К 90-ЛЕТИЮ ВЛАДИМИРА ГРИГОРЬЕВИЧА ШАВРОВА

УДК 538.955

О ВОЗМОЖНОСТИ ПОЛУМЕТАЛЛИЧЕСКИХ СВОЙСТВ В ФЕРРОМАГНИТНЫХ СПЛАВАХ ГЕЙСЛЕРА Fe_2RhZ (Z = Al, Si, Ga, Ge, In, Sn)

© 2023 г. К. Р. Ерагер^{а,} *, Д. Р. Байгутлин^а, В. В. Соколовский^а, В. Д. Бучельников^а

^а Челябинский государственный университет, ул. Братьев Кашириных, 129, корп. 1, Челябинск, 454001 Российская Федерация *E-mail: eragerk@rambler.ru Поступила в редакцию 14.09.2022 г. После доработки 04.10.2022 г. Принята к публикации 14.10.2022 г.

Из первых принципов исследованы возможности наличия полуметаллических свойств в ферромагнитных сплавах Гейслера $Fe_2RhZ(Z=Al, Si, Ga, Ge, In, Sn)$. Расчеты выполнены в рамках учета обменно-корреляционных эффектов посредством приближений обобщенного и мета-обобщенного градиента. Показано, что основным состоянием в большинстве сплавов является ферромагнитное упорядочение в модельной T^p решетке. Анализ фазовой стабильности сплавов показывает, что большинство из них в рассматриваемых приближениях являются устойчивыми как в регулярной, так и в инверсной решетке, а также в трех модельных решетках, относящихся к обратному типу гейслеровых структур с различным типом атомного порядка. Функционал SCAN (strongly constrained and appropriately normed) предсказывает, что сплав Fe_2RhSi может иметь свойства полуметаллов, поскольку обладает целым магнитным моментом, достаточно высокой степенью поляризации и энергетической щелью на уровне Ферми для спин-вверх электронов.

DOI: 10.31857/S0033849423040010, EDN: PEIKBI

введение

Сплавы Гейслера широко известны благодаря своим многофункциональным свойствам, таким как большой магнитокалорический эффект, эффект памяти формы, гигантские обменное смещение и магнитосопротивление, высокая спиновая поляризация, полуметаллический ферромагнетизм, сверхпроводимость, возникающая в сплавах, содержащих 27 валентных электронов, таких как Ni₂ZrGa, Pd₂RSn (R = Tb–Yb), AuPd*TM* (T = Sc, Y и M = Al, Ga, In) [1–4] и т.д.

Полуметаллические ферромагнитные сплавы являются наиболее интересным классом материалов, поскольку в них одно направление спина имеет металлическое поведение, а другое проявляет полупроводниковый характер. В связи с этим электроны с одним видом спина участвуют в электронных транспортных свойствах и демонстрируют 100%-ную спиновую поляризацию на уровне Ферми (E_F) [5]. Это свидетельствует о возможности создания такого электронного устройства, в котором не только заряд, но и спин электрона может играть важную роль в передаче сигнала. Среди ожидаемых преимуществ технологий спинтроники выделяют энергонезависимое хранение данных с высокой плотностью и низким энергопотреблением, а также быструю передачу данных. В последние годы полуметаллические свойства ферромагнитных сплавов используются в спинтронных устройствах для технологических приложений, таких как устройства на основе туннельного и гигантского магнитосопротивления [6, 7].

За последние три десятилетия, после открытия полуметалличности в NiMnSb [8], сплавы Гейслера широко исследуются с целью их применения в спинтронике. В частности, сплавы Гейслера на основе 3*d*-элемента Со привлекли повышенное внимание благодаря высокой температуре Кюри $(T_{\rm C})$. В дополнение к сплавам на основе 3*d*-элементов, сплавы на основе 4*d*-элементов также изучались для применения в спинтронике. В качестве примера можно привести соединения, содержащие Ru: Ru_{2-x}Fe_xCrGe, Ru_{2-x}Fe_xCrSi, Ru₂MnZ $(Z = \text{Si, Ge, Sn u Sb}), (\text{Ru}_{1-x}\text{Co}_x)_2\text{FeSi, Mn}_2\text{Ru}Z$ (Z = Si, Sn) и CoFeRuZ(Z = Si, Ge) [9–14]. В этих сплавах Ru антиферромагнитно связывается с соседними магнитными ионами. Другой важной серией сплавов Гейслера на основе 4*d*-элементов с высоким значением $T_{\rm C}$ являются сплавы на основе Rh, рассмотренные в работе [15]. Авторы провели теоретическое исследование структурных,

электронных и магнитных свойств сплавов Гейслера Rh₂FeGa и Rh₂FeIn. По данным расчетов обе системы стабильны в ферромагнитном состоянии и являются полуметаллическими материалами при их равновесных параметрах решетки с шириной щели около 0.326 и 0.245 эВ соответственно. Также авторами показано, что полуметаллическое состояние сохраняется при увеличении постоянной решетки в области 6.00 и 6.16 Å для сплава Rh₂FeGa и между 6.20 и 6.32 Å для сплава Rh₂FeIn. В работе [16] синтезировали серию сплавов $Fe_2 YSi$ (Y = Cr, Mn, Fe, Co, Ni) и провели теоретическое и экспериментальное исследование их электронных и магнитных свойств. Авторами показано, что сплав Fe₂CrSi является однофазным и представляет собой полуметаллический ферромагнетик с магнитным моментом на формульную единицу (ф.ед.) $2\mu_{\rm B}/\phi$.ед. и щелью 0.42 эВ. Большинство экспериментальных данных измерения магнитных моменты насыщения серии сплавов $Fe_2 YSi$ (Y = Cr, Mn, Fe, Co, Ni) при 5 К достаточно хорошо согласуются с теоретическим значением. В частности, магнитный момент насыщения Fe₂CrSi составляет $2.05\mu_{\rm B}/\phi$.ед., что соответствует значению 2µ_в, полученному согласно правилу Слейтера-Полинга. Также исследовано влияние искажения решетки на электронные и магнитные свойства Fe₂CrSi и Fe₂CoSi. Установлено, что Fe₂CrSi является полуметаллическим сплавом с искажением решетки от -3% до +1%, что имеет место в системах с большой деформацией, таких как ленты или тонкие пленки. Авторы работы [17] провели расчеты из первых принципов структурных и магнитных свойств сплавов Fe–Rh, допированных Ni и Pd. Было показано, что частичная замена Rh на Ni или Pd в системе Fe-Rh незначительно изменяет параметр решетки и стимулирует мартенситное фазовое превращение. В работе [18] показано, что увеличение содержания Mn в сплавах Fe-Rh-(Z) приводит к увеличению разности энергий между кубической и тетрагональной фазами, что эквивалентно повышению температуры структурного превращения, в то время как увеличение содержания Pt в том же сплаве приводит к появлению стабильного тетрагонального состояния с шахматным упорядочением атомов и антиферромагнитной конфигурацией. В работе [19] проводились исследования структурных и магнитных свойств, а также фазовой стабильности и магнитной анизотропии сплавов Гейслера на основе Fe–Ni–Al. Авторами были рассмотрены модельные структуры, относящиеся к обратному типу Гейслера с послойным и столбчатым упорядочением атомов Fe и Ni на позициях 4*a* и 4*b*. Показано, что путем изменения положения атомов на определенных позициях в гейслеровой решетке можно контролировать фазовую стабильность и анизотропию рассматриваемых сплавов. Для аустенитной фазы Fe₂NiAl обнаружено, что все предложенные модельные структуры, обозначенные как T^c , $T^{#}$ и T^p , имеют более низкую энергию по сравнению с инверсной и регулярной структурами, которые в основном обсуждались до сих пор в литературе. Основное состояние соответствует упорядоченной структуре T^p , которая была предложена в качестве стабильной низкотемпературной структуры для некоторых четверичных стехиометрических сплавов Гейслера [20]. В связи с этим, изучение таких модельных структур является перспективным как в фундаментальной, так и в прикладной области исследований.

1. МЕТОДОЛОГИЯ ВЫЧИСЛЕНИЙ

Свойства сплавов Fe_2RhZ (Z = Al, Si, Ga, Ge, In, Sn) были исследованы в рамках двух подходов: приближения обобщенного градиента (GGA, функционал GGA-PBE (Perdew—Burke—Ernzerhof) [21]) и приближения мета-обобщенного градиента (функционал meta-GGA SCAN [22]), который, как считается, повышает точность вычислений. Следует отметить, что функционал SCAN уже показал свою работоспособность для немагнитных систем [23], однако его применимость к магнитным материалам, в том числе сплавам Гейслера, остается слабо изученной.

Исследования выполнены в рамках теории функционала плотности, реализованной в программном пакете VASP [24, 25] в приближении функционалов РВЕ и SCAN. Рассмотрены прямая (L2₁) и обратная (XA) решетки сплавов Гейслера, а также три модельные структуры, построенные на базе обратной гейслеровой структуры – T[#], T^c и T^p, предложенные в работе [19], с послойным и столбчатым упорядочением атомов Fe и Rh на позициях 4*a* и 4*b* (рис. 1). Структура Т[#] характеризуется колонками атомов Fe и Rh, расположенными на позициях 4a и 4b, которые меняют свою ориентацию от слоя к слою. Структуру Т^с можно представить как слои Fe и Rh, чередующиеся вдоль [110]. Структура Т^р состоит из чередующихся вдоль [001] слоев атомов Fe и Rh.

Геометрическая оптимизация всех структур проводилась в рамках электронной и ионной релаксации на 16-атомной суперячейке с ферро- и антиферромагнитным упорядочением магнитных моментов, как предложено в [26]. Интегрирование зоны Бриллюэна проводили на Г-центрированной *k*-точечной сетке (7 × 7 × 7). Энергия обрезания плоских волн составляла 470 эВ, а параметр сходимости – 10^{-7} эВ/атом. Значения спиновой поляризации для всех сплавов при расчетах плотности электронных состояний оценивали по формуле

$$P(\%) = \frac{p_{\uparrow}(E_{\rm F}) - p_{\downarrow}(E_{\rm F})}{p_{\uparrow}(E_{\rm F}) + p_{\downarrow}(E_{\rm F})} \times 100,$$

Рис. 1. Пять структур для сплавов Гейслера $Fe_2RhZ(Z = Al, Si, Ga, Ge, In, Sn)$ с кубическими параметрами решетки: а – прямая, $L2_1$, б – обратная, XA, в – $T^{\#}$, $\Gamma – T^c$, $\mu – T^p$.

где p_{\uparrow} , p_{\downarrow} — плотность электронных состояний на уровне Ферми со спином вверх и вниз соответственно.

Энергию формирования сплавов рассчитывали по формуле

$$E_{\rm form} = E_{\rm tot} - \sum_i E_i$$
,

где E_{tot} — полная энергия сплава, приходящаяся на один атом, а E_i — энергии атомов чистых элементов, рассчитанных с использованием указанных выше псевдопотенциалов и с учетом данных электронного ресурса Materials project (https:// materialsproject.org/).

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 2 приведены энергии основного состояния кубических структур сплавов Fe_2RhZ (Z = Al, Si, Ga, Ge, In, Sn) после геометрической оптимизации по объему ячейки с сохранением формы и фиксированными позициями ионов, построенные относительно энергии прямой решетки с ферромагнитным упорядочением магнитных моментов. Из расчетов следует, что для всех сплавов в приближении PBE устойчивой является обратная ферромагнитная решетка в структуре T^p . Функционал SCAN демонстрирует подобный результат для всех составов, кроме Fe_2RhIn , у которого структура T^c является более энергетически выгодной относительно T^p, разница составила ~4.70 мэВ/атом в фазе аустенита и ~19.69 мэВ/атом в мартенситной фазе.

Примечательно, что решетка T^c после геометрической оптимизации в рамках электронной релаксации с учетом двух рассматриваемых псевдопотенциалов является тетрагональной для всех композиций кроме сплава Fe₂RhAl в приближении функционала PBE. Это кардинально отличается от остальных структур, которые в основном состоянии являются либо кубическими, либо псевдокубическими с $c/a \sim 1$ (рис. 3, 4 и табл. 1).

Полученные кривые зависимости энергии основного состояния от тетрагонального искажения согласуются с результатами работы [19], в которой структуры Т[#], Т^с и Т^р состава Fe₂NiAl ведут себя подобным образом, немного смещая энергетический минимум с кубической фазы на псевдокубическую со степенью тетрагональности ~1.

На рис. 5 представлены рассчитанные данные полного магнитного момента всех сплавов с ферромагнитным упорядочением магнитных моментов. Композиции, упорядоченные антиферромагнитно в инверсной решетке, являются энергетически менее устойчивыми (см. табл. 1).

Рис. 2. Энергии основного состояния аустенитной фазы всех рассматриваемых FM сплавов Гейслера $Fe_2RhZ(Z = Al, Si, Ga, Ge, In, Sn)$, построенные относительно энергии регулярной ферромагнитной решетки: a - в приближении PBE, 6 - в приближении SCAN.

Рис. 3. Зависимость энергии основного состояния от степени тетрагональности кубических FM структур XA и $T^{\#}$, T^{c} и T^{p} сплавов Гейслера Fe₂RhZ (Z = Al, Si, Ga, Ge, In, Sn) в приближении функционала PBE.

ЕРАГЕР и др.

Рис. 4. Зависимость энергии основного состояния от степени тетрагональности кубических FM структур XA и $T^{\#}$, T^{c} и T^{p} сплавов Гейслера Fe₂RhZ (Z = Al, Si, Ga, Ge, In, Sn) в приближении функционала SCAN.

Рис. 5. Зависимость магнитного момента FM сплавов Гейслера $Fe_2RhZ(Z=Al, Si, Ga, Ge, In, Sn)$ на формульную единицу: а – в приближении PBE, б – в приближении SCAN.

О ВОЗМОЖНОСТИ ПОЛУМЕТАЛЛИЧЕСКИХ СВОЙСТВ

	PBE							SCAN						
Структура	<i>a</i> , Å	b, Å	c, Å	c/a	<i>Е</i> , эВ/атом	<i>М</i> , µ _В /ф.ед.	<i>a</i> , Å	b, Å	<i>c</i> , Å	c/a	<i>Е</i> , эВ/атом	<i>М</i> , µ _В /ф.ед.		
Fe ₂ RhAl														
L2 ₁ FM	5.92	5.92	5.92	1.00	-7.009	5.61	5.90	5.90	5.90	1.00	-19.637	6.57		
$L1_0 AFM_1$	6.23	6.23	5.34	0.86	-6.995	0.00	6.11	6.11	5.50	0.90	-19.648	-0.03		
$L2_1 AFM_2$	5.92	5.92	5.92	1.00	-7.035	0.00	5.89	5.89	5.89	1.00	-19.714	0.00		
XA FM	5.89	5.89	5.89	1.00	-7.259	5.06	5.84	5.84	5.84	1.00	-19.942	5.40		
XA AFM ₁	5.84	5.84	6.00	1.03	-7.181	0.00	5.81	5.81	5.96	1.03	-19.856	0.00		
XA AFM ₂	5.90	5.90	5.90	1.00	-7.085	0.65	5.87	5.87	5.87	1.00	-19.762	-0.02		
T [#] FM	5.87	5.87	5.91	1.01	-7.283	5.11	5.81	5.81	5.91	1.02	-19.962	5.55		
T [#] AFM ₁	5.87	5.85	5.92	1.01	-7.202	0.45	5.81	5.81	5.85	1.01	-19.860	-0.21		
T [#] AFM ₂	5.88	5.88	5.87	1.00	-7.100	-1.82	5.91	5.91	5.81	0.98	-19.762	1.33		
T ^c FM	5.94	5.94	5.80	0.98	-7.266	5.26	5.91	5.91	5.73	0.97	-19.951	5.68		
T ^c AFM ₁	5.87	5.85	5.86	1.00	-7.160	0.00	5.89	5.91	5.75	0.98	-19.827	0.00		
T ^c AFM ₂	6.03	6.03	5.66	0.94	-7.091	-1.22	6.01	6.01	5.64	0.94	-19.773	0.78		
T ^p FM	5.85	5.85	5.91	1.01	-7.303	4.99	5.81	5.81	5.85	1.01	-19.971	5.38		
T ^p AFM ₁	5.83	5.83	5.88	1.01	-7.206	0.00	5.76	5.76	5.96	1.03	-19.862	0.00		
T ^p AFM ₂	5.80	5.80	5.98	1.03	-7.300	-4.95	5.74	5.74	6.00	1.05	-19.859	3.27		
Fe_2RhSi														
L2 ₁ FM	5.80	5.80	5.80	1.00	-7.401	4.51	5.78	5.78	5.78	1.00	-20.098	5.59		
L10 AFM1	6.12	6.12	5.23	0.85	-7.428	0.00	6.00	6.00	5.41	0.90	-20.148	0.00		
$L2_1 AFM_2$	5.82	5.82	5.82	1.00	-7.426	0.00	5.80	5.80	5.80	1.00	-20.175	0.00		
XA FM	5.80	5.80	5.80	1.00	-7.681	4.91	5.74	5.74	5.74	1.00	-20.492	5.08		
XA AFM ₁	5.79	5.79	5.83	1.01	-7.598	0.00	5.79	5.79	5.75	0.99	-20.381	0.00		
XA AFM ₂	5.81	5.81	5.81	1.00	-7.502	0.96	5.78	5.78	5.78	1.00	-20.286	0.96		
T [#] FM	5.79	5.79	5.79	1.00	-7.704	4.87	5.74	5.74	5.73	1.00	-20.504	5.05		
T [#] AFM ₁	5.78	5.80	5.77	1.00	-7.610	0.00	5.73	5.73	5.75	1.00	-20.388	0.04		
T [#] AFM ₂	5.81	5.81	5.79	1.00	-7.516	0.00	5.76	5.76	5.81	1.01	-20.271	1.58		
T ^c FM	5.84	5.84	5.72	0.98	-7.670	4.93	5.83	5.83	5.62	0.96	-20.472	5.34		
T ^c AFM ₁	5.76	5.87	5.77	1.00	-7.582	0.00	5.75	5.87	5.67	0.99	-20.360	0.00		
T ^c AFM ₂	5.81	5.81	5.79	1.00	-7.492	0.00	5.99	5.99	5.44	0.91	-20.277	1.07		
T ^p FM	5.74	5.74	5.86	1.02	-7.740	4.82	5.69	5.69	5.81	1.02	-20.539	5.04		
T ^p AFM ₁	5.73	5.73	5.87	1.02	-7.634	0.00	5.69	5.69	5.85	1.03	-20.405	0.00		
T ^p AFM ₂	5.74	5.74	5.87	1.02	-7.740	-4.82	5.53	5.53	6.25	1.13	-20.345	2.66		
- I I I I I I I I I I I I I I I I I I I														
L2 ₁ FM	5.95	5.95	5.95	1.00	-6.687	5.72	5.92	5.92	5.92	1.00	-21.657	6.66		
$L1_0 AFM_1$	6.26	6.26	5.37	0.86	-6.695	0.00	6.15	6.15	5.48	0.89	-21.687	0.00		
L2 ₁ AFM ₂	5.94	5.94	5.94	1.00	-6.714	0.00	5.91	5.91	5.91	1.00	-21.717	0.00		
XA FM	5.91	5.91	5.91	1.00	-6.915	5.05	5.86	5.86	5.86	1.00	-21.929	5.62		
XA AFM ₁	5.82	5.82	6.13	1.05	-6.844	0.00	5.81	5.81	6.03	1.04	-21.847	0.00		

Таблица 1. Параметры кристаллических структур

Таблица 1. Продолжение

	PBE							SCAN						
Структура	<i>a</i> , Å	b, Å	c, Å	c/a	<i>Е</i> , эВ/атом	<i>М</i> , µ _В /ф.ед.	a, Å	b, Å	<i>c</i> , Å	c/a	<i>Е</i> , эВ/атом	<i>М</i> , µ _В /ф.ед.		
XA AFM ₂	5.93	5.93	5.93	1.00	-6.753	0.28	5.88	5.88	5.88	1.00	-21.753	-0.07		
T [#] FM	5.89	5.89	5.94	1.01	-6.934	5.15	5.83	5.83	5.92	1.02	-21.940	5.56		
$T^{\#}AFM_{1}$	5.91	5.90	5.90	1.00	-6.844	0.16	5.86	5.89	5.84	1.00	-21.837	-0.09		
$T^{\#}AFM_{2}$	5.91	5.91	5.90	1.00	-6.759	-1.65	5.91	5.91	5.88	0.99	-21.746	1.21		
T ^c FM	5.99	5.99	5.79	0.97	-6.921	5.37	5.95	5.95	5.71	0.96	-21.936	5.71		
T ^c AFM ₁	5.98	5.98	5.79	0.97	-6.812	0.00	5.59	6.40	5.71	1.02	-21.821	0.00		
T ^c AFM ₂	6.09	6.09	5.63	0.92	-6.757	-1.03	6.06	6.06	5.59	0.92	-21.761	0.80		
T ^p FM	5.87	5.87	5.94	1.01	-6.952	4.96	5.81	5.81	5.92	1.02	-21.942	5.44		
T ^p AFM ₁	5.81	5.81	6.05	1.04	-6.851	0	5.77	5.77	6.03	1.05	-21.830	0.00		
T ^p AFM ₂	5.83	5.83	6.05	1.04	-6.948	-4.99	5.61	5.61	6.44	1.15	-21.782	0.00		
Fe ₂ RhGe														
$L2_1 FM$	5.92	5.92	5.92	1.00	-7.040	5.00	5.90	5.90	5.90	1.00	-22.268	6.03		
$L1_0 AFM_1$	6.22	6.22	5.36	0.86	-7.064	0.00	6.07	6.07	5.59	0.92	-22.321	0.00		
$L2_1 AFM_2$	5.93	5.93	5.93	1.00	-7.072	0.00	5.90	5.90	5.90	1.00	-22.351	0.00		
XA FM	5.90	5.90	5.90	1.00	-7.271	5.03	5.85	5.85	5.85	1.00	-22.592	5.34		
XA AFM ₁	5.92	5.92	5.93	1.00	-7.199	0.00	5.91	5.91	5.83	0.99	-22.500	0.00		
XA AFM ₂	5.93	5.93	5.93	1.00	-7.106	0.82	5.88	5.88	5.88	1.00	-22.407	0.96		
T [#] FM	5.91	5.91	5.87	0.99	-7.291	5.00	5.86	5.86	5.80	0.99	-22.590	5.29		
$T^{\#} AFM_1$	5.92	5.93	5.85	0.99	-7.201	0.03	5.86	5.90	5.82	0.99	-22.491	0.00		
$T^{\#}AFM_2$	5.90	5.90	5.91	1.00	-7.112	0.00	5.86	5.86	5.91	1.01	-22.387	1.50		
T ^c FM	6.00	6.00	5.75	0.96	-7.261	5.18	5.96	5.96	5.67	0.95	-22.571	5.60		
T ^c AFM ₁	5.88	6.04	5.82	0.99	-7.177	0.00	5.86	5.97	5.77	0.98	-22.465	0.00		
T ^c AFM ₂	6.19	6.19	5.52	0.89	-7.109	-0.84	6.11	6.11	5.51	0.90	-22.397	0.89		
T ^p FM	5.83	5.83	6.01	1.03	-7.325	4.96	5.78	5.78	5.94	1.03	-22.623	5.13		
$T^p AFM_1$	5.80	5.80	6.07	1.05	-7.219	0.00	5.77	5.77	5.99	1.04	-22.501	0.00		
T ^p AFM ₂	5.69	5.69	6.33	1.11	-7.138	-1.47	5.60	5.60	6.39	1.14	-22.450	2.68		
		I			F	e ₂ RhIn		I	I		I	I		
L2 ₁ FM	6.18	6.18	6.18	1.00	-6.405	6.05	6.15	6.15	6.15	1.00	-25.724	6.74		
$L1_0 AFM_1$	6.43	6.43	5.71	0.89	-6.390	0.00	6.30	6.30	5.87	0.93	-25.738	-0.02		
$L2_1 AFM_2$	6.18	6.18	6.18	1.00	-6.422	0.00	6.14	6.14	6.14	1.00	-25.763	0.00		
XA FM	6.16	6.16	6.16	1.00	-6.575	5.57	6.11	6.11	6.11	1.00	-25.924	5.95		
XA AFM ₁	5.62	5.62	7.45	1.33	-6.518	0.00	5.73	5.73	7.03	1.23	-25.855	0.00		
XA AFM ₂	6.19	6.19	6.19	1.00	-6.418	0.07	6.12	6.12	6.12	1.00	-25.743	2.31		
T [#] FM	6.13	6.13	6.22	1.01	-6.590	5.45	6.06	6.06	6.18	1.02	-25.930	5.71		
$T^{\#} AFM_1$	6.37	6.08	6.06	0.95	-6.497	-0.08	6.02	6.35	6.02	1.00	-25.834	-0.07		
$T^{\#}AFM_{2}$	6.18	6.18	6.18	1.00	-6.418	-1.44	6.17	6.17	6.12	0.99	-25.762	1.04		
T ^c FM	6.27	6.27	5.96	0.95	-6.584	5.60	6.24	6.24	5.89	0.94	-25.937	0.00		

Таблица 1. Окончание

	PBE							SCAN						
Структура	<i>a</i> , Å	b, Å	c, Å	c/a	<i>Е</i> , эВ/атом	<i>М</i> , µ _В /ф.ед.	<i>a</i> , Å	b, Å	<i>c</i> , Å	c/a	<i>Е</i> , эВ/атом	<i>М</i> , µ _В /ф.ед.		
T ^c AFM ₁	6.22	6.26	6.04	0.97	-6.471	0.00	5.69	6.89	5.89	1.04	-25.832	0.00		
T ^c AFM ₂	6.38	6.38	5.82	0.91	-6.426	-1.00	6.34	6.34	5.79	0.91	-25.775	0.72		
T ^p FM	6.09	6.09	6.25	1.03	-6.600	5.20	6.01	6.01	6.26	1.04	-25.927	5.69		
T ^p AFM ₁	5.97	5.97	6.52	1.09	-6.497	0.00	5.95	5.95	6.44	1.08	-25.818	0.00		
T ^p AFM ₂	5.82	5.82	6.97	1.20	-6.450	-1.33	5.78	5.78	6.96	1.20	-25.794	1.24		
Fe ₂ RhSn														
L2 ₁ FM	6.15	6.15	6.15	1.00	-6.791	5.34	6.13	6.13	6.13	1.00	-26.370	6.05		
$L1_0 AFM_1$	6.36	6.36	5.76	0.91	-6.785	0.00	6.22	6.22	5.96	0.96	-26.413	0.00		
$L2_1 AFM_2$	6.16	6.16	6.16	1.00	-6.808	0.00	6.13	6.13	6.13	1.00	-26.438	0.00		
XA FM	6.15	6.15	6.15	1.00	-7.004	5.21	6.09	6.09	6.09	1.00	-26.663	5.64		
$XAAFM_1$	6.09	6.09	6.33	1.04	-6.935	0.00	6.15	6.15	6.07	0.99	-26.582	0.00		
XA AFM ₂	6.18	6.18	6.18	1.00	-6.835	0.79	6.11	6.11	6.11	1.00	-26.488	1.96		
T [#] FM	6.15	6.15	6.12	1.00	-7.018	5.12	6.10	6.10	6.09	1.00	-26.657	5.67		
$T^{\#}AFM_{1}$	6.17	6.21	6.07	0.98	-6.929	0.03	6.08	6.19	6.07	1.00	-26.567	0.02		
$T^{\#}AFM_{2}$	6.15	6.15	6.19	1.01	-6.839	-1.38	6.08	6.08	6.22	1.02	-26.474	1.53		
T ^c FM	6.27	6.27	5.95	0.95	-6.997	5.43	6.22	6.22	5.89	0.95	-26.647	5.80		
T ^c AFM ₁	6.14	6.28	6.05	0.99	-6.910	0.00	5.96	6.46	5.99	1.01	-26.551	0.00		
T ^c AFM ₂	6.42	6.42	5.74	0.89	-6.848	-0.90	6.36	6.36	5.76	0.91	-26.499	0.96		
T ^p FM	6.05	6.05	6.29	1.04	-7.049	5.06	5.99	5.99	6.26	1.05	-26.682	5.34		
T ^p AFM ₁	6.00	6.00	6.41	1.07	-6.941	0.00	5.97	5.97	6.36	1.07	-26.570	0.00		
T ^p AFM ₂	5.90	5.90	6.70	1.14	-6.863	-1.43	5.85	5.85	6.65	1.14	-26.519	1.95		

Примечание: *a*, *b*, *c* – параметры решетки, *c/a* – степень тетрагональности, *E* и *M* –энергии основного состояния и намагниченность сплавов Гейслера Fe₂Rh*Z* (*Z* = Al, Si, Ga, Ge, In, Sn), со структурами L2₁ – прямая кубическая решетка, L1₀ – тетрагональная решетка, XA – инверсная решетка, $T^{\#}$, T^{c} и T^{p} – три модельные структуры, относящиеся к обратному типу гейслеровых структур; FM – ферро- и AFM₁, AFM₂ – антиферромагнитное упорядочение с послойным и шахматным расположением магнитных моментов соответственно. Основные состояния выделены полужирным.

Полный магнитный момент большинства составов в основном состоянии T^p является практически целым и удовлетворяет правилу Слейтера—Поллинга [27], это необходимое, но недостаточное условие наличия полуметаллического состояния в соединении. Так, в приближении SCAN близким к целому магнитному моменту обладает композиция Fe₂RhSi, а в случае функционала PBE следующие сплавы: Fe₂RhAl, Fe₂RhSi, Fe₂RhGa, Fe₂RhGe, Fe₂RhSn.

Для изучения электронной структуры и полуметаллических характеристик сплавов были рассчитаны плотности электронных состояний для самой выгодной Т^р-структуры с ферромагнитным упорядочением магнитных моментов (рис. 6, 7). Наиболее интересным является сплав Fe₂RhSi,

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 4 2023

так как в приближении SCAN он обладает достаточно высокой, но не достигающей 100%, степенью поляризации, а также металлическим поведением для электронов спин-вниз и энергетической щелью на уровне Ферми для электронов спин-вверх, что свидетельствует о вероятном полуметаллическом поведении. Увеличить степень поляризации и сдвинуть щель на уровень Ферми для остальных композиций, предположительно, является возможным за счет допирования составов другими элементами (отступлением от стехиометрии) либо приложением одноосного давления. На рис. 8 обозначены два типа атомов Fe₁ и Fe₂ в структуре Т^р, которые занимают неэквивалентные позиции и обладают разным значением магнитных моментов: четыре атома Fe₂ лежат в одной средней плосЕРАГЕР и др.

Рис. 6. Плотности электронных состояний FM сплавов $Fe_2RhZ(Z = Al, Si, Ga, Ge, In, Sn)$ в основном состоянии T^p в приближении PBE: a – Fe_2RhAl , 6 – Fe_2RhGa , в – Fe_2RhIn , г – Fe_2RhSi , д – Fe_2RhGe , е – Fe_2RhSn (степень поляризации приведена в процентах).

Рис. 7. Плотности электронных состояний FM сплавов $Fe_2RhZ(Z = Al, Si, Ga, Ge, In, Sn)$ в основном состоянии T^p в приближении SCAN: a – Fe_2RhAl , б – Fe_2RhGa , в – Fe_2RhIn , г – Fe_2RhSi , д – Fe_2RhGe , е – Fe_2RhSn (степень поляризации приведена в процентах).

Рис. 8. Два типа атомов Fe₁ и Fe₂ в структуре T^p, занимающие неэквивалентные позиции и обладающие разным значением магнитных моментов.

Рис. 9. Энергии формирования FM сплавов $Fe_2RhZ(Z = Al, Si, Ga, Ge, In, Sn)$ в приближении функционала PBE.

Рис. 10. Энергии формирования FM сплавов Fe₂RhZ (Z = Al, Si, Ga, Ge, In, Sn) в приближении функционала SCAN.

кости, а четыре атома Fe₁ занимают чередующиеся тетраэдрические позиции.

На следующем этапе была проведена оценка стабильности рассматриваемых составов путем анализа их энергии формирования. Отрицательное значение энергии формирования свидетельствует о том, что сплав устойчив и не проявляет тенденции к сегрегации. Результаты вычисления энергии формирования приведены на рис. 9, 10. Видно, что сплавы с регулярной решеткой Fe₂RhGe Fe₂RhIn и Fe₂RhSn в приближении PBE и Fe₂RhIn и Fe₂RhSn в приближении SCAN не устойчивы к сегрегации. Структура Т^р обладает меньшим значением энергии формирования относительно остальных соединений. что хорошо согласуется с результатами геометрической оптимизации и указывает на фазовую стабильность рассматриваемого атомного упорядочения. Предполагается. что экспериментально получить данную композицию можно в эпитаксиальных тонких пленках методом напыления.

ЗАКЛЮЧЕНИЕ

Таким образом, показано, что для аустенитной фазы сплавов Fe_2RhZ (Z = Al, Si, Ga, Ge, In, Sn) модельные структуры T[#], T^c и T^p имеют меньшую энергию по сравнению с инверсной и регулярной решетками. Основное состояние соответствует атомному упорядочению структуры Т^р, которая была недавно предложена в качестве стабильной низкотемпературной структуры для четырехкомпонентных сплавов Гейслера [20]. Она состоит из чередующихся слоев чистого Fe и чистого Rh со смешанными слоями Fe и Z элемента между ними. Также показано, что большинство рассматриваемых сплавов в структуре Т^р обладают большей vстойчивостью к сегрегации. это свидетельствует о том, что данные составы могут быть однофазными.

Анализируя разницу результатов, рассчитанных в рамках учета обменно-корреляционных эффектов посредством приближений обобщенного градиента и мета-обобщенного градиента, можно выделить основной результат. Функционал SCAN показывает более высокое значение поляризации для большинства сплавов и большую энергетическую щель для электронов спин-вверх. В связи с этим функционал SCAN предсказывает, что сплав Fe₂RhSi может быть полуметаллом, поскольку обладает целым магнитным моментом, достаточно высокой степенью поляризации, металлическим поведением для электронов спин-вниз и энергетической щелью на уровне Ферми для электронов спин-вверх, что согласуется с экспериментальными и теоретическими результатами авторов работы [28].

Можно полагать, что дальнейшие исследования будут способствовать лучшему пониманию влияния различного атомного упорядочения в аустенитной фазе сплавов Гейслера на его различные характеристики.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-12-20032, расчеты в приближении функционалов РВЕ и SCAN).

К.Р. Ерагер выражает благодарность фонду перспективных научных исследований ФГБОУ ВО "ЧелГУ".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Winterlik J., Fecher G.H., Felser C. et al.* // Phys. Rev. B. 2008. V. 78. № 18. P. 184506.
- Malik S.K., Umarji A.M., Shenoy G.K. // Phys. Rev. B. 1985. V. 31. № 11. P. 6971.
- 3. *Malik S.K., Umarji A.M., Shenoy G.K.* // Phys. Rev. B. 1986. V. 34. № 5. P. 3144.
- Klimczuk T., Wang C.H., Gofryk K. et al. // Phys. Rev. B. 2012. V. 85. № 17. P. 174505.
- 5. *de van Roy Boeck, Das W., Motsnyi J. et al.* // Semiconductor Sci. Technol. 2002. V. 17. № 4. P. 342.
- 6. *Chadov S., Graf T., Chadova K. et al.* // Phys. Rev. Lett. 2011. V. 107. № 4. P. 047202.
- Yakushi K., Saito K., Takanashi K. et al. // Appl. Phys. Lett. 2006. V. 88. № 8. P. 082501.
- 8. *de Groot R.A., Mueller F. M., Engen P.G. v., Buschow K.H.J.* // Phys. Rev. Lett. 1983. V. 50. № 25. P. 2024.
- 9. *Brown P.J., Gandy A.P., Kanomata T. et al.* // J. Phys.: Cond. Matt. 2008. V. 20. № 45. P. 455201.
- 10. *Shigeta I., Murayama O., Hisamatsu T. et al.* // J. Phys. Chem. Solids. 2011. V. 72. № 5. P. 604.
- 11. Kanomata T., Kikuchi M., Yamauci H., Kaneko T. // Jap. J. Appl. Phys. 1993. V. 32. № S3. P. 292.
- Deka B., Srinivasan A. // Physica B: Cond. Matt. 2015.
 V. 476. P. 118.
- 13. Endo K., Kanomata T., Nishihara H., Ziebeck K. // J. Alloys Compounds. 2012. V. 510. № 1. P. 1.
- 14. Bainsla L., Raja M.M., Nigam A., Suresh K. // J. Alloys Compounds. 2015. V. 651. P. 631.
- 15. *El Amine Monir M., Ullah H., Baltach H., Mouchaal Y. //* J. Supercond. Nov. Magn. 2018. V. 31. № 7. P. 2233.
- 16. *Hongzhi L., Zhiyong Z., Li M. et al.* // J. Phys. D: Appl. Phys. 2007. V. 40. № 22. P. 7121.
- 17. *Pavlukhina O., Sokolovskiy V., Buchelnikov V. //* Mater. Today: Proc. 2017. V. 4. № 3. Pt.B. P. 4642.
- Pavlukhina O., Sokolovskiy V., Zagrebin M., Buchelnikov V. // J. Magn. Magn. Mater. 2019. V. 470. P. 69.

- 19. Sokolovskiy V., Miroshkina O., Buchelnikov V., Gruner M.E. // Phys. Rev. Mater. 2022. V. 6. №2. P. 025402.
- 20. Neibecker P., Gruner M.E., Xu X. et al. // Phys. Rev. B. 2017. V. 96. № 16. P. 165131.
- 21. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. B. 1996. V. 77. № 7. P. 3865.
- Sun J., Ruzsinszky A., Perdew J.P. // Phys. Rev. B. 2015.
 V. 115. № 3. P. 036402.
- 23. Zhang Y., Sun J., Perdew J.P., Wu X. // Phys. Rev. B. 2017. V. 96. № 3. P. 035143.

- Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169.
- 25. *Kresse G., Joubert D.* // Phys. Rev. B. 1999. V. 59. № 3. P. 1758.
- 26. Buchelnikov V., Sokolovskiy V., Miroshkina O. et al. // Adv. Theory Simul. 2021. V.4. № 11. Article No. 2100311.
- Galanakis I., Dederichs P. H. // Phys. Rev. B. 2002. V. 66. № 17. P. 174429.
- 28. Venkateswara Y., Samatham S.S., Patel A.K. et al. // Phys. Rev. B. 2021. V. 104. № 9. P. 094402.