К 90-ЛЕТИЮ ВЛАДИМИРА ГРИГОРЬЕВИЧА ШАВРОВА

УДК 537.638.5

МАГНИТОКАЛОРИЧЕСКИЙ ЭФФЕКТ В ФАЗЕ ЛАВЕСА GdNi₂ В СИЛЬНЫХ МАГНИТНЫХ ПОЛЯХ

© 2023 г. М. В. Утарбекова^{а,} *, М. А. Оршулевич^а, А. П. Каманцев^b, В. В. Коледов^b, В. Г. Шавров^b, Д. В. Плахотский^a, М. Ю. Богуш^a

^а Челябинский государственный университет, ул. Братьев Кашириных, 129, Челябинск, 454001 Российская Федерация ^b Институт радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11 корп. 7, Москва, 125009 Российская Федерация *E-mail: shchichko.marina.csu@gmail.com Поступила в редакцию 13.09.2022 г.

После доработки 19.10.2022 г. Принята к публикации 19.10.2022 г.

Проведены экспериментальные исследования магнитных и магнитокалорических свойств фазы Лавеса GdNi₂ во внешних статических до 3 Тл и импульсных до 50 Тл магнитных полях. Установлено, что в магнитном поле 3 Тл изменение магнитной энтропии сплава достигает максимального значения $\Delta S_{\rm m} = -8 \, \text{Дж}/(\text{кг K})$ в окрестности температуры Кюри $T_{\rm C} = 73.6$ К. Соответствующее адиабатическое изменение температуры в этом случае, рассчитанное косвенным методом, составит $\Delta T_{\rm ad} \approx 3$ К. Максимальное значение адиабатического изменения температуры, измеренное прямым методом в импульсном магнитном поле в 50 Тл при $T_0 = 77$ К, составило $\Delta T_{\rm ad} = 15$ К, что хорошо согласуется с теоретическими предсказаниям.

DOI: 10.31857/S0033849423040137, EDN: PFZESS

введение

В настоящее время природный газ является стратегически важным энергоносителем и наблюдается тенденция к росту его производства и потребления. Для хранения и транспортировки природного газа предпочтительным является сжижение; однако для этого процесса требуются сложные и энергоемкие компрессорные установки, работающие при криогенных температурах (ниже 120 К), а эффективность традиционных методов сжижения при таких температурах довольно низка. Вместе с тем, существует принципиально иной подход к сжижению газов - это технология криомагнитного охлаждения, которая базируется на использовании магнитных материалов со значительным магнитокалорическим эффектом (МКЭ) [1]. Одним из известных классов таких материалов являются фазы Лавеса АВ₂, интерес к которым за последние несколько лет значительно вырос [2]. Фазы Лавеса изучались на предмет выявления их сверхпроводящих свойств [3], а также как перспективные материалы для хранения водорода [4], однако наличие в них МКЭ в области низких температур и революционные успехи в области создания источников сильного магнитного поля (сверхпроводящие магниты, генерирующие поля с индукцией 10...20 Тл), делает их потенциальными кандидатами для использования в технологии сжижения природных газов.

Сплавы системы RNi₂ (R – редкоземельный элемент) исследовались различными методами, включая неупругое рассеяние нейтронов для серии кубических соединений RNi_2 (R = Pr, Nd, Tb, Но, Er, Tm) [5]. Интерпретация спектров, полученных у образцов в магнитоупорядоченном состоянии, была предпринята с учетом магнитных дипольных и квадрупольных взаимодействий 4fэлектронов в приближении среднего поля. МКЭ в сплавах RNi₂ изучался теоретически, например, обычный и анизотропный МКЭ были исследованы в сплавах RNi_2 (R = Nd, Gd, Tb) [6]. Теоретическим исследованиям МКЭ в HoNi2 также посвящен ряд работ [7, 8], в которых использовался модельный гамильтониан, учитывающий электрическое поле кристалла и обменное взаимодействие.

