов на основе сумм сдвигов [3, 4] и свертки с прямоугольным импульсом [8, 9] функций ир_m(x), график которых также имеет вид пирамидки. На рис. 9 представлен вид графиков $\chi(\omega)$, заданной как сумма (20) при b = 2.5 (жирная линия) и соответствующей $\hat{\varphi}(\omega)$ (тонкая линия), а также слагаемых правой части (20) (штриховые линии).

Таблица 2. Значения констант неопределенности $\Delta_{\varphi} \Delta_{\hat{\varphi}}$ и $\Delta_{\psi} \Delta_{\hat{\psi}}$ вейвлетов, построенных на основе сверток с прямоугольным импульсом функций scup_b(x) при b = (2n + 1)/4

b	$\Delta_{\phi}\Delta_{\hat{\phi}}$	$\Delta_\psi \Delta_{\hat{\psi}}$
0.25	0.976058	3.163447
0.75	1.163484	3.771625
1.25	1.230965	3.990492
1.75	1.272473	4.125094
2.25	1.302355	4.221982
2.75	1.325636	4.297440
3.25	1.344664	4.358955
3.75	1.360729	4.410751
4.25	1.374612	4.455349
4.75	1.386825	4.493878
5.25	1.397716	4.528119
5.75	1.407539	4.559336
6.25	1.416479	4.580683
6.75	1.424675	4.568384
7.25	1.432232	4.582385
7.75	1.439191	4.596436
8.25	1.445812	4.611970
8.75	1.451935	4.624895
9.25	1.457696	4.637261
9.75	1.463125	4.648679

Рассмотрим еще одну гармоническую атомарную функцию $g_k(x)$, также введенную в [15] и далее рассматривавшуюся в [11, 21–23] и других ра-

Рис. 9. Графики $\chi(\omega)$, заданного суммой (20) при b = 2.5 (жирная линия), соответствующего $\hat{\varphi}(\omega)$ (тонкая линия) и слагаемых правой части (20) (штриховые линии).

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

Рис. 10. График функции g_{1.5π}(*x*).

ботах. По определению функция $g_k(x)$ имеет носитель [-1;1] и является решением уравнения

$$y''(x) + k^{2}y(x) =$$

$$= ay(3x + 2) - by(3x) + ay(3x - 2),$$
(21)

где

$$a = \frac{3}{2} \frac{k^2}{1 - \cos\frac{2k}{3}}, \ b = 2a\cos\frac{2k}{3}, \ k \in \mathbb{R}$$

Преобразование Фурье $g_k(x)$ имеет вид

$$\hat{g}_{k}(t) = \prod_{n=1}^{\infty} \frac{k^{2} \operatorname{sinc}^{2} \frac{k}{3} - \frac{t^{2}}{3^{2n-2}} \operatorname{sinc}^{2} \frac{t}{3^{n}}}{\left(k^{2} - \frac{t^{2}}{3^{2n-2}}\right) \operatorname{sinc}^{2} \frac{k}{3}}.$$
 (22)

Из вида уравнения (21) и спектра (22) ясно, что $g_k(x) = g_{-k}(x)$. Кроме того, $g_k(x)$ не определена при $k = 3\pi n$, $n \in \mathbb{Z}$. Отметим, что при $k \to 0$ выражение для спектра (22) стремится к $(\hat{h}_3(t))^2$. Следовательно, $g_0(x) = h_3(x) * h_3(x)$.

Анализ поведения функций $g_k(x)$ при произвольных значениях k является сложной задачей. На данный момент по результатам численного эксперимента удалось установить, что $g_k(x)$ неотрицательна при $k \in [0; 2\pi]$, при $k \in [4\pi; 5\pi]$, а также $k \in [13\pi; 14\pi]$. В окрестности недопустимых значений параметра $k = 3\pi n$ функция ведет себя сингулярно, принимая большие значения, как положительные, так и отрицательные. Кроме того, установлен вид графика функции в некоторых частных случаях.

Рис. 11. График функции g_{4.5}(*x*).

Утверждение 3. При $k = \pi n$, где n – целое число не кратное 3, имеет место равенство

$$g_{\pi n}(x) = \sum_{k=1}^{n} g_{\pi}(nx + 2k - n - 1).$$

В этом случае функция приобретает вид гребенки с *n* зубьями единичной высоты.

