ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.391.2

ОПТИМИЗАЦИЯ ГАРАНТИРОВАННОЙ СКОРОСТИ ПЕРЕДАЧИ ИНФОРМАЦИИ ПСЕВДОСЛУЧАЙНЫМИ СИГНАЛАМИ С РАНДОМИЗИРОВАННОЙ БАЗОЙ В УСЛОВИЯХ ПРЕДНАМЕРЕННЫХ ПОМЕХ

© 2023 г. А. М. Чуднов^{а, *}, Я. В. Кичко^а, Л. П. Сапунова^а

^а Военная академия связи, Тихорецкий просп., 3, Санкт-Петербург, 194064 Российская Федерация *E-mail: chudnow@yandex.ru Поступила в редакцию 05.08.2022 г. После доработки 20.10.2022 г. Принята к публикации 26.10.2022 г.

Рассмотрены принципы анализа и оптимизации параметров и режима обработки сигналов в системе передачи информации с обратным каналом, функционирующей в условиях воздействия преднамеренных помех, структура которых может подбираться с позиции нарушения (ухудшения) работы системы. Предложен алгоритм формирования и обработки псевдослучайных сигналов с рандомизированной базой, который обеспечивает повышение скорости передачи информации системой в классе помех с ограниченной средней мощностью при обеспечении исходных показателей достоверности. Представлена методика, приведены примеры расчета и показаны графики зависимостей гарантированной скорости передачи информации в системе с рандомизированным двухступенчатым переключением базы сигналов от средней мощности оптимизированной помехи.

DOI: 10.31857/S0033849423030051, EDN: ICRRVO

введение

Данная работа продолжает исследования методов анализа и оптимизации параметров и режима обработки сигналов в системе передачи информации (СПИ), функционирующей в условиях воздействия преднамеренных помех, структура которых может подбираться с позиции нарушения (ухудшения) работы системы [1–4].

Вопросам обеспечения гарантированных показателей СПИ, в частности функционирующей в условиях преднамеренных помех, в литературе уделяется значительное внимание (см., например, работы [1-23] и библиографию в них). На основе теоретических исследований разработаны, внедрены и широко используются в различных сферах линии связи с псевдослучайными сигналами (ПСС) [1–13]. Вместе с тем задачи построения и исследования эффективности оптимальных алгоритмов работы СПИ на различных уровнях функциональной архитектуры изучены весьма в малой степени. В этом отношении к решенным вопросам в области передачи дискретных сообщений можно отнести лишь вопросы построения и анализа помехоустойчивости алгоритмов формирования и приема двоичных сигналов, являющихся е-оптимальными с позиции обеспечения минимальной вероятности ошибочного приема бита

информации в соответствующих классах помех. А именно, в [5-7] для класса помех с ограничениями на среднюю и пиковую мощность построены оптимальные приемники псевдослучайных сигналов, модулированных по фазе псевдослучайной {-1,1}-последовательностью (ФМ ПСС). В [1-3] построены є-оптимальные алгоритмы формирования и приема амплитудно-фазоманипулированных сигналов при ограничениях на энергию, а также на среднюю мощность помехи и установлена их асимптотическая оптимальность для сигналов с большой базой. Существенное расхождение оценок показателей СПИ, использующих двоичные сигналы, с полученными верхними границами (расхождение составляет около 6 дБ [2]) дает основания для поиска более эффективных алгоритмов передачи информации в условиях преднамеренных помех.

Цель данной работы — разработка методики и получение оценок выигрыша в гарантированной скорости передачи сообщений за счет рандомизированного переключения базы ПСС при воздействии наихудшей по структуре помехи в классе помех с ограничением на среднюю мощность. Такой тип ограничений представляет наибольший практический интерес с учетом следующих обстоятельств: – существующие и проектируемые комплексы радиоэлектронного противодействия способны формировать помехи с весьма большими значениями пикфактора, и степень их воздействия на СПИ в основном определяется средним значением мощности источника [14, 15];

 источники помех (ИП), как правило, ориентированы на подавление группы радиолиний, что позволяет перераспределять энергию между этими линиями с обеспечением наихудшего воздействия на подавляемые линии в рамках ограничений на общую среднюю мощность источника;

 – класс помех с ограничениями на среднюю мощность является наиболее широким: оценки гарантированной помехоустойчивости для этого случая представляют собой соответствующие оценки и для других классов помех.

Исследуемые в работе задачи в общем плане соответствуют постановкам, рассмотренным в [1-4] и направленным на оптимизацию СПИ с обратной связью, в которых канальный блок формируется в виде слов избыточного кода, работающего в режиме исправления и обнаружения ошибок с использованием ФМ ПСС для передачи битов на физическом уровне. Вместе с тем для упрошения представления основного результата, а именно влияния рандомизации базы ПСС на гарантированный показатель скорости передачи данных, параметры кода и режима декодирования канального блока полагаются фиксированными. Ясно, что при согласованном переключении других параметров СПИ совместно с параметрами базы можно получить дополнительный эффект, который также может быть оценен в рамках предложенной методики.

1. МОДЕЛЬ СПИ В УСЛОВИЯХ ПРЕДНАМЕРЕННЫХ ПОМЕХ И ПОСТАНОВКА ЗАДАЧИ

1.1. Теоретико-игровая модель взаимодействия СПИ и ИП

Опишем задачу в терминах теории игр следующим образом. Имеется класс \mathcal{U} допустимых вариантов построения СПИ (в данном случае с двухуровневой базой ПСС, далее – СПИ-2) и класс \mathcal{V} вариантов постановки помех (с ограниченной средней мощностью). Для каждой системы $U \in \mathcal{U}$ и заданных условий $V \in \mathcal{V}$ в соответствии с формализованной моделью далее определим показатель эффективности функционирования СПИ Q(U, V), характеризующий среднюю скорость передачи информации, как функцию $Q: \mathcal{U} \times \mathcal{V} \to [0, \infty)$. Тогда в классе условий \mathcal{V} критерий оптимальности системы оценивается величиной

$$Q_{-}(U) = \inf_{V \in \mathcal{V}} Q(U, V),$$

интерпретируемой как гарантировано обеспечиваемая эффективность функционирования системы Uв классе условий V. Задача синтеза системы состоит в максимизации этого показателя выбором (определением) допустимого в определенном классе \mathcal{U} варианта построения системы $U \in \mathcal{U}$ и представляется выражением

$$Q_{-}(U) = \inf_{V \in \mathcal{V}} Q(U, V) \to \max_{U \in \mathcal{N}} .$$
(1)

Задача (1) является составной частью теоретикоигровой задачи, представленной игрой $\mathscr{G} = \mathscr{G}(Q, \mathcal{U}, \mathcal{V})$ [13, 16, 24] с множествами \mathcal{U}, \mathcal{V} стратегий игроков (СПИ и источника помехи) и функцией выигрыша первого игрока (СПИ) $Q(\cdot, \cdot)$. Пара ($U, \mathcal{V}) \in \mathcal{U} \times \mathcal{V}$ называется ситуацией игры $\mathscr{G}, \, dля$ заданной СПИ U' величины $Q_{-}(U')$ и $Q_{*} = \sup_{U \in \mathcal{U}} Q_{-}(U)$ – гарантированным значением показателя эффективности, обеспечиваемым при использовании варианта системы U' и нижним значением (нижней ценой) игры соответственно.

Формализация задачи (1) проводится на основе конкретизации конструкций \mathcal{U} , \mathcal{V} , Q, представленных ниже моделями СПИ и ИП. При этом расширение множества \mathcal{U} допустимых вариантов СПИ относительно исходного множества \mathcal{U}_1 систем с нерандомизированной базой ПСС (далее – СПИ-1) позволяет получить дополнительный выигрыш.

1.2. Формирование, передача и обработка данных в СПИ

Процессы формирования, обработки и передачи данных на физическом и канальном уровнях СПИ-2 иллюстрируются функциональной схемой, представленной на рис. 1.

Поступающие от источника данных информационные символы $a_i \in \{0, 1\}$ подаются в кодирующее устройство (КУ), которое формирует канальные блоки (a1, ..., an), представляющие собой кодовые слова (n, k)-кода (n - длина блока, k - число содержащихся в нем информационных элементов), и подает их в модуль рандомизации базы (МРБ). МРБ преобразует символы кодовых слов в псевдослучайную {-1,1}-последовательность, длина β которой (база ПСС) выбирается псевдослучайным образом: β_1 с вероятностью $\Pr{\{\beta = \beta_1\}} = P_{\beta}$ или β_2 с вероятностью $\Pr{\{\beta = \beta_2\}} = 1 - P_\beta$, после чего передает ее в перемежающий модуль (ПМ). В перемежающем модуле из определенного числа L канальных блоков формируется макроблок, состоящий из nL символов, которые перемешиваются по псевдослучайному закону, известному как на передающем, так и принимающем концах СПИ, и затем подаются в модулятор (М), где осуществляется их фазовая модуляция. Сформиро-

264

ванные таким образом на передающем конце сигналы s(t) поступают в канал связи (KC1), в котором они смешиваются с преднамеренной помехой v(t), генерируемой источником противодействующей системы и совокупностью случайных помех (шумов) $\xi(t)$. При этом принимаемый из KC1 сигнал имеет вид

$$u(t) = s(t) + v(t) + \xi(t).$$

Поступающие из КС1 сигналы $u_1(t)$, $u_2(t)$, подаются на вход демодулятора (ДМ), который обрабатывает их в соответствии с величиной базы и подает зарегистрированные данные в перемежающий модуль (ПМ*), осуществляющий обратное перемежение (восстановление исходного порядка следования) символов макроблока и выдачу сформированных канальных блоков (c_1 , ..., c_n) в декодирующее устройство (ДКУ).

Декодирующее устройство работает в режиме исправления ошибок кратности менее или равной r, причем $r \le t$, где t – максимальная кратность гарантированно исправляемых заданным кодом ошибок [25]. Так что не исправленные кодом ошибки либо переспрашиваются по обратному каналу связи (КС2) модулем переспроса (МП^{*}) и повторяются на передаче модулем повторения (МП), либо декодируются неправильно и выдаются получателю с ошибкой.

Отметим, что приведенная модель СПИ при $P_{\beta} = 1$ и/или $\beta_1 = \beta_2$ описывает систему с нерандомизированной базой.

1.3. Воздействие на СПИ преднамеренной помехи

Рассматривается модель источника помех с "сильной инерционностью" контура управления [16], в соответствии с которой невозможна постановка так называемой "помехи вслед сигналу", т.е. помехи, воздействующей на символ канального блока a_i с использованием информации о ранее принятой части этого же символа. Вместе с тем источнику помех известны все параметры, характеризующие СПИ.

Для описания показателей, характеризующих воздействие помехи на процесс передачи данных,

введем дополнительно обозначения: E_s , E_v – соответственно энергия реализации сигнала и преднамеренной помехи на длительности сигнала, E_{ξ} – спектральная плотность мощности шума; $\delta_v = E_v/E_s$, $\delta_{\xi} = E_{\xi}/2E_s$. На физическом уровне вероятность ошибки на бит будем оценивать на основе интеграла вероятностей Гаусса $\Phi(\cdot)$ выражением

$$p = p\left(\frac{\delta_{\nu}}{\beta} + \delta_{\xi}\right) \approx 1 - \Phi\left(\sqrt{\beta/\delta}\right), \tag{2}$$

где $\delta = \delta_v + \beta \delta_{\xi}$, являющимся асимптотически (при $\beta \to \infty$) точным и дающим хорошее приближение уже при $\beta \ge 10$ [2, 3, 5].

С учетом псевдослучайного перемежения символов в макроблоке суммарная помеха $v(t) + \xi(t)$, действующая на канальный блок, задается распределением $F(x) = \Pr\{\delta \le x\}$ случайной величины δ , порожденной реализацией ($\delta_1, ..., \delta_n$) на символах канального блока ($a_1, ..., a_n$), при этом ограничение на величину средней мощности преднамеренной помехи М[δ_y] описывается неравенством

$$M\left[\delta_{v}\right] = \int_{0}^{\infty} x dF_{v}\left(x\right) \le \delta^{-}.$$
(3)

Множество распределений, удовлетворяющих неравенству (3), обозначается $\mathcal{F}(\delta^{-})$.

1.4. Постановка задачи анализа и оптимизации СПИ

При оценке выигрыша, обеспечиваемого рандомизацией базы ПСС, будем фиксировать параметры n, k кода и параметр r, характеризующий режим его декодирования. Принимая во внимание, что информационная скорость кода, равная k/n, одинакова для всех рассматриваемых случаев, анализ эффективности СПИ при текущих значениях базы β и величины δ_{ν} будем проводить без учета коэффициента k/n по формуле

$$R(\delta,\beta) = \frac{1}{\beta}G(\delta/\beta), \qquad (4)$$

Рис. 2.

где $G(\delta/\beta)$ — вероятность выдачи получателю поступившего из КС1 канального блока, которая оценивается выражением [4, 25]

$$G(\delta / \beta) = \sum_{j=0}^{r} {n \choose j} p^{j} (1-p)^{n-j}.$$
 (5)

Оптимальное значения базы ПСС для СПИ-1 определяется выражением

$$\beta^* = \arg \max_{\beta \in [0,\infty]} R(\delta, \beta). \tag{6}$$

Скорость передачи информации, гарантированная в классе помех с ограниченной средней мощностью δ^- и параметрами ПСС β_1 , β_2 , P_β , определяется условием

$$R_{-}\left(\delta^{-},\beta_{1},\beta_{2},P_{\beta}\right) = \inf_{F_{\nu}\in\mathcal{F}(\delta^{-})} M\left[R\left(\delta,\beta_{1},\beta_{2},P_{\beta}\right)\right], \quad (7)$$

где $R(\delta, \beta_1, \beta_2, P_\beta)$ – величина скорости для СПИ с заданным параметром δ . Задача оптимизации ПСС с двухуровневой рандомизированной базой принимает вид

$$R_{-}(\delta^{-},\beta_{1},\beta_{2},P_{\beta}) \rightarrow \max_{\beta_{1},\beta_{2},P_{\beta}}$$

при $\beta_1, \beta_2 \in [0, \infty), P_\beta \in [0, 1].$

2. МЕТОДИКА ОЦЕНКИ ПОКАЗАТЕЛЕЙ СПИ С РАНДОМИЗИРОВАННОЙ БАЗОЙ ПСС

Теперь получим расчетные соотношения для величин, определяющих введенные показатели (3)–(7). Отдельные положения формулируются в виде утверждений, для которых оговаривается ход доказательства.

Для заданных значений β_1 , β_2 , P_β , δ_1 , δ_2 ($\beta_1 \le \beta_2$, $\delta_1 \le \delta_2$) ведем обозначения:

$$p_{i} = p(\delta/\beta_{i}), \quad G_{i} = G(\delta/\beta_{i}),$$

$$P_{\beta} = \Pr\{\beta = \beta_{i}\}, \quad i \in \{1, 2\},$$

$$\beta^{-} = P_{\beta}\beta_{1} + (1 - P_{\beta})\beta_{2},$$

$$G^{-} = P_{\beta}G_{1} + (1 - P_{\beta})G_{2}.$$

Предложение 1. Зависимость $R(\delta, \beta_1, \beta_2, P_\beta)$ определяется выражением

$$R(\delta,\beta_1,\beta_2,P_\beta) = G^-/\beta^-.$$
(8)

Формула (8) может быть обоснована исходя из принципов усреднения производительности при выполнении различных типов работ с различной производительностью. Более строго ее можно получить на основе представления процесса передачи канальных блоков цепью Маркова и вычисления производящей функции вероятностей времени передачи канального блока. Выражение для среднего времени перехода марковской цепи из одного состояния в другое удобно выводить с использованием преобразований графа переходов, сохраняющих вероятностно-временные характеристики процесса передачи информации (см., например, [16]). Процедура преобразования графа переходов, приводящая к соотношению (8), иллюстрируется рис. 2: вершины соответствуют состояниям, возникающим при передаче канального блока: v_0 – исходное состояние, v_{01} – блоку назначен ПСС с β_1 , v_{02} – с β_2 , v_1 – блок выдан получателю, а дуги отображают переходы между состояниями с указанными производящими функциями вероятностей перехода, где

$$\begin{split} G_i &= G(\delta/\beta_i)G_i' = 1-G_i,\\ i &\in \left\{1,2\right\}, \ \ P_\beta' = 1-P_\beta. \end{split}$$

Графы, показанные на рис. 26, 2в, где

$$\lambda_{01}(x) = P_{\beta}G_{1}x^{\beta_{1}} + (1 - P_{\beta})G_{2}x^{\beta_{2}},$$
$$\lambda_{00}(x) = P_{\beta}(1 - G_{1})x^{\beta_{1}} + (1 - P_{\beta})(1 - G_{2})x^{\beta_{2}}$$

получены в результате преобразований исходного графа, сохраняющих финальное распределение времени перехода из v_0 в v_1 . Известно [16], что для графа с петлей (см. рис. 2в) производящая функция вероятностей времени перехода из v_0 в v_1 определяется выражением

$$\Lambda_{01}(x) = \frac{\lambda_{01}(x)}{1 - \lambda_{00}(x)},$$

с учетом которого, а также представления математического ожидания времени перехода через производящую функцию

$$T_{01} = \frac{d\Lambda_{01}(x)}{dx}\Big|_{x=1}$$

и соотношения $R(\delta_{\nu}, \beta_1, \beta_2, P_{\beta}) = 1/T$ нетрудно получить выражение для среднего времени задержки в СПИ-2 переданного канального блока $T = \beta^{-}/G^{-}$ и формулу (8) для скорости передачи информации СПИ-2.

Следующее утверждение позволяет редуцировать область $\mathcal{F}(\delta^{-})$ поиска оптимальной (є-оптимальной) точки в выражении (7) и получить расчетное соотношение для величины $R_{-}(\delta^{-}, \beta_{1}, \beta_{2}, P_{B})$.

Для его формулировки в множестве распределений $\mathcal{F}(\delta^{-})$ выделим подмножество $\mathcal{F}(\delta', \delta^{-}, \delta'')$ так называемых [16, 26] *двухточечных* (или *двухатомных*) распределений, для которых функция распределения вероятностей имеет не более двух точек роста δ', δ'' и, таким образом, может быть задана значениями $\delta', \delta^{-}, \delta''$, где $\delta' \leq \delta^{-} \leq \delta''$, причем

$$P_{\delta} = \Pr\{\delta = \delta'\} = \frac{\delta^{-} - \delta'}{\delta'' - \delta'},$$
$$\Pr\{\delta = \delta''\} = \frac{\delta'' - \delta^{-}}{\delta'' - \delta'} = 1 - P_{\delta}.$$

При этом аналогично [1–4] используем следующее утверждение, представляющее собой простое следствие теоремы Каратеодори с интерпретацией Рисса к распределениям вероятностных мер [26].

Предложение 2. Функция $R_{-}(\delta, \beta_1, \beta_2, P_{\beta})$ является выпуклой оболочкой зависимости $R(\delta, \beta_1, \beta_2, P_{\beta})$ по аргументу δ_v , при этом наихудшая помеха в классе $\mathcal{F}(\delta^{-})$ имеет двухточечное распределение, определенное параметрами $\delta', \delta^{-}, \delta''$.

С учетом данного утверждения можно записать

$$R_{-}\left[\delta^{-},\beta_{1},\beta_{2},P_{\beta}\right] = \min_{\delta' \leq \delta^{-} \leq \delta''} \left[\frac{\delta^{-}-\delta'}{\delta''-\delta'}R\left(\delta',\beta_{1},\beta_{2},P_{\beta}\right) + \frac{\delta''-\delta^{-}}{\delta''-\delta'}R\left(\delta'',\beta_{1},\beta_{2},P_{\beta}\right)\right],$$

откуда видно, что задача поиска наихудшего распределения из $\mathcal{F}(\delta^{-})$ сводится к задаче двухпараметрической оптимизации, состоящей в вычислении выпуклой оболочки функции $R(\delta, \beta_1, \beta_2, P_\beta)$ по аргументу δ_{μ} .

Для выпуклой оболочки некоторой функции $f(\cdot)$ по аргументу δ_{v} будем использовать обозна-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 3 2023

чение $f^{v}(\cdot)$, с учетом которого предложение 2 можно записать в виде соотношения

$$R_{-}\left[\delta^{-},\beta_{1},\beta_{2},P_{\beta}\right]=R^{\nu}\left[\delta^{-},\beta_{1},\beta_{2},P_{\beta}\right].$$

Оценку выигрыша за счет использования ПСС с рандомизированной базой проведем для случая $n\delta_{\xi} \ll \delta$, что, как правило, обеспечивается на практике заданием требуемой для этого длительности сигнала $T_s \gg E_{\xi}/\mathcal{P}_s$ при известной его мощности \mathcal{P}_s . Кроме того, условие $\delta_{\xi} = 0$ может использоваться для получения гарантированных показателей СПИ в классе помех с неизвестной структурой, если параметром δ_v учитываются как преднамеренные, так и случайные помехи.

Для удобства выполнения и представления результатов расчетов величины δ , δ^- , δ_v , β_1 , β_2 нормируются относительно параметра β^* (формула (6)), значение которого для рассматриваемых параметров СПИ при $\delta_{\xi} = 0$ составляет величину $\beta^* \approx 4.71\delta^-$. Соответствующие перечисленным показателям нормированные величины обозначаются как $z^- = \delta^-/\beta^*$, $z_v = \delta_v/\beta^*$, $b_1 = \beta_1/\beta^*$, $b_2 = \beta_2/\beta^*$. Выигрыш в скорости передачи информации СПИ-2 по отношению к СПИ-1 оценивается на основе сравнения нормированных показателей скорости $R_1(z)$ и $R_2(z)$, определяемых соответственно соотношениями:

$$R_{1}(z) = \beta^{*}R(\delta,\beta) = \beta^{*}G(\delta/\beta)/\beta = G(z)/b,$$

$$R_{2}(z) = \beta^{*}R(\delta,\beta_{1},\beta_{2},P_{\beta})$$

$$= \beta^{*}G^{-}(\delta/\beta)/\beta^{-} = G^{-}(z)/b^{-}.$$

3. ПРИМЕРЫ АНАЛИЗА, ОПТИМИЗАЦИИ СПИ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Анализ и оптимизация ПСС с нерандомизированной базой

Пример зависимости $R_1^{\nu}(z) = \beta^* R^{\nu}(z, 1, 1, 1)$, образованной в виде выпуклой оболочки функции $R_1(z) = \beta^* R(z, 1, 1, 1)$ для СПИ-1 с нерандомизированной базой ПСС $\beta_1 = \beta_2 = \beta^*$ и параметрами $n = 127, r = 3, \delta_{\xi} \ll \delta_{\nu}/\beta$, показан на рис. 3, где представлены зависимости $R_1(z)$ (сплошная кривая) и

 $R_{\rm l}^{\rm v}(z)$ (штриховая). Как видно, в данном случае задача построения выпуклой оболочки функции $R_{\rm l}(z)$ сводится к задаче однопараметрической оптимизации нахождения точки касания прямой

$$z' = \arg\min_{z \in (\overline{z}, \infty)} \frac{1}{z} (R_{\mathrm{l}}(0) - R_{\mathrm{l}}(z)),$$

проходящей через (0, $R_1(0)$) к линии $R_1(z)$ (в примере $z' \approx 0.364$). При этом значение z' определяет стратегию постановки помехи, а именно:

1) при $z^- \le z'$ оптимальная помеха формируется в импульсном режиме с мощностью импульса $\delta' = z'\beta^*$ и его вероятностью $P_{\delta} = \delta^-/\delta'$;

2) при $z^- > z'$ ИП формирует помеху с постоянной мощностью δ^- . С учетом структуры зависимости $R_1(z)$ значение z' легко находится методом сечений.

Таким образом, СПИ-1 в классе помех $\mathcal{F}(z)$ гарантированно обеспечивает скорость передачи информации, определяемую выражением

$$R_{l}^{v}(z) = \begin{cases} 1 - z(1 - R_{l}(z'))/z', & z \leq z'; \\ R_{l}(z), & z > z'. \end{cases}$$

3.2. Анализ и оптимизация ПСС с рандомизированной базой

По приведенной методике оценим гарантированную скорость передачи информации СПИ-2

$$R_2^{\nu}(z) = \beta^* R^{\nu}(z, b_1, b_2, P_{\beta})$$

Для этого сначала в соответствии с формулами (2), (4)–(6), (8) получим соотношение для функции $R(z, b_1, b_2, P_\beta)$ с заданными значениями b_1, b_2, P_β , а затем, выполнив операцию выпуклого замыкания этой функции по аргументу *z*, построим зависимость

$$R_2^{\scriptscriptstyle V}(z) = \beta^* R^{\scriptscriptstyle V}(z, b_1, b_2, P_\beta).$$

На рис. 4 представлены графики функций $R_2(z)$, $R_2^{\nu}(z)$ для $\beta_1 = 0.25$, $\beta_2 = 1.4$, $P_{\beta} = 0.5$, причем график $R_2^{\nu}(z)$ составлен из четырех линий:

1) отрезок (пунктирная линия), соединяющий точки (0, $R_2(0)$), (z_1 , $R_2(z_1)$), где $z_1 \approx 0.087$ — первая точка касания прямой, к графику $R_2(z)$;

2) часть кривой $R_2(z)$ (сплошная линия) в интервале (z_2 , z_3), где $z_2 \approx 0.094$, $z_3 \approx 0.0492$ — точки касания прямой к графику $R_2(z)$ такой, что $z_1 \leq z_2$;

3) отрезок (пунктирная линия), соединяющий точки (z_2 , $R_2(z_2)$), (z_3 , $R_2(z_3)$); 4) часть кривой $R_2(z)$ (сплошная линия) в интервале (z_3 , ∞).

Значение z_1 найдено методом сечений в предварительно определенной области, поиск значений z_2 , z_3 осуществлялся путем поочередной оптимизации величин z_2 , z_3 методом сечений до перехода в є-оптимальную точку.

Как видно, наихудшая в классе $\mathcal{F}(z^{-})$ для СПИ-2 помеха действует следующим образом:

1) при $z^- \le z_1$ в импульсном режиме, определенном параметрами $z_0 = 0, z^-, z_1$;

2) при $z_1 \le z^- \le z_2 - c$ постоянной мощностью δ^- ;

3) при $z_2 \le z^- \le z_3 - c$ переключением двух уровней мощности, соответствующих значениям z_2, z_3 ;

4) при $z_3 ≤ z^- - c$ постоянной мощностью δ^- .

Кроме того, на рис. 4 для сравнения приведены

графики функций $R_1(z)$, $R_1^{v}(z)$, из анализа которых нетрудно определить область значений величины z^- , в которой СПИ-2 выигрывает у СПИ-1 по гарантированной скорости передачи информации. Можно отметить, что если ИП не использует информацию о параметрах СПИ-2 и воздействует оптимальной для СПИ-1 помехой, то в области $z^- \in [0, z']$ значения скорости передачи информации СПИ-2 лежат на отрезке ℓ (см. рис. 4) и, как видно, СПИ-2 существенно (20...100%) выигрывает в скорости передачи информации у СПИ-1 в этой области.

Для проработки вопроса о существовании алгоритма передачи информации с рандомизированным переключением базы ПСС, который выигрывал бы по гарантированной скорости передачи информации у СПИ-1 при всех значениях $z^- \in [0, \infty]$, в работе решалась задача оптимизации соответствующей величины выигрыша. На рис. 5, 6 приведены

2023

зависимости $R_1(z)$, $R_1^{\nu}(z)$, $R_2(z)$, $R_2^{\nu}(z)$, полученные в результате такой оптимизации для абсолютной и относительной величин выигрыша соответственно:

$$\Delta = \min_{z \in [0, z']} \left(R_2^{\nu}(z) - R_1^{\nu}(z) \right).$$

$$\eta = \min_{z \in [0, z']} \left(R_2^{\nu}(z) / R_1^{\nu}(z) \right).$$

Так, для СПИ-2 с параметрами $b_1 = 0.56, b_2 = 1.28,$

 $P_{\beta} = 0.5$, как видно из графиков $R_1^{\nu}(z), R_2^{\nu}(z)$, приведенных на рис. 5, абсолютный выигрыш в скорости в области значений $z^- \in [0, z']$ не менее 0.04, а для СПИ-2 с параметрами $b_1 = 0.51, b_2 = 1.21,$ $P_{\beta} = 0.5$ графики $R_1^{\nu}(z), R_2^{\nu}(z)$, приведенные на рис. 6, представляют пример рандомизации базы ПСС, обеспечивающей относительный выигрыш в скорости передачи информации не менее 16.6% при всех возможных значениях δ^- .

3.3. Оценка достоверности передачи данных в СПИ-1 и СПИ-2

Корректная постановка задачи оптимизации скорости передачи информации параметрами СПИ, естественно, предполагает учет и обеспечение требований по показателям достоверности передачи информации. Приведем соотношения для оценки вероятности выдачи системой блока с необнаруженной ошибкой и покажем, что вероятность ошибки P_{Ho2} в СПИ-2 не превышает соответствующую величину P_{Ho1} в СПИ-1. Так, величины P_{Ho1} , P_{Ho2} можно оценить на основе выражения для вероятности необнаруженной ошибки $P_{Ho}(z,b)$, справедливого для фиксированных значений z,b:

$$P_{\rm HO}(z,b) = \chi \Pr\{N_{\rm out} > r\},\$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 3 2023

где $\chi = \chi(n,k,r)$ — функция, характеризующая условную вероятность необнаружения ошибки в кодовом блоке, принятом с числом ошибок более r, определяемая параметрами и структурой кода [4, 25, 27], $\Pr\{N_{out} > r\} = 1 - G(z)$ — вероятность искажения в блоке длины n более r символов. Для СПИ-1 и СПИ-2 средняя вероятность необнаруженной ошибки в принятом блоке определяется выражениями

$$P_{\rm Ho1} = \chi \frac{\bar{z'}}{z'} (1 - G(z')), \quad P_{\rm Ho2} = \chi \frac{\bar{z'}}{z''} (1 - G(z'')), \quad (9)$$

причем при полученных оптимальных параметрах b^*, b_1, b_2 СПИ и z', z'' ИП имеем z' < z'', G(z') < G(z'') и, следовательно, $P_{\text{Ho2}} < P_{\text{Ho1}}$.

Соотношения (9) могут использоваться для задания ограничений на область поиска в рассмотренной оптимизационной задаче.

ЗАКЛЮЧЕНИЕ

Показано, что алгоритм рандомизированного управления базой ПСС позволяет повысить скорость передачи информации в условиях воздействия преднамеренных помех при обеспечении исходных показателей достоверности. Так, уже при использовании сигналов с двухуровневой базой выигрыш в гарантированной скорости передачи информации может достигать 10...20%. Предложенная методика и общие заключения могут быть применимы для СПИ с другими зависимостями $p(\delta/b)$ вероятности ошибки на символ, учитывающими специфику обработки сигналов на физическом уровне.

Полученные результаты предполагают дальнейшую проработку затронутых вопросов в направлениях поиска оптимального распределения базы ПСС на $(0, \infty)$, рандомизированного управления базой ПСС совместно с параметрами кода и режимами декодирования канальных блоков, а также получения оценок эффективности рандомизированного управления сигнально-кодовыми конструкциям с учетом способов использования и свойств обратного канала.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Чуднов А.М.* // Проблемы передачи информации. 1986. Т. 22. № 4. С. 49.
- 2. *Чуднов А.М.* // Проблемы передачи информации. 1991. Т. 27. № 3. С. 57.
- 3. Чуднов А.М. // РЭ. 1987. Т. 32. № 1. С. 62.
- Чуднов А.М., Кирик Д.И., Ермакова Е.М. // Труды учеб. заведений связи. 2019. Т. 5. № 4. С. 79. https://doi.org/10.31854/1813-324X-2019-5-4-79-86
- 5. Путилин А.Н., Чуднов А.М. // РЭ. 1990. Т. 35. № 8. С. 1646.
- 6. Жодзишский Ю.И. // Радиотехника. 1986. № 10. С. 56.
- 7. Жодзишский М.И. // Радиотехника. 1982. № 11. С. 77.
- Kullstam P.A. // IEEE Trans. 1977. V. COM-25. № 8. P. 848. https://doi.org/10.1109/TCOM.1977.1093906
- 9. *Yue G., Wang X.* // IEEE Trans. 2009. V. WC-8. № 12. P. 5996.
- https://doi.org/10.1109/TWC.2009.12.081627
- 10. *Чуднов А.М.* // Журн. радиоэлектроники. 2015. № 4. С. 1. http://jre.cplire.ru/jre/apr15/3/text.pdf.
- 11. Bashar T., Wu D.Y.-W. // IEEE Trans. 1985. V. IT-31. № 4. P. 482.
 - https://doi.org/10.1109/TIT.1985.1057076
- Bhattacharya S., Gupta A., Bashar T. // Numerical Algebra. 2013. V. 3. № 1. P. 1. https://doi.org/10.3934/naco.2013.3.1
- 13. *Чуднов А. М.* Помехоустойчивость линий и сетей связи в условиях оптимизированных помех. Л.: ВАС, 1986.

- 14. Макаренко С.И. Модели системы связи в условиях преднамеренных дестабилизирующих воздействий и ведения разведки. СПб.: Наукоемкие технологии, 2020.
- 15. *Poisel R.A.* Modern Communication Jamming Principles and Techniques. Artech, Massachussets, 2004.
- 16. Чуднов А.М. Математические основы моделирования, анализа и синтеза систем. СПб: ВАС, 2021.
- Firouzbakht K., Noubir G., Salehi M. // IEEE Trans. 2014. V. WC-13. № 7. P. 3481. https://doi.org/10.1109/TWC.2014.2314105
- Feng Z., Ren G., Chen J. et al. // Appl. Sci. 2019. V. 9. № 16. P. 3348. https://doi.org/10.3390/app9163348
- Wang B., Wu Y., Liu K.J.R., Clancy T.C. // IEEE J. Selected Areas in Comm. 2011. V. 29. № 4. P. 877. https://doi.org/10.1109/JSAC.2011.110418
- Han Z., Niyato D., Saad W. et al. Game Theory in Wireless and Communication Networks. Cambridge: Cambridge Univ. Press, 2011. https://doi.org/10.3390/s120709055
- Zhou S., Giannakis G., Swami A. // IEEE Trans. 2002.
 V. COM-50. № 4. P. 643. https://doi.org/10.1109/26.996079
- 22. Jia L., Xu Y., Sun Y. et al. // IEEE Wireless Comm. 2018. V. 25. № 6. P. 120. https://doi.org/10.1109/MWC.2017.1700363
- Wang Y., Niu Y., Chen J. et al. // 11th Intern. Conf. Wireless Communications and Signal Proc. (WCSP-2019), Xi'an, China, 2019. P. 1. https://doi.org/10.1109/WCSP.2019.8927884
- 24. Воробьев Н.Н. Основы теории игр. Бескоалиционные игры. М.: Наука, 1984.
- 25. *Питерсон У., Уэлдон Э.* Коды, исправляющие ошибки. М.: Мир, 1976.
- 26. *Крейн М.Г., Нудельман А.А.* Проблема моментов Маркова и экстремальные задачи. М.: Наука, 1973.
- 27. Коржик В.И., Осмоловский С.А., Финк Л.М. // Проблемы передачи информации. 1974. Т. 10. № 4. С. 25.