Экспериментальные исследования МКЭ проводились в сплавах RNi₂ (R = Sm, Tb, Gd). Для сплава SmNi₂ максимальное значение изменения магнитной энтропии в магнитном поле 5 Tл составило $\Delta S_m = 1.82 \text{ Дж/(кг K)}$, а относительная охлаждающая способность оказалась равной 23.5 Дж/кг [9]. Для сплава TbNi₂ в форме лент, полученных методом быстрой закалки из расплава, сообща-

лось об изменении магнитной энтропии $\Delta S_{\rm m} \approx$ ≈ -13.9 Дж/(кг К) в магнитном поле 5 Тл [10]. "Классический" МКЭ наблюдался в интервале температур 18...44 К в двухфазной системе $x(DyNi_2)$ + $+ y(TbNi_2) c 0 < x < 1 и y = 1 - x$, состоящей из DyNi₂ и TbNi₂ в виде лент, полученных из расплава методом быстрой закалки [11]. Отметим, что несмотря на перспективы применения редкоземельных металлов и их соединений существуют особенности их термомеханической обработки. Как показано в работах [12, 13], ферромагнитные редкоземельные элементы и сплавы на их основе при пластической деформации испытывают значительные изменения магнитных и термодинамических характеристик, однако эти изменения являются обратимыми.

В работе [14] приведены результаты экспериментальных исследований МКЭ в сплаве GdNi₂, приготовленном в виде сферического порошка размером 355...500 мкм, наибольшее изменение магнитной энтропии в котором $\Delta S_m \approx -3.9 \ \text{Дж/(кг K)}$ наблюдалось в окрестности температуры Кюри $T_C = 75 \ \text{K}$ при изменении магнитного поля в 5 Тл. Измерения теплоемкости сплава GdNi₂, представленные в [15], показали, что увеличение магнитной энтропии, вероятно, связано со спиновыми флуктуациями, вызванными *f*-*d*-обменом в 3*d*-электронной подсистеме Ni.

Фазы Лавеса могут кристаллизироваться с тремя типами кристаллических структур: MgCu₂ (C15), MgZn₂ (C14) и MgNi₂ (C36) [2, 16]. Если говорить о сплавах RNi2, то обычно они кристаллизуются с кубической структурой типа С15. Сплавы RNi₂ при низкой температуре показывают ферромагнитное упорядочение [17], а из-за слабого обменного взаимодействия между редкоземельными элементами R и Ni температура Кюри $T_{\rm C}$ в RNi₂ изменяется от \sim 7 К в ErNi₂ до 75 К в GdNi₂ [18]. Как видно из этих данных, соединения RNi₂ интересны в связи с их высоким магнитным моментом и низкой температурой Кюри. В случае соединения GdNi2, изучаемого в данной работе, она всего на 3 К ниже ($T_{\rm C} \approx 74$ К) температуры кипении жидкого азота (77 К). Таким образом, соединение GdNi₂ представляет интерес для практического использования в качестве материала финального рабочего тела в многокаскадной системе криомагнитного охлаждения для сжижения азота [1].

Цель данной работы — изучить магнитные и магнитокалорические свойства фазы Лавеса $GdNi_2$ в статических магнитных полях до 3 Тл и импульсных магнитных полях до 50 Тл.

Рис. 1. Рентгенограмма образца сплава GdNi₂ (сплошная кривая) и примесной фазы GdNi (звездочки).

1. ОБЪЕКТЫ И МЕТОДЫ ИСЛЕДОВАНИЙ

Поликристаллические образцы GdNi₂ синтезированы дуговой плавкой в защитной атмосфере аргона из химически чистых элементов. Слиток был трижды переплавлен для обеспечения большей однородности. Кристаллическую структуру образцов изучали при комнатной температуре с помощью метода рентгеновской дифракции (XRD) на дифрактометре RIGAKU Ultima IV с Cu- $K\alpha$ излучением (длина волны $\lambda = 0.154$ нм). Фазовый контраст в режиме отраженных электронов исследовали с помощью сканирующего электронного микроскопа (СЭМ) TescanVega 3. Химический состав и однородность состава образцов оределяли методом энергодисперсионного рентгеновского анализа (EDX). Магнитные измерения проводились в диапазоне температур от 50 до 300 К с помощью вибрационного магнитометра Quantum Design Versa Lab (PPMS) в магнитных полях до 3 Тл. Прямые измерения адиабатического изменения температуры были выполнены в импульсных магнитных полях до 50 Тл в Дрезденской лаборатории сильных магнитных полей (HLD-EMFL) по методике, подробно описанной в работах [19, 20].

2. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты изучения синтезированных образцов методом рентгеновской дифракции при комнатной температуре показывают, что кристаллическая структура исследуемых образцов соответствует кубической фазе Лавеса с параметром кристаллической решетки a = 0.7206 нм. Пики меньшей интенсивности, наблюдаемые непосредственно возле некоторых пиков основной фазы (например, (220), (222), (331), (440)) на

Рис. 2. Электронная микроскопия шлифа образца сплава GdNi₂.

дифракционной картине (рис. 1), соответствуют незначительному количеству примесной фазы GdNi.

Элемент	Весовое содержание, %	Атомное содержание, %
Спектр 1		
Gd	55.86	32.09
Ni	44.14	67.91
Спектр 2		
Gd	56.19	32.38
Ni	43.81	67.62
Спектр 3		
Gd	70.71	47.40
Ni	29.29	52.60
Спектр 4		
Gd	68.08	44.32
Ni	31.92	55.68
Спектр 5		
Gd	67.69	43.88
Ni	32.31	56.12
Спектр области		
Gd	55.95	32.17
Ni	44.05	67.83

Таблица 1. Элементный состав образца (EDX)

Как видно из рис. 2, присутствие примесной фазы очевидно из изображения, полученного с помощью метода СЭМ, где основная фаза GdNi₂ показана серым цветом, а примесная фаза GdNi изображена светло-серым цветом. Причину наличия фазы GdNi можно лучше понять, рассматривая бинарную фазовую диаграмму Gd–Ni. Согласно [21] GdNi₂ образуется в результате перитектической реакции:

$$L \rightarrow GdNi_5 + L \rightarrow GdNi_4 + L \rightarrow$$

$$\rightarrow Gd_2Ni_7 + L \rightarrow GdNi_3 + L \rightarrow GdNi_2.$$

Это означает, что в некоторых локальных областях с избытком Gd наряду с основной фазой GdNi₂ может образовываться фаза GdNi. По полученному СЭМ-изображению (рис. 2) количество примесной фазы GdNi можно оценить примерно в 5%. В табл. 1 представлены результаты энергодисперсионной спектроскопии областей, обозначенных на рис. 2. Как видно из представленных результатов, элементный состав сплава соответствует запланированному.

Температурные и полевые зависимости намагниченности представлены на рис. 3. Из температурных зависимостей (см. рис. 3а) видно, что на всем изучаемом интервале температур 50...300 К наблюдается единственный магнитный фазовый переход из парамагнитного в ферромагнитное состояние. Полевые зависимости намагниченности, измеренные во внешних магнитных полях до 3 Тл в диапазоне температур 50...300 К с шагом 5 К, показаны на рис. 3б. Сплав обладает низкой магнитной анизотропией и уже в полях 3 Тл выходит на насыщение. Насыщение намагниченности

Рис. 3. Температурные (а) и полевые (б) зависимости намагниченности сплава GdNi₂.

Рис. 4. Температурные зависимости обратной магнитной восприимчивости (а) и первой производной намагниченности по температуре (б) сплава GdNi₂.

GdNi₂ при T = 50 K в поле 3 Тл равно 110.7 A м²/кг, что хорошо согласуется с литературными данными [17].

Температура Кюри изучаемого сплава GdNi₂ была определена тремя способами:

1) из обратной магнитной восприимчивости материала (рис. 4),

2) из температурной производной намагниченности в малых полях (см. рис. 4),

3) из кривых Белова–Аррота (рис. 5).

На рис. 4 представлены температурные зависимости обратной магнитной восприимчивости и первой температурной производной, из которых были определены температуры Кюри, составляющие соответственно 73.6 и 72.8 К. Кривые Белова–Арротта для GdNi₂ изображены на рис. 5, по

Рис. 5. Кривые Белова–Аррота для сплава GdNi₂.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 4 2023

Рис. 6. Зависимость изменения магнитной энтропии для сплава GdNi₂ от магнитного поля в степени 2/3 (сплошная линия). На вставке – температурная зависимость изменения магнитной энтропии в разных магнитных полях из работы [24]: от 1 до 10 Тл (снизу вверх).