Утверждение 4. При $k = 3^{n} \pi/2, n \in \mathbb{N}$, имеет место равенство

$$g_{3k}(x) = \frac{3}{4} (g_k(3x+2) + 2g_k(3x) + g_k(3x-2)). \quad (23)$$

Функция $g_{3\pi/2}(x)$ строго положительна на всем интервале (-1;1), имеет два максимума и минимум при x = 0. График ее напоминает стилизованное изображение сидящего кота (рис. 10). Согласно (23) графики функций $g_{3^n\pi/2}(x)$ будут представлять собой фракталоподобные конструкции, составленные из 3^{n-1} масштабированных сдвигов $g_{3\pi/2}(x)$ (рис. 11). Все $g_{3^n\pi/2}(x)$ неотрицательны на отрезке [-1;1] и равны нулю лишь в точках вида $x = -1 + 2k3^{1-n}$.

Утверждение 5. При $k = 9^{n} \pi/8, n \in \mathbb{N}$ имеет место равенство

$$g_{9k} = \frac{9}{6+4\sqrt{2}}(g_k(9x+8)+\sqrt{2}g_k(9x+6)+$$

+ $g_k(9x+4)+\sqrt{2}g_k(9x+2)+$
+ $2g_k(9x)+\sqrt{2}g_k(9x-2)+g_k(9x-4)+$
+ $\sqrt{2}g_k(9x-6)+g_k(9x-8)).$

Таблица 3. Значения констант неопределенности $\Delta_{\varphi} \Delta_{\hat{\varphi}}$ и $\Delta_{\psi} \Delta_{\hat{\psi}}$ вейвлетов, построенных на основе сверток с прямоугольным импульсом $g_k(x)$

k	п	$\Delta_{\phi} \Delta_{\hat{\phi}}$	$\Delta_\psi \Delta_{\hat\psi}$			
$k = \pi n$						
3.141593	1	0.890529	2.886410			
6.283185	2	0.996370	3.229837			
12.566371	4	1.079289	3.498791			
15.707963	5	1.103658	3.577816			
21.991149	7	1.139004	3.692409			
25.132741	8	1.152640	3.736592			
31.415927	10	1.175001	3.808974			
34.557519	11	1.184401	3.839359			
40.840704	13	1.200677	3.891886			
43.982297	14	1.207820	3.914853			
50.265482	16	1.220573	3.955817			
53.407075	17	1.226315	3.971472			
59.690260	19	1.236774	4.001813			
62.831853	20	1.241564	4.015835			
$k = 3^n \pi/2$						
4.712389	1	0.886039	2.871967			
14.137167	2	0.987586	3.201390			
42.411501	3	1.070676	3.470241			
127.234502	4	1.150047	3.612476			
381.703507	5	1.211683	3.410883			
1145.110522	6	1.087130	3.256369			
3435.331567	7	1.074442	3.254008			
10305.994700	8	1.073948	3.254430			
$k = 9^n \pi/8$						
3.534292	1	0.886251	2.872565			
31.808626	2	1.107373	3.589714			
286.277631	3	1.242809	3.480549			
2576.498675	4	1.028716	3.173441			
23 188.488075	5	1.026485	3.171297			

В этом случае вид функции аналогичен предыдущему, график $g_k(x)$ при $k = 9^n \pi/8$ состоит из 9^{n-1} масштабированных сдвигов $g_{9\pi/8}(x)$.

Зададим $\chi(\omega)$ как свертку

$$\chi(\omega) = \Theta_0\left(\frac{\omega}{2\pi}\right) * \frac{3}{\pi} g_k\left(\frac{3}{\pi}\omega\right).$$

При этом спектр $\chi(\omega)$ приобретает вид

$$\hat{\chi}(t) = 2\pi \operatorname{sinc}(\pi t) \hat{g}_k \left(\frac{\pi t}{3}\right).$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 10 2023

Будем осуществлять построение вейвлетов при значениях k, перечисленных в утверждениях 3-5, получив таким образом три счетных семейства вейвлетов.

Отметим что при вычислении $\chi(\omega)$ по формуле (2) требуется находить значения $\hat{g}_k(t)$ при $t = \pi n/4$. В случае когда $k = \pi n$ или $k = 3^n \pi/2$ при таких значениях *t* среди знаменателей сомножителей произведения (22) заведомо найдутся равные нулю. Поэтому для вычисления $\chi(\omega)$ необходимо преобразовать выражение (22) к виду

$$\hat{\mathbf{g}}_{k}(t) = \prod_{n=1}^{\infty} \frac{\operatorname{sinc}\left(\frac{k}{3} - \frac{t}{3^{n}}\right) \operatorname{sinc}\left(\frac{k}{3} + \frac{t}{3^{n}}\right)}{\operatorname{sinc}^{2}\left(\frac{k}{3}\right)}.$$

Значения констант неопределенности найденных вейвлетов приведены в табл. 3. Видно, что константы неопределенности для вейвлетов при $k = \pi n$ растут вместе с *n*, быстро достигая порога. В то же время константы неопределенности вейвлетов, построенных при $k = 3^{n} \pi/2$ и $k = 9^{n} \pi/8$, возрастают, затем проходят максимум и спадают.

выводы

Впервые представлены вейвлеты, построенные на основе сверток с прямоугольным импульсом экспоненциальных $hup_a(x)$ и гармонических $scup_b(x)$ и $g_k(x)$ атомарных функций. Отметим, что перечисленные функции (кроме $scup_b$ при b = n + 0.5, $n \in \mathbb{Z}$) не подходят для построения вейвлетов по методике [3–6], так как не образуют разложения единицы. Анализ значений констант неопределенности позволяет высказать предположение о хорошей частотно-временной локализации и, соответственно, высокой эффективности некоторых из построенных вейвлетов.

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Новиков И.Я., Протасов В.Ю., Скопина М.А. Теория всплесков. М.: Физматлит, 2006.
- 2. *Малла С.* Вэйвлеты в обработке сигналов. М.: Мир, 2005.
- 3. *Кравченко В.Ф., Юрин А.В.* // Успехи совр. радиоэлектроники. 2008. № 5. С. 3.
- Кравченко В.Ф., Кравченко О.В. Конструктивные методы алгебры логики, атомарных функций, вейвлетов, фракталов в задачах физики и техники. М.: Техносфера, 2018.
- 5. *Кравченко В.Ф., Чуриков Д.В.* // Успехи совр. радиоэлектроники. 2008. № 6. С. 67.

- Кравченко В.Ф., Чуриков Д.В. Цифровая обработка сигналов атомарными функциями и вейвлетами. М.: Техносфера, 2018.
- Kravchenko V.F., Kravchenko O.V., Konovalov Y.Y., Churikov D.V. // Proc. Int. Conf. Days on Diffraction 2015. St Petersburg, Russia, May 2015. P. 180. https://doi.org/0.1109/DD.2015.7354856
- Кравченко В.Ф., Коновалов Я.Ю. // РЭ. 2022. Т. 67. № 8. С. 761.
- Kravchenko V.F, Konovalov Y.Y. // Photonics & Electromagnetics Research Symp. (PIERS). 2021. P. 204. https://doi.org/10.1109/PIERS53385.2021.9695100
- Кравченко В.Ф., Коновалов Я.Ю. // 14-я Межд. науч.-тех. конф. "Акустооптические и радиолокационные методы измерений и обработки информации". Т. 14. Астрахань, 5–7 окт. 2021. С. 97. https://doi.org/10.25210/armimp-2021-27
- Кравченко В.Ф. Лекции по теории атомарных функции и некоторым их приложениям. М.: Радиотехника, 2003.
- 12. Зелкин Е.Г., Кравченко В.Ф., Гусевский В.И. Конструктивные методы аппроксимации в теории антенн. М.: Сайнс-пресс, 2005.

- Горшков А.С. Цифровая обработка сигналов: атомарные функции и теория чисел. М.: Машиностроение, 1994.
- 14. Горшков А.С., Кравченко В.Ф., Рвачев В.Л. // ДАН. 1994. Т. 336. № 3. С. 309.
- 15. *Рвачев В.А.* // Докл. АН УССР. Сер. А. 1973. № 9. С. 821.
- Середа Ю.Ф. // Методы анализа динамических систем. 1978. Вып. 2. С. 11.
- Середа Ю.Ф. // Методы анализа динамических систем. 1979. Вып. 3. С. 77.
- Середа Ю.Ф. // Методы анализа динамических систем. 1980. Вып. 4. С. 59.
- Середа Ю.Ф. // Методы анализа динамических систем. 1983. Вып. 7. С. 10.
- 20. Горшков А.С., Кравченко В.Ф., Рвачев В.Л. // ДАН. 1994. Т. 336. № 4. С. 462.
- 21. Забара С.И. // Методы анализа динамических систем. 1979. Вып. 3. С. 72.
- 22. Забара С.И. // Методы анализа динамических систем. 1979. Вып. 3. С. 84.
- 23. Забара С.И. // Методы анализа динамических систем. 1979. Вып. 3. С. 89.