РАДИОТЕХНИКА И ЭЛЕКТРОНИКА, 2023, том 68, № 4, с. 338-345

К 90-ЛЕТИЮ ВЛАДИМИРА ГРИГОРЬЕВИЧА ШАВРОВА

УДК 538.95

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СПЛАВОВ СИСТЕМЫ Ni-Ti С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И ЭФФЕКТИВНОСТЬ ИХ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ИСПОЛНИТЕЛЬНЫХ ЭЛЕМЕНТОВ АКТУАТОРОВ ДЛЯ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ

© 2023 г. В. С. Калашников^{а,} *, В. В. Коледов^а, В. Г. Шавров^а, В. А. Андреев^b, А. В. Несоленов^b, Д. С. Кучин^a, Р. Д. Карелин^b

^а Институт радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация ^b Институт металлургии и материаловедения имени А.А. Байкова РАН, Ленинский просп., 49, Москва, 119334 Российская Федерация *E-mail: Vladimir.kalashnikovS@gmail.com Поступила в редакцию 03.10.2022 г. После доработки 03.10.2022 г. Принята к публикации 10.10.2022 г.

Представлены результаты исследования функциональных свойств сплавов системы Ni–Ti после различных деформационных обработок. Определено значение критических напряжений, при которых начинается деградация функциональных свойств: и установлено, что оно примерно в два раза ниже предела текучести. Рассчитаны коэффициенты полезного действия виртуальных термодинамических машин с рабочим телом из исследованных материалов и проведено его сравнение с коэффициентом полезного действия машины Карно на основе этого же материала – рассчитан коэффициент идеальности при условии срабатывания при напряжениях, не превышающих критических. Установлено, что в условиях однократного срабатывания наибольшим коэффициентом идеальности 9.7% обладает материал от прутков, полученных теплой ковкой при 350°С с диаметром от 20 до 5 мм. Для условий периодического действия при напряжениях в 1.2 раза ниже критических определено, что коэффициент идеальности составляет 7.4...7.7% для сплавов, прошедших горячую ковку и комбинацию равноканального углового прессования и теплой ковки.

DOI: 10.31857/S0033849423040046, EDN: PEUBXW

введение

Совершенствование методов выплавки и термомеханической обработки интерметаллических сплавов с термоупругим мартенситным переходом и эффектом памяти формы (ЭПФ) привело в последние годы к повышению качества сплавов, их надежности и функциональных свойств, а также расширению области применения в жизнедеятельности человека [1]. Наиболее известными и широко применяемыми являются сплавы системы Ni–Ti с ЭПФ, обладающие высокой прочностью, биосовместимостью, технологичностью [1, 2]. Повышение функциональных характеристик и належности этих сплавов позволяет изготавливать миниатюрные исполнительные элементы с малой массой, повышенным быстродействием и, таким образом, добиваться высоких значений удельной мощности, постепенно приближаясь к фундаментальным пределам эффективности, ограниченным теоремой Карно. Однако использование этих сплавов ограничено отсутствием точных данных об особенностях мартенситного фазового перехода и предельных значений напряжений для функционирования сплава в условиях производства максимальной механической работы. Функциональные свойства этих сплавов можно регулировать за счет проведения последеформационных отжигов, корректировки режимов деформационной обработки, подбором химического состава и совершенствования режимов выплавки. Представляется актуальным усовершенствовать методику оценки функциональных свойств сплавов семейства TiNi так как до сих пор в литературе приняты методики оценки сплавов с ЭПФ как конструкционных. Часто в литературе измерение функциональных и эксплуатационных свойств материалов с ЭПФ проводится в условиях отсутствия механической работы со стороны самого материала, то есть либо при деформациях без нагрузки или при фиксированных размерах. В то же время, будучи исполнительным элементом в каких-либо актуаторах, материал с ЭПФ преодолевает сопротивление внешней среды, совершая механическую работу [1, 2]. Необходимо отметить, что актуаторы из сплавов с ЭПФ являются тепловыми машины, вкладывая тепло в которые, мы получаем механическую работу за счет изменения формы рабочего тела — исполнительного элемента из сплава с ЭПФ, под внешней нагрузкой. В связи с этим необходимо иметь оценку эффективности использования таких исполнительных элементов, опираясь на данные, полученные в результате исследований в условиях производства актуатором механической работы.

Цель данной работы — определить коэффициент полезного действия виртуальной термодинамической машины на основе сплава с ЭПФ в зависимости от функциональных свойств материала в условиях однократного и многократного срабатывания.

1. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Материалами для выполнения настоящей работы послужили ранее исследованные в [3] образцы системы Ni—Ti эквиатомного состава вырезанные из прутков с конечным диаметром от 5 до 20 мм, полученных методами теплой ковки (TK) при температурах ниже 630°C, горячей ковки (ГК) при температурах от 630 до 800°C, равноканальным угловым прессованием (РКУП) при температуре 450°C и комбинацией РКУП и TK.

Авторы предлагают напряжения, при превышении которых снижается обратимая деформация в результате накопления в образце пластически деформированных участков материала, называть предельными напряжениями σ_{np} . Для определения положения предельных напряжений σ_{np} на шкале $\sigma_m - \sigma_\tau - \sigma_B (\sigma_m - \kappa p u \tau u \tau e c \kappa o e$ напряжение перехода из высокотемпературной фазы В2 в мартенсит В19' при постоянной температуре, σ_{τ} – предел текучести, σ_{B} – предел прочности) проведено исследование прутков диаметром 5 мм после теплой ковки в отожженном состоянии и микропроволоки, волоченной втеплую и вхолодную до диаметра 0.1 мм, а именно исследована зависимость обратимой деформации є, от температуры Т и нагрузки σ и получены зависимости растяжения ε(σ) на экспериментальных установках, описанных в [4, 5], и на универсальной установке "Instron 5966" в части растяжения (скорости перемещения траверсы 4 мм/мин) при комнатной температуре образцов 3-1 ТК450 и 3-2 ТК500. Микропроволока диаметром 0.1 мм получена на промышленном оборудовании методом теплого и холодного волочения (450...300°С до 0.5 мм и при 20°С до 0.1 мм) из прутков диаметром 5 мм, подвергнутых теплой ковке (при температуре 450°С). Зависимость ε(σ) была определена для образца 4-1 П при температурах 100% объемной доли исходной фазы В2 и мартенситной фазы В19'. Детальное описание образцов, использованных в данной работе, приведено в табл. 1.

В интерметаллидных сплавах Ti-Ni в отожженном (или состаренном) состоянии в результате термоупругого мартенситного превращения исходная фаза (В2) с упорядоченной ОЦК решеткой превращается в ромбоэдрическую решетку R-фазы, а затем в моноклинную решетку В19'мартенсита: $B2 \rightarrow R \rightarrow B19'$ [2]. В случае если материал не был подвергнут термической обработке или был предварительно подвергнут так называемой операции "обнуления" (охлаждение в воде после отжига в однофазной области в интервале 630...1310°С), превращение происходит минуя Rфазу. При этом проявление двухстадийного фазового превращения через R-фазу и влияние напряжений на его проявление было показано ранее [3]. Так, выбор режимов термической обработки, температуры деформационной обработки и предварительной термической обработки был основан на ранее проведенных авторами работах, например [3]. Указанные режимы термической обработки для образцов 1-1 ГК05 - 2-2 РКУП обеспечивают наилучшее сочетание функциональных свойств. Образцы 3-1 ТК450 и 3-2 ТК500 испытывались в состоянии поставки, т.е. уже будучи термообработанными с целью получения нужной температуры A_f обратного термоупругого мартенситного превращения после деформации образца на 2% при температуре -25°С (по методике, изложенной в стандарте ASTM F2082). Образец № 4-1 намеренно не подвергали термообработке, так как после теплых ковки и волочения при температуре 450°С он, предположительно, обладал достаточно большим объемом вторичных фаз, выделившихся в процессе деформации. Более того, с учетом размеров образца, а именно невозможностью его полировки, предполагали, что термическая обработка в воздушной атмосфере привела бы к окислению и науглероживанию поверхности самой проволоки (проволока покрыта тонким слоем графитовой смазки), а это неизбежно приведет к охрупчиванию. В свою очередь отжиг в вакууме не обеспечит высокой скорости охлаждения пространства печи и, как следствие, приведет к дополнительному выделению вторичных фаз, а также он сложно реализуем в условиях предприятия-изготовителя.

В данной работе произведено уточнение метода расчета величины изгибающих напряжений σ по сравнению с методом, приведенным в работе [4] в образцах и удельной механической работы *a*,

Образец	Сплав	Режим деформации	Конечный диаметр, мм	Примечания		
1-1 ГК05	Ni _{50.5} Ti _{49.5}	ГК при 900950°С	5	Исходный образец для сравнения в состоянии после закалки		
1-2 TK		ТК при 350°С	5	Перед ковкой — закалка от 750°С, после ковки — отжиг при 450°С, 1 ч, охлаждение в воде		
1-3 РКУП + ТК		РКУП + ТК при 450°С	5	Без ТО		
2-1 ГК20	Ni _{50.2} Ti _{49.8}	ГК при 900950°С	20	Исходный образец для сравнения в состоянии после закалки от 800°С в воде		
2-2 РКУП		РКУП при 450 °C, восемь проходов, с углом пересечения каналов 110°	20	Без ТО		
3-1 TK450	Ni _{50.5} Ti _{49.5}	ТК при 450°С	5	Отжиг при 450°С, 1 ч, охлаждение в воде		
3-2 TK500	1		5	Отжиг при 500°С, 0.5 ч, охлаждение в воде		
4-1 П	Ni _{50.1} Ti _{49.9}	ТК и теплое волочение	0.1	Без ТО		

Таблица 1. Характеристики образцов

Примечание: ГК – горячая ковка, ТК – теплая ковка, РКУП – равноканальное угловое прессование, ТО – термическая обработка.

а именно: максимальных напряжений в поперечном сечении при изгибе —

$$\sigma = \frac{3FL}{2bh^2} \,[\mathrm{M}\Pi\mathrm{a}],\tag{1}$$

удельной механической работы при изгибе на единицу объема материала —

$$a = \frac{\sigma \varepsilon_r}{9} \left[M \Box w / M^3 \right], \qquad (2)$$

где F — изгибающая сила, H; L — расстояние между опорами при изгибе, мм; b и h - ширина и толщина образца соответственно, мм; ε_r — обратимая деформация, %; под действием напряжений σ , МПа.

Формулы (1) и (2) следует также распространять на другие работы, где использовалась установка из [4, 5]. То есть указанные напряжения в других работах отражают размах напряжений в условиях изгиба от стороны образца, где происходит растяжение, до стороны, где происходит сжатие, и их следует делить на 2 для получения значений напряжения на одной из сторон.

Для оценки эффективности виртуальной термодинамической машины рассчитан КПД элемента с ЭПФ из сплава системы Ni—Ti, т.е. отношение полученной механической работы при изгибе и затраченной на нагрев тепловой энергии, для условий изгиба и растяжения. Удельная затраченная тепловая энергия *q* для совершения в материале обратного термоупругого мартенситного превращения и совершения работы *a* равна

$$q = C_p \rho \Delta T + \gamma \rho, \tag{3}$$

КПД условного элемента из сплава с ЭПФ равен

$$K = (a/q) \times 100\%, \tag{4}$$

КПД тепловой машины Карно на основе сплава с ЭПФ равен

$$K_{\rm Kapho} = \Delta T / A_f \,, \tag{5}$$

Коэффициент идеальности равен

$$K_i = (K/K_{\text{Карно}}) \times 100\%.$$
 (6)

Здесь $C_p = 490 \ \text{Дж}/(\kappa r \text{ K})$ — среднее значение удельной теплоемкости по данным [6], $\rho = 6500 \ \text{кr}/\text{M}^3$ — плотность [7], $\gamma = 9 \ \text{Дж}/\text{r}$ — среднее значение скрытой теплоты превращения из мартенсита в аустенит по данным работы [8], $\Delta T \ \text{и} \ A_f$ (в K) — полная ширина интервала и температура конца обратного термоупругого мартенситного превращения, соответственно.

2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ

Зависимости деформации при изгибе ε от температуры t под действием постоянной на-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 4 2023

Рис. 1. Зависимость деформации от температуры и нагрузки для исследуемых образцов (см. табл. 1): 1-1 ГК05 (а), 1-2ТК (б), 1-3 РКУП + ТК (в), 2-1 ГК20 (г), 2-2 РКУП (д), 3-1 ТК450 (е), 3-2 ТК500 (ж), 4-1 П (з).

грузки σ для образцов из табл. 1 в уточненном виде приведены на рис. 1. По представленным зависимостям $\varepsilon = f(t, \sigma)$ в результате дальнейшей

обработки были определены предельные напряжения σ_{np} , температуры конца обратного термоупругого мартенситного превращения A_f при σ_{np} ,

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 4 2023

Образец	ε _r , % при σ _{пр}	σ _{пр} , МПа	<i>А_f</i> , °С при σ _{пр}	<i>Δt</i> , °C, при σ _{пр}	<i>а</i> изгиба, МДж/м ³ при σ _{пр}	<i>q,</i> МДж/м ³ при σ _{пр}	КПД, %	КПД цикла Карно, %	<i>K_i</i> , %	
При однократном формовозврате										
1-1 ГК05	10.0	300	89	55	3.3	233.7	1.4	15.2	9.4	
1-2 TK	8.6	750	30	75	7.2	447.1	2.4	24.8	9.7	
1-3 РКУП + ТК	8.8	650	78	79	6.4	310.1	2.0	22.5	9.1	
2-1 ГК20	7.1	250	34	70	2.0	281.5	0.7	22.8	3.1	
2-2 РКУП	10.6	500	30	74	5.9	287.8	2.0	23.8	8.6	
3-1 TK450	6.2	470	150	158	3.2	536.3	0.6	34.8	1.7	
3-2 TK500	5.1	445	152	153	2.5	542.6	0.5	35.7	1.3	
4-1 П	7.0	370	143	130	25.9	472.6	5.5	31.3	17.5	
При многократном формовозврате с учетом результатов из [10] $\sigma_0 \leq 0.8 \sigma_{np}$										
1-1 ГК05	8.5	240	84	50	2.3	217.8	1.0	14.0	7.4	
1-2 TK	5.7	600	20	59	3.8	246.4	1.4	23.5	5.8	
1-3 РКУП + ТК	7.3	520	70	68	4.2	275.1	1.5	19.8	7.7	
2-2 РКУП	8.5	400	24	72	3.8	294.2	1.3	24.2	5.4	
4-1 П	5.5	315	109	100	17.3	377.0	4.6	26.2	17.6	

Таблица 2. Экстремальные функциональные свойства исследованных образцов и КПД виртуальных исполнительных элементов на их основе

величина полного интервала превращения ΔT при σ_{np} .

Для образца 4-1П были установлены температуры, при которых под действием постоянных растягивающих напряжений материал находится исключительно в В19' или В2, что необходимо при испытаниях на растяжение и определения предела текучести и прочности на растяжение, а также позволит с относительной определенностью указать на положение предельных напряжений σ_{np} на шкале $\sigma_m - \sigma_{\tau} - \sigma_B$.

При этом следует обратить внимание на ключевое отличие предельных напряжений σ_{np} , определяемых в данной работе, и реактивных напряжений σ_R : при определении σ_{np} образец из материала с ЭПФ совершает работу, т.е. генерирует силу, необходимую для поднятия груза, а при определении σ_R образец жестко закреплен и при формовозврате не совершает механическую работу.

Результаты определения указанных выше характеристик при максимальных значениях обратимой деформации приведены в табл. 2. При расчете КПД цикла Карно значения температур переводились в градусы Кельвина из градусов Цельсия. По результатам измерения зависимостей $\varepsilon = f(t, \sigma)$ установлено, что наибольшим K_i в условиях однократного срабатывания обладают материалы, прошедшие теплую ковку (образец 1-2 ТК – 9.7%), горячую ковку (1-1 ГК05 – 9.4%) и комбинацию РКУП и теплой ковки (образец 1-3 РКУП + ТК). В табл. 2 также приведены значения обратимой деформации и развиваемых напряжений для условий многократного (периодического) срабатывания условного исполнительного элемента с учетом результатов, полученных ранее [9]. Именно в работе [9] было установлено, что для сплавов системы Ni—Ti интенсивное накопление пластической деформации при многократном формовозврате под нагрузкой, приводящее к резкому снижению обратимой деформации ε_r, начинается при напряжениях свыше 0.8 σ_{пр}.

Столь высокие показатели предельных напряжений опр в образцах, прошедших теплую ковки (1-2 ТК) и равноканльное угловое прессование в комбинации с теплой ковкой (1-3 РКУП + ТК), объясняются высокой степенью проработки исходной микроструктуры, а именно при деформации ниже 630°С происходит интенсивная рекристаллизация с уменьшением размера зерна и выделением вторичных фаз типа Ti₂Ni и Ti₃Ni₄. Однако, как было отмечено выше, наилучшими показателями в части функциональных свойств, а именно комбинацией обратимой деформации и предельных напряжений, обладает образец 1-2 ТК- режим предварительной термической обработки заготовок ("обнуление") и последующая деформация при пониженной температуре обеспечили минимальное выделение вторичных фаз и высокую рекристаллизацию.

Для установления положения предельных напряжений σ_{np} на шкале $\sigma_m - \sigma_\tau - \sigma_B$ отдельно были проведены испытания на растяжение для об-

Рис. 2. Кривые растяжения образцов 3-1 ТК450 (а), 3-2 ТК500 (б) и 4-1 П (в, г) при разных температурах испытания: 20°С (а, б), -70°С (в) и 250°С (г).

разцов 3-1 ТК450 и 3-2 ТК500 при комнатной температуре и для 4-1 П при -70 и 250°С – эти температуры были установлены по результатам измерения зависимости $\varepsilon = f(t, \sigma)$, т.е. при этих температурах материал даже будучи под действием внешних напряжений находится в однофазной области. Кривые растяжения образцов и результаты испытаний на растяжение представлены на рис. 2 и в табл. 3.

По представленным кривым зависимостей были определены следующие механические свойства: деформация в псевдопластической области δ_m , %, напряжение превращения из В2 в В19' под нагрузкой σ_m , МПа; напряжение, σ_{mps} , МПа по достижении которого реализуется деформация 6% в В19'; предел текучести σ_{τ} , МПа; разница между σ_m и σ_{τ} , предел прочности σ_B , МПа; и удлинение δ , %.

Образец	$T_{\rm испыт}, ^{\circ}{\rm C}$	δ _m , %	<i>σ_m,</i> МПа	σ _{<i>mps</i>} , МПа	σ _τ , ΜΠа	σ _{пр} , МПа	Δσ, МПа	σ _{<i>B</i>} , МПа	δ, %
3-1 TK450	20	19	75	125	825	470	750	942	48
3-2 TK500	20	15	75	105	825	445	750	916	36
4- 1Π	-70	6	_	180	855	370	_	1090	42
	250	0	_	_	820	370	_	965	32

Таблица 3. Механические свойства образцов после испытаний на растяжение

КАЛАШНИКОВ и др.

Образец	<i>а</i> изгиба, МДж/м ³ при σ _{пр}	<i>q</i> , МДж/м ³ при о _{пр}	КПД, %	КПД цикла Карно, %	<i>K</i> _{<i>i</i>} , %					
При однократном формовозврате										
1-1 ГК05	30.0	233.7	12.8	15.2	84.5					
1-2 TK	64.5	297.4	21.7	24.8	87.6					
1-3 РКУП + ТК	57.2	310.1	18.4	22.5	82.0					
2-1 ГК20	17.8	281.5	6.3	22.8	27.7					
2-2 РКУП	53.0	294.2	18.0	24.3	74.0					
3-1 TK450	29.1	389.7	7.5	28.3	26.4					
3-2 TK500	22.7	294.2	7.7	21.6	35.7					
4-1 П	25.9	472.6	5.5	31.3	17.5					
При многократном формовозврате с учетом результатов из [10] $\sigma_{-1} \leq 0.8 \; \sigma_{\mathrm{np}}$										
1-1 ГК05	20.4	217.8	9.4	14.0	66.9					
1-2 TK	34.2	246.4	13.9	20.1	68.9					
1-3 РКУП + ТК	38.0	275.1	13.8	19.8	69.6					
2-2 РКУП	34.0	294.2	11.6	24.9	46.4					
4-1 П	17.3	377.0	4.6	26.2	17.6					

Таблица 4. Характеристики виртуальной тепловой машины для условий напряженного состояния при растяжении

Так, предельные напряжения σ_{np} достаточно сильно отличаются от предела текучести и находятся между σ_{τ} и σ_m и примерно в два раза ниже, чем σ_{τ} .

Возвращаясь к результатам эффективности использования тех или иных видов полуфабрикатов при изготовлении актуаторов на основе сплавов с ЭПФ, следует обратить внимание на высокое КПД образца 4-П, который испытывали на растяжение. В формуле (2) множитель 1/9 появился в результате вывода формулы для случая изгиба, в случае растяжения этот множитель отсутствует, деформацию можно считать однородной по всему сечению и, как следствие, эффективность использования исполнительных элементов в условиях растяжения должна увеличиваться. В табл. 4 приведены характеристики виртуальной тепловой машины для условий напряженного состояния при растяжении.

Так, при условии использования элементов из сплавов с ЭПФ в условиях растяжения, КПД условного исполнительного элемента возрастает в девять раз. Правомочность применения условия $\sigma_0 \leq 0.8\sigma_{\rm np}$ для периодического формовозврата под одной и той же нагрузкой, описанного в работе [9], для условий растяжения, будет рассмотрена в дальнейших работах по исследованию функциональной усталости в микропроволоках в условиях растяжения на экспериментальной установке [5].

ЗАКЛЮЧЕНИЕ

Таким образом, установлено, что по достижении опрелеленного значения изгибающих или растягивающих постоянных напряжений в образце из сплава с ЭПФ при термоциклировании происходит снижение обратимой деформации. Такие напряжения предлагается считать предельными. Экспериментально показано, что для изученных образцов они значительно ниже предела текучести σ_т, примерно в два раза. Наибольшим коэффициентом идеальности 9.7% в условиях однократного срабатывания при изгибе из изученных материалов, обладает термодинамическая машина, рабочим телом которой является материал прутков, полученных методом теплой ковки при 350°С. Для условий периодического действия при напряжениях изгиба в 1.2 раза ниже предельных определено, что коэффициент идеальности составляет 7.7% для материалов, прошедших горячую ковку и комбинацию равноканального углового прессования и теплой ковки. На примере проволоки, полученной методом теплового волочения, показано, что использование сплавов с ЭПФ в условиях растяжения наиболее эффективно. Так, КПД и коэффициент идеальности составляют соответственно 5.5 и 17.5% при однократном формовозврате и 4.6 и 17.6% при периодическом формовозврате.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-19-00783, экспериментальное исследование термомеханических свойств образцов), а также в рамках государственного задания ИМЕТ РАН (тема № 075-00715-22-00, изготовление и термообработка образцов).

СПИСОК ЛИТЕРАТУРЫ

- Jani J.M., Leary M., Subic A., Gibson M.A. // Materials and Design. 2014. V. 56. P. 1078. https://doi.org/10.1016/j.matdes.2013.11.084
- Otsuka K., Ren X. // Prog. Mater. Sci. 2005. V. 50. P. 511.
- https://doi.org/10.1016/j.pmatsci.2004.10.001
- Калашников В.С., Андреев В.А., Коледов В.В. и др. // Металловедение и термическая обработка металлов. 2019. Т. 770. С. 45.

4. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2018. № 2. С. 139. https://doi.org/10.7868/S0032816218020155

https://doi.org/10.7808/S0052810218020155

- Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2022. Т. 65. № 1. С. 139. https://doi.org/10.31857/S0032816222010049
- Smith J.F., Lück R., Jiang Q. et al. // J. Phase Equilibria. 1993. V. 14. № 4. P. 494. https://doi.org/10.1007/BF02671969
- Stachiv I., Alarcon E., Lamac M. // Metals. 2021. V. 11. № 3. Article No. 415. https://doi.org/10.3390/met11030415
- Wang X., Verlinden B., Humbeeck J.V. // Intermetallics. 2015. V. 62. P. 43. https://doi.org/10.1016/j.intermet.2015.03.006
- 9. Калашников В.С., Мусабиров И.И., Коледов В.В. и др. // ЖТФ. 2020. Т. 90. № 4. С. 603. https://doi.org/10.21883/JTF.2020.04.49084.110-19