ним возможно определить температуру Кюри за счет исключения влияния нежелательных эффектов, возникающих из-за внешнего магнитного поля [22]. На основании этих данных температура Кюри GdNi₂ оказалась чуть выше 70 К. Как видно, наилучший результат, совпадающий с литературными данными [14, 17], дал метод определения по поведению обратной магнитной восприимчивости.

Учитывая, что коллинеарный ферромагнетик GdNi, который представлен в нашем образце GdNi₂ как примесная фаза, проявляет магнитные свойства ($T_{\rm C} \sim 70$ K и магнитный момент ~8.5µ_B [23]), близкие к аналогичным параметрам исследуемого сплава GdNi₂, мы предполагаем, что полученные экспериментально магнитные характеристики можно рассматривать как соответствующие чистой фазе GdNi₂.

Для магнитных фазовых переходов второго рода изотермическое изменение магнитной энтропии ΔS_m и адиабатическое изменение температуры ΔT_{ad} можно рассчитать с помощью соотношений Максвелла по формулам

$$\Delta S_m = \int_0^{H_{\text{max}}} \left(\frac{\partial M}{\partial T}\right)_H dH,$$

$$\Delta T_{\text{ad}} = -\frac{T}{C_{p,H}} \int_0^{H_{\text{max}}} \left(\frac{\partial M}{\partial T}\right)_H dH.$$
(1)

Результаты расчета изотермического изменения энтропии ΔS_m из намагниченности по формуле (1) показаны на рис. 6, на вставке приведены данные, полученные для схожего состава в работе

[24]. При изменении магнитного поля в 3 Тл изменение магнитной энтропии достигает максимального значения $\Delta S_m = -8 \ \text{Дж}/(\text{кг K})$ в окрестности температуры Кюри $T_{\rm C} = 73.6$ К. Учитывая широкий температурный диапазон, в котором наблюдается МКЭ (см. вставку на рис. 6), составляющий порядка 50 К, считаем, что данный материал может быть использован в качестве рабочего тела для криомагнитного охлаждения [1].

Согласно работе [25] поведение ΔS_m подчиняется линейной зависимости от величины внешнего магнитного поля в степени 2/3, в частности, выражение (2) описывает полевую зависимость ΔS_m в ферромагнетике вблизи $T_{\rm C}$, полученную в рамках приближения среднего поля:

$$\Delta S_m \approx -1.07 q R \left(\frac{g\mu_{\rm B} J H}{k T_{\rm C}}\right)^{2/3},\tag{2}$$

где q — число магнитных ионов на моль, R — газовая постоянная, g — множитель Ланде, $\mu_{\rm B}$ — магнетон Бора, k — коэффициент Больцмана, J — значение полного момента, H — магнитное поле.

Температурные зависимости адиабатического изменения температуры ΔT_{ad} , измеренные непосредственно в импульсных магнитных полях до 50 Тл при начальной температуре $T_0 = 77$ К, показаны на рис. 7. Адиабатическая температура ΔT_{ad} линейно зависит от магнитного поля как $\sim H^{2/3}$, что хорошо согласуется с теоретической оценкой, использующей соотношение (2). Максимальное значение адиабатического изменения температуры составило $\Delta T_{ad} = 15$ К в импульсном магнитном поле 50 Тл, что является довольно высоким

Рис. 7. Зависимость адиабатического изменения температуры в сплаве GdNi₂ при начальной температуре $T_0 = 77$ K от величины импульсного магнитного поля в степени 2/3.

результатом для материала с фазовым переходом второго рода при криогенной температуре [26].

ЗАКЛЮЧЕНИЕ

Материалы с магнитными фазовыми переходами второго рода, при возможности использования стационарных сильных магнитных полей в 10...20 Тл, становятся наилучшими кандидатами на роль рабочего тела в устройствах для криомагнитного сжижения природных газов. Фазы Лавеса можно рассматривать как наиболