РАДИОТЕХНИКА И ЭЛЕКТРОНИКА, 2023, том 68, № 12, с. 1149–1158

ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 621.371-373

ЭМПИРИЧЕСКАЯ ОЦЕНКА ПЕРЕХОДНОЙ ХАРАКТЕРИСТИКИ АПЕРТУРНОЙ АНТЕННЫ ПРИ ЕЕ ВОЗБУЖДЕНИИ ВИДЕОИМПУЛЬСОМ

© 2023 г. В. Е. Осташев^{а,} *, А. В. Ульянов^а

^а Объединенный институт высоких температур РАН, Ижорская ул., 13, стр. 2, Москва 125412 Российская Федерация

*E-mail: ostashev@ihed.ras.ru

Поступила в редакцию 21.09.2022 г. После доработки 07.12.2022 г. Принята к публикации 23.02.2023 г.

Предложена методика эмпирической оценки переходной характеристики антенны апертурного типа при ее возбуждении видеоимпульсом. Оценка проведена на основе сравнения напряжения возбуждения антенны и напряжения возбуждения излучающего раскрыва, которое вычислено по параметрам излученного импульса. Дана оценка энергетической эффективности заданной антенны как преобразователя электрической энергии в энергию излучения при вариации длины антенны, длительности и формы импульса ее возбуждения.

DOI: 10.31857/S0033849423110074, EDN: AWCBYE

введение

Апертурная антенна на основе симметричного *TEM*-рупора широко используется для создания направленных излучений в широком частотном диапазоне. Размеры рупора характеризуются тремя параметрами: угловой шириной электрода $\alpha(x)$, углом их раскрыва $\beta(x)$ в плоскости поляризации (*E*-плоскости) и длиной (x – координата на оси симметрии рупора). Параметры излучения определяются размерами рупора, а его волновой импеданс задается отношением $\beta(x)/\alpha(x)$. Рупор называют регулярным, если углы α и β не зависят от x.

Параметры излучателя характеризуются прежде всего шириной полосы рабочих частот, а в пределах этой полосы — эффективностью антеннофидерной системы, диаграммой направленности (ДН), энергетической эффективностью главного лепестка ДН и уровнем бокового излучения [1].

Целевой функцией оптимизации параметров *TEM*-рупора были: максимальная амплитуда излучаемого сверхкороткого импульса и минимальная угловая ширина энергетической ДН [2], максимальный угол поворота главного лепестка ДН антенной решетки рупоров [3], минимальная низкочастотная граница рабочей полосы частот рупора [4], параметры согласования регулярного и нерегулярного рупоров в зависимости от их формы [5].

Антенна излучателя – это преобразователь электрической энергии возбуждения антенны в энергию ее излучения в пространство. Любая система преобразования должна быть энергетически эффективной. Поэтому первой задачей оптимизации системы возбудитель-антенна является согласование элементов системы для достижения ее максимальной эффективности. В [6] на основе экспериментальных и расчетных данных была выполнена оценка эффективности макета излучателя как преобразователя первичной электрической энергии в энергию сверхширокополосного (СШП) излучения в главном лепестке ДН антенны. Системы с низкой энергетической эффективностью могут быть востребованы, если нет альтернативных способов решения практической задачи или если энергетическая эффективность устройства не является определяющим параметром его функциональной эффективности.

Цель данной работы — по параметрам импульса возбуждения антенны и соответствующего импульса излучения оценить параметры переходной (частотной) характеристики антенны и ее энергетическую эффективность как преобразователя электрической энергии импульса возбуждения антенны в энергию СШП-излучения, а также оптимизировать параметры системы антенна—импульс возбуждения для достижения максимальной эффективности.

Рис. 1. Схема преобразования энергии импульса возбуждения антенны в излучение: Γ – генератор; A – антенна; P – излучающий раскрыв.

1. ЭМПИРИЧЕСКАЯ ОЦЕНКА ПЕРЕХОДНОЙ ХАРАКТЕРИСТИКИ АНТЕННЫ ПРИ ЕЕ ВОЗБУЖДЕНИИ ВИДЕОИМПУЛЬСОМ

Рассмотрим излучатель с антенной направленного излучения апертурного типа. Измерение ее параметров по главной оси ДН антенны является первой задачей в исследовании характеристик излучателя. На основе этих измерений уже можно получить представление о переходной характеристике (ПХ) антенны как пассивного четырехполюсника, а также оценить эффективность преобразования энергии импульса возбуждения антенны в энергию излучения.

Рассмотрим условную схему излучателя и формирования излучения (рис. 1). Пусть однонаправленный раскрыв (Р) антенны (А) является плоским, возбуждается синхронно и однородно, согласован с пространством свободного распространения излучения (его импеданс $Z_0 = 120\pi$, Ом). Согласование раскрыва с пространством означает, что в рабочей полосе частот вся энергия возбуждения раскрыва излучается.

Пусть $E(t, R, \vec{\varphi} = 0)$ — напряженность поля излучения антенны в удаленной точке пространства на главной оси ДН ($\vec{\varphi} = 0$) и на расстоянии *R* от апертуры, а I_p и U_p — ток и напряжение возбуждения излучающего раскрыва антенны. Если характерный размер раскрыва прямоугольной формы равен $A = \sqrt{hw}$ (*w* и *h* — ширина и высота раскрыва, *h* лежит в *E*-плоскости), а возбуждение раскрыва однонаправленного излучения синхронно и однородно, то в рабочей полосе частот произведение RE(t) равно

$$RE(t - R/c, R, \vec{\varphi} = 0) =$$

= $\frac{\mu_0}{2\pi} A \frac{dI_p}{dt} = \frac{Z_0}{2\pi} \frac{A}{c} \frac{dI_p}{dt} = \frac{A}{2\pi c} \frac{dU_p(t)}{dt}.$ (1)

Откуда по результату регистрации импульса $E(t, R, \vec{\phi} = 0)$ может быть восстановлено фактическое напряжение возбуждения раскрыва

$$U_{\rm p}(t) = \frac{2\pi c}{A} \int_{-\infty}^{t} RE(t, R, \vec{\varphi} = 0) \ dt.$$
 (2)

Поскольку напряжение $U_{\rm p}$ вычислено со стороны пространства распространения излучения, обозначим его $U_{\rm p,0}$. Функция $U_{\rm p,0}(t)$ имеет следующие свойства:

— не зависит от R, так как в дальней зоне излучения произведение ER от R не зависит;

— не зависит от A, так как в рабочей полосе частот антенны $E \sim A$;

- $U_{\rm p,0}(t) \rightarrow 0$ при $t \rightarrow \infty,$ так как функция E(t) финитна;

 $-\int_{-\infty}^{+\infty} U_{\rm p,0}(t)dt = 0$, это находится в согласии с тем, что спектральная плотность сигнала излучения $E(\omega = 0) = 0$.

Следует отметить, что вычисление $U_{\rm p,0}$ в соответствии с (2) сводит модель реального излучателя к эквивалентной модели, в которой излучает плоский раскрыв, возбуждаемый синхронно и однородно.

Генератор импульсов возбуждения антенны вбрасывает в нее энергию с мощностью $(U_r)^2/Z_r$ $(Z_r - входной импеданс антенны). Если исходить из предположения, что в пределах рабочей полосы частот антенна есть система частотно-независимая, то напряжение возбуждения излучающего раскрыва, вычисленное со стороны генератора, равно$

$$U_{\mathrm{p,r}}(t) = 2U_{\mathrm{r}}(t) \frac{\sqrt{\gamma}}{1+\gamma} \sqrt{\frac{Z_0}{Z_{\mathrm{r}}}},\tag{3}$$

где $\gamma = Z_a/Z_0$, Z_a — выходной импеданс антенны. Коэффициент $2\sqrt{\gamma}/(1+\gamma) < 1$ обусловлен отражением части потока электромагнитной энергии на границе раздела сред с разным значением волновых импедансов (Z_a и Z_0). За пределами рабочей полосы частот рупора учет отражения энергии на его конце проводится в частотной области в соответствии с [7] или по формулам асимптотической теории отражения [8].

Для функции $U_{\rm r}(t)$ произвольного вида, например униполярного видеоимпульса, интеграл $\int_{-\infty}^{+\infty} U_{\rm p,r}(t) dt \neq 0$. Частотный спектр такого импульса имеет максимальную плотность на нулевой частоте, в то время как плотность частотного спектра импульса возбуждения раскрыва на этой частоте равна нулю ($U_{\rm p,0}(\omega = 0) = 0$). Прямое сравнение импульсов $U_{\rm p,r}(t)$ и $U_{\rm p,0}(t)$ позволяет определить параметры ПХ антенны и оценить ее энергетическую эффективность.

2. ОБЪЕКТ ИССЛЕДОВАНИЯ

В качестве объекта исследования рассмотрим рабочий макет излучателя СШП-импульсов наносекундной длительности (рис. 2).

Рис. 2. Макет излучателя: *1* – антенна; *2* – генератор импульсов возбуждения (а); и схема его антенны (б), все поверхности антенны электропроводящие.

Антенна излучателя — синхронная пассивная решетка, состоящая из четырех регулярных симметричных *TEM*-рупоров. Размерность решетки 2×2 . Длина электрода ≈ 16 см, угол раскрыва электродов $\beta \approx 28^{\circ}$. При соотношении сторон поперечного сечения рупора $h/w \approx 1.25$ его импеданс равен ≈ 200 Ом [9]. Каждый рупор решетки присоединен к фидеру генератора гибкой короткой двухпроводной волновой линией с импедансом ≈ 200 Ом. При этом входной импеданс антенны равен $Z_{\rm r} \approx 50$ Ом и согласован с генератором, а выходной равен $Z_{\rm a} \approx 200$ Ом.

Конструкция представленной антенны технологична в изготовлении (электроды плоские) и компактна: при заданной апертуре длина антенны уменьшена вдвое. В [10] параметры полурупора такой антенны в режиме приема были сопоставлены с параметрами классического полурупора таких же размеров средствами 3D-моделирования процесса во временной области. На примере полурупора с импедансом 120 Ом при его возбуждении плоской волной излучения с фронтом единичного перепада напряженности поля 30 пс было показано, что энергетическая эффективность классического полурупора примерно в 1.4 раза меньше.

3. СРЕДСТВА И РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Регистрация электрических импульсов субнаносекундной длительности проведена с использованием цифрового TDS6604B и стробоскопического TRM7118 осциллографов, частотная полоса регистрации 6 и 18 ГГц соответственно.

Канал регистрации напряженности импульсного поля излучения состоял из приемника на основе микрополосковой линии (тип ИППЛ [11]) и кабеля связи приемника с осциллографом. Длительность фронта ПХ ИППЛ с кабелем связи составляла ≈30 пс, а всего тракта регистрации с осциллографом TDS6604B — примерно 65 пс. Результат регистрации видеоимпульса возбуждения антенны $U_r(t)$ представлен на рис. 3. Там же изображена зависимость энергии этого импульса $W_r(t)$ на нагрузке $Z_r = 50$ Ом. Регистрируемые параметры видеоимпульса $U_r(t)$: амплитуда ≈ 9.5 кВ, энергия ≈ 0.56 мДж, фронт быстрого перепада напряжения ≈ 100 пс, длительность импульса полная ≈ 3 нс (от начала до конца импульса), а по перепаду зависимости в пределах (0.1...0.9) $W_r(t)/W_{r,max}$ — примерно 2 нс. Только 40% энергии импульса находится в пределах длительности быстрого перепада напряжения.

Параметры импульса СШП-излучения на оси антенны в дальней зоне излучения, где ER = const, представлены на рис. 4. Импульс излучения характеризуется следующими параметрами: пиковое значение произведения $ER \approx 15$ кВ, длительность импульса на уровне $0.5ER \approx 100$ пс. Изотропно-излучаемая энергия импульса равна

$$W_{\rm H} = \int dt (ER)^2 / 30 \approx 0.92$$
 мДж.

Рис. 3. Импульс генератора возбуждения антенны (*1*) и его энергия (*2*).

Рис. 4. Импульс напряженности поля излучения (a), его энергетический спектр (б) и изотропно-излучаемая энергия W_{μ} (кривые со стрелкой).

Эта энергия распределена в частотном интервале 0.1...6.5 ГГц, заданном по уровню $0.1q_{max}$. Если границы интервала оценивать по уровню значений 0.1 и 0.9 зависимости $W_{\mu}(F)/W_{\mu,max}$ то они равны 1 и 5.6 ГГц (см. рис. 4б). В относительно узком частотном интервале, 0...0.5 ГГц, локализована энергия излучения, индуцированная медленно изменяющейся частью видеоимпульса возбуждения, в которой заключено ~60% его энергии.

По приведенным данным коэффициент усиления антенны по энергии равен

$$G_{\mathfrak{I}} = W_{\mathfrak{I}}/W_{\mathfrak{I}} \approx 1.6,$$

а по пиковой мощности -

$$G_{\rm M} = \frac{\left[(ER)_{\rm max}^2 / 30 \right]}{\left[(U_{\rm r})_{\rm max}^2 / 50 \right]} \approx 4.2.$$

Различие значений G_9 и G_M обусловлено особенностью амплитудно-временной формы видеоимпульса возбуждения, которая характеризуется тем, что пиковая мощность этого импульса больше импульсной примерно в десять раз.

Длине максимального перепада напряженности поля импульса СШП-излучения ($c\tau \approx 3.3$ см) поставим в соответствие эквивалентную длину волны синусоидального сигнала $\lambda_{_{ЭКВ}}$ из условия равенства максимальной крутизны этих сигналов. Из выражения

$$\left| d\left(\sin\left(\omega t\right) \right) / dt \right|_{\omega t = \pi} \right| \approx 2/\tau$$

следует, что $\lambda_{_{3KB}} \approx \pi c \tau \approx 10.5$ см (c – скорость электромагнитной волны). Таким образом, эквивалентный электрический размер апертуры антенны равен ($2\pi/\lambda_{_{3KB}}$) $h \approx 10$.

4. ОЦЕНКА ПАРАМЕТРОВ ПЕРЕХОДНОЙ ХАРАКТЕРИСТИКИ АНТЕННЫ

Параметры ПХ антенны характеризуют ее динамические свойства во временной области и границы рабочей полосы частот в частотной области. При отсутствии средств создания ступенчатого возбуждения антенны в режиме излучения или приема параметры ПХ антенны могут быть определены на основе данных, приведенных на рис. 3 и 4, следующим образом.

Вычислим напряжение $U_{p,r}(t)$ и $U_{p,0}(t)$ в соответствии с (2) и (3), а также энергию этих импульсов на нагрузке Z_0 . Синхронизируем импульсы по основанию быстрого перепада напряжения. Результат вычислений представлен на рис. 5. В соответствии с этим результатом эффективность антенны по пиковой мощности равна $\eta_a \approx (U_{p,0}/U_{p,r})^2 \approx 68\%$. Запишем баланс мощности на входе и выходе антенны в виде

$$\frac{(Eh)^2}{Z_0} \left(\frac{w}{h}\right)_{Z_a} \frac{4\gamma}{\left(1+\gamma\right)^2} \eta_a = \frac{(khE)^2}{Z_a}.$$
 (4)

Здесь kh - эффективная высота антенны [1], $(w/h)_{Za} – отношение сторон рупора, соответствующее значению импеданса <math>Z_a$. Отметим, что при $\eta_a \approx 68\%$ из (4) следует, что в интервале Z_a от 50 до 200 Ом значения k находятся в интервале (0.47, 0.54). В работах [12, рис. 9.3] и в [13, формула (1-53)] показано, что коэффициент $k \approx 0.5$.

Отношение энергии импульсов $U_{p,0}(t)$ и $U_{p,r}(t)$ $\eta(t) = W_{p,0}/W_{p,r}$ к фиксированному моменту времени есть энергетическая эффективность антенны как преобразователя энергии ее возбуждения в полную энергию излучения. Конечное значение

Рис. 5. Напряжение $U_{p,r}(1)$ и $U_{p,0}(2)$ и соответствующая энергия этих импульсов (1' и 2').

η не зависит от погрешности синхронизации напряжений $U_{p,0}$ и $U_{p,r}$. Динамика изменения параметра η по данным эксперимента и расчета представлена на рис. 6. Расчет проведен на основе модели однонаправленно излучающего плоского прямоугольного раскрыва, представленного элементами Гюйгенса [11]. Ось ДН каждого элемента проходит через точку возбуждения раскрыва. Энергия импульса возбуждения $U_{r}(t)$ локализована внутри пирамиды, в основании которой находится излучающий раскрыв, а на вершине – точка возбуждения. При этих условиях раскрыв возбуждается не синхронно и не однородно. Поле излучения в произвольной точке пространства в передней и в задней полуплоскости раскрыва формируется как суперпозиция излучений от элементов Гюйгенса с учетом различия ракурса и времени прихода импульсов. Форма и размер пирамиды соответствовали ТЕМ-рупору рассматриваемой антенны. Эффекты дифракции на краях раскрыва в модели не учитываются.

Зависимость $\eta(t)$ немонотонна. Локальный максимум $\eta(t)$ находится в окрестности точки 1.6 нс $(\eta \approx 80\%)$, где расположен фронт видеоимпульса возбуждения $U_r(t)$ с длительностью ≈ 100 пс. Минимальное значение $\eta(t)$ соответствует концу импульса $U_r(t)$ (≈ 2.7 нс). После этого момента антенна излучает накопленную в ней энергию. К концу процесса излучается ≈60% энергии, подведенной к раскрыву со стороны генератора. Поскольку реальная антенна представлена моделью плоского однонаправленно излучающего раскрыва, возбуждаемого синхронно и однородно, то потеря 40% энергии импульса возбуждения обусловлена отражением энергии на апертуре за пределами рабочей полосы частот антенны, а также эффективностью использования поверхности раскрыва

Рис. 6. Динамика изменения параметра η: *1* – эксперимент; *2* – расчет.

при его сверхширокополосном возбуждении, не синхронном и не однородном. Отметим, что уровень локальной эффективности ($\eta \approx 80\%$) указывает на то, что относительно короткий импульс возбуждения может быть излучен этой антенной более эффективно.

Основываясь на сопоставлении формы и частотного спектра импульсов $U_{p,r}(t)$ и $U_{p,0}(t)$, а также характера зависимости параметра $\eta(t)$, преобразуем функцию $U_{p,r}(t)$ к виду функции $U_{p,0}(t)$ с использованием бездиссипативных частотных *RC*-фильтров первого порядка, а именно:

высокочастотного (ВЧ, дифференцирующего)

$$\frac{dU_{\mathrm{p},0}}{dt} + \frac{U_{\mathrm{p},0}}{\tau_{\mathrm{BH}}} = \frac{dU_{\mathrm{p},\mathrm{r}}}{dt}$$
(5)

и низкочастотного (НЧ, интегрирующего)

$$\tau_{\rm HY} \frac{dU_{\rm p,0}}{dt} = U_{\rm p,r} - U_{\rm p,0}.$$
 (6)

Здесь τ_{BY} — характерное время ослабления напряжения для ВЧ-фильтра, а τ_{HY} — характерное время возрастания напряжения для НЧ-фильтра.

Результат сравнения амплитудно-временной формы напряжения $U_{\rm p,0}(t)$, вычисленного в соответствии с (2), с напряжением $U_{\rm p,r}(t)$ после последовательной ВЧ- и НЧ-фильтрации при значении параметров $\tau_{\rm Bq} \approx 1.6$ нс и $\tau_{\rm Hq} \approx 27$ пс представлен на рис. 7. Полученный результат показывает, что динамика напряжения возбуждения излучающего раскрыва $U_{\rm p,0}$ удовлетворительно моделируется при преобразовании напряжения $U_{\rm p,r}$ с использованием ВЧ-фильтрации первого порядка (обозначим этот результат как $F_{\rm Bq}(U_{\rm p,r})$). Согласование амплитуд $U_{\rm p,0}$ и $F_{\rm Bq}(U_{\rm p,r})$ достигается при

Рис. 7. Напряжение возбуждения раскрыва $U_{p,0}(1)$ и напряжение $U_{p,\Gamma}(2)$ после ВЧ- и НЧ-фильтрации.

последующей НЧ-фильтрации импульса $F_{\rm BY}(U_{\rm p,r})$ при вариации значений параметра $\tau_{\rm HY}$. Оптимальное значение $\tau_{\rm HY} \approx 27$ пс соответствует длительности фронта ПХ ≈ 60 пс.

Таким образом, результат эмпирической оценки, построенной на предположениях, содержащихся в (2), (3), (5) и (6), показал, что длительность фронта ПХ заданной антенны равна ~60 пс, а длительность спада ПХ ~1.6 нс. Соответствующие НЧ и ВЧ границы рабочей полосы частот антенны по уровню минус 6 дБм равны $f_{\rm HY} = (2\pi\tau_{\rm HY})^{-1} \approx$ ~ 100 МГц и $f_{\rm BY} = (2\pi\tau_{\rm BY})^{-1} \approx 5.9$ ГГц.

Длительность фронта ПХ определяется качеством исполнения и согласования волнового тракта от фидера генератора к элементам антенной решетки, а также несинхронностью возбуждения раскрыва. Характерная длительность спада ПХ соответствует длине, равной $c\tau_{BY} \approx 48$ см. Из рис. 8 следует, что эта длина равна примерно половине длины замкнутой электрической цепи, измеряемой от точек возбуждения электродов рупора разной полярности и проходящей по внешней электропроводящей поверхности антенны (штриховая линия), т.е.

$$c\tau_{\rm BY} \approx \frac{h}{4\sin(\beta/2)} \times$$

$$\times \{1 + \cos(\beta/2) + 2\sin(\beta/2)[1 + 2d/h]\}.$$
(7)

При увеличении угла β длина $c\tau_{BY}$ по отношению к длине рупора, $0.25 \text{ctg}(\beta/2)h$, монотонно увеличивается от значения, равного двум при d = 0. Таким образом, рассматриваемая антенна имеет

Рис. 8. Схема ТЕМ-рупорной антенны в Е-плоскости.

электрическую длину, более чем вдвое превышающую длину рупора.

5. ОПТИМИЗАЦИЯ ЭФФЕКТИВНОСТИ АНТЕННЫ КАК ПРЕОБРАЗОВАТЕЛЯ ЭНЕРГИИ ВИДЕОИМПУЛЬСА ЕЕ ВОЗБУЖДЕНИЯ В ЭНЕРГИЮ СШП-ИЗЛУЧЕНИЯ

В системе "антенна—импульс ее возбуждения" при фиксированных параметрах (β, Z_a) *TEM*-рупора и видеоимпульса возбуждения параметром управления эффективностью преобразования энергии является электрическая длина антенны, а если все размеры антенны фиксированы, то длительность и форма видеоимпульса возбуждения. Рассмотрение задачи по оптимизации эффективности преобразования энергии в антенне проведем в заданной последовательности.

1. Пусть антенна возбуждается импульсом, представленным на рис. 3. Рассмотрим две антенны с высотой апертуры *h*, равной 10 и 20 см, конструктивно подобные той, что представлена на рис. 8, т.е. $\beta = 28^{\circ}$ и $Z_a = 200$ Ом. В соответствии с (7), время τ_{BY} для этих антенн равно примерно 1.1 и 1.9 нс. Алгоритм сравнения этих антенн по параметру $\eta(t)$ представлен на рис. 5 и 6, а его конечный результат на рис. 9. Результат показывает, что антенна бо́льшей длины эффективнее ($\eta(t)$ больше). Поскольку время τ_{BY} для этой антенны вдвое больше, то искажение видеоимпульса ее возбуждения при его преобразовании к импульсу возбуждения раскрыва меньше. Конечное значение энергетической эффективности этих антенн составило примерно 52% и 66%. Отметим, что локальное значение эффективности η при быстром перепаде напряжения возбуждения (≈80 кВ/нс) достигает примерно 80%.

На рис. 10 представлен энергетический спектр импульсов, излучаемых по оси ДН этих антенн. Максимумы спектральной плотности приведены к одному значению. Увеличение эффективности преобразования энергии при большой апертуре

Рис. 9. Динамика изменения параметра $\eta(t)$ для антенн с высотой апертуры 10 (*1*) и 20 см (*2*).

Рис. 10. Энергетический спектр излучения для антенн с высотой апертуры 10 (*1*) и 20 см (*2*).

Рис. 11. Импульс возбуждения антенны с пьедесталом (а) и без него (б).

антенны обусловлено расширением частотного спектра излучения в НЧ-область, которая представлена в широкой области пространства распространения излучения. Уменьшение энергии излучения в ВЧ-области спектра относительно мало, поскольку эта энергия локализована в относительно узкой области физического пространства.

2. Пусть теперь фиксированы размеры антенны: $\beta = 28^{\circ}$, $Z_a = 200$ Ом и ее электрическая длина, $c\tau_{BY} \approx 48$ см. Будем возбуждать антенну видеоимпульсами разной длительности и формы. Рассмотрим два импульса: один с пьедесталом, другой — тот же, но с отсеченным пьедесталом (рис. 11). Полная длительность импульса с пьедесталом $\tau_r \approx 4$ нс, без пьедестала ≈ 1.2 нс. Для этих импульсов на рис. 12 показана динамика изменения параметра $\eta(t)$.

Конечное значение эффективности η при коротком видеоимпульсе возбуждения равно $\approx 78\%$, а в локальном максимуме $\approx 86\%$. Отметим, что различие этих значений меньше, чем в предыдущих примерах. Понятно, что при уменьшении длительности импульса возбуждения антенны, размеры которой фиксированы, влияние факторов ВЧ- и НЧ-фильтрации импульса на эффективность преобразования энергии изменяется. Действительно, фактор ВЧ-фильтрации ослабляется. Фактор НЧ-фильтрации, наоборот, усиливается, поскольку верхняя граница рабочей полосы ча-

Рис. 12. Динамика изменения параметра $\eta(t)$ при коротком (1) и длинном (2) импульсе возбуждения антенны.

Рис. 13. Модельный униполярный видеоимпульс возбуждения антенны (а) и соответствующая ему динамика изменения параметра η (б).

стот антенны отсекает все возрастающую часть энергии ВЧ-спектра импульса $U_{\rm p,r}$.

Рассмотрим модельный видеоимпульс возбуждения $U_r(t)$ (рис. 13), еще более короткий ($\tau_r \approx 0.42$ нс, фронт ≈ 0.1 нс). В отличие от импульсов возбуждения, рассмотренных ранее, на фронте и на спаде этого импульса генерируется примерно равная энергия. В этом примере конечное значение эффективности η антенны возрастает до $\approx 88\%$ и оказывается больше, чем η в локальном максимуме.

Как известно, возбуждение антенны униполярным импульсом не рационально, кроме, пожалуй, случая, когда необходимо повысить спектральную плотность импульса излучения в НЧ- области. Поэтому рассмотрим пример, в котором заданная антенна возбуждается простейшим биполярным импульсом (рис. 14а). Полный перепад напряжения импульса (10 кВ) и длительность этого перепада (\approx 100 пс) те же, что и у видеоимпульса на рис. 13а, но в сравнении с ним длительность биполярного импульса возбуждения больше ($\tau_r \approx 0.55$ нс). Процесс генерации излучения, инициированного биполярным импульсом, завершается значительно раньше и с эффективностью \approx 93% (ср. рис. 136 и 146).

На рис. 15 представлены все полученные результаты исследования.

Рис. 14. Модельный биполярный видеоимпульс возбуждения антенны (а) и соответствующая ему динамика изменения параметра η (б).

Рис. 15. Зависимость параметра η для импульса возбуждения на рис. 3 (*1*), 116 (*2*), 13а (*3*) и 14а (*4*).

ЗАКЛЮЧЕНИЕ

Реализован эмпирический способ оценки ПХ *TEM*-рупорной антенны и ее эффективности как преобразователя электрической энергии видеоимпульса возбуждения в энергию СШП-излучения. Оценка простроена на сравнении напряжения возбуждения раскрыва со стороны генератора $U_{p,r}(t)$ и со стороны пространства распространения излучения $U_{p,0}(t)$, вычисляемого по параметрам излучения на оси ДН антенны.

На основе экспериментальных данных показано, что импульс возбуждения излучающего согласованного раскрыва $U_{\rm p,0}(t)$ может быть смоделирован при ВЧ-фильтрации первого порядка импульса возбуждения раскрыва $U_{\rm p,r}(t)$, вычисля-

емого со стороны генератора возбуждения. Время $\tau_{\rm B4}$ отсечки фильтра характеризует электрическую длину (не высоту) антенны. Значение $\tau_{\rm B4}$ определяется при приведении формы импульса $U_{\rm p,r}(t)$ к форме импульса $U_{\rm p,0}(t)$.

Если целевой функцией оптимизации системы "антенна—импульс ее возбуждения" является эффективность преобразования электрической энергии возбуждения антенны в энергию СШПизлучения, то полная длительность видеоимпульса возбуждения τ_r антенны и ее электрическая длина, характеризуемая временем τ_{Bq} , должны быть согласованы. Условием согласования является отношение $\tau_{Bq}/\tau_r \ge 1$.

Рассмотренный макет антенны плохо согласован со штатным импульсом ее возбуждения (см. рис. 6): конечное значение эффективности $\eta \approx 60\%$ при отношении $\tau_{Bq}/\tau_r \approx 0.52$. При этом локальный максимум η составляет $\approx 80\%$. При сокращении длительности униполярного импульса возбуждения до $\tau_r \approx \tau_{Bq}/1.3$ достигается эффективность $\approx 78\%$. Биполярный импульс возбуждения при том же перепаде напряжения и его длительности (т.е. крутизне) может быть преобразован в СШП-излучение с эффективность $\approx 93\%$.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Авторы признательны коллеге В.М. Федорову за продуктивное обсуждение статьи.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках гос. задания на 2023 год (№ 075-01129-23-00 от 29.12.2022 г.).

СПИСОК ЛИТЕРАТУРЫ

- 1. Марков Г.Т., Сазонов Д.М. Антенны. М.: Энергия, 1975.
- Бобрешов А.М., Мещеряков И.И., Усков Г.К. // РЭ. 2012. Т. 57. № 3. С. 320.
- Бобрешов А.М., Мещеряков И.И., Усков Г.К. // РЭ. 2013. Т. 58. № 3. С. 233.
- 4. Ефимова Н.А., Калошин В.А. // РЭ. 2014. Т. 59. № 1. С. 60.
- 5. *Калошин В.А., Неуен К.З., Неуен Х.Ш.* // Журн. радиоэлектроники. 2015. Т. 60. № 10. http://jre.cplire.ru/jre/oct15/2/text.pdf.

- 6. Осташев В.Е., Ульянов А.В., Федоров В.М. // РЭ. 2020. Т. 65. № 3. С. 234.
- 7. Вайнштейн Л.А. Теория дифракции и метод факторизации. М.: Сов. радио, 1966.
- Kaloshin V.A. // Russian J. Math. Phys. 2009. V. 16. № 2. P. 246.
- 9. Lee R.T., Smith G.S. // IEEE Antennas and Propagation Magazine. 2004. V. 46. № 1. P. 86.
- Fedorov V.M., Efanov M.V., Ostashev V.Ye. et al. // Electronics. 2021.10.1011 https://doi.org/10.3390/electronics10091011
- Подосенов С.А., Свекис Я.Г., Соколов А.А. // Измерит. техника. 1994. № 4. С. 45.
- 12. Беличенко В.П., Буянов Ю.И., Кошелев В.И. Сверхширокополосные импульсные радиосистемы. Новосибирск: Наука, 2015.
- 13. *Milligan T.A.* Modern Antenna Design. Hoboken: John Wiley & Sons, Inc., 2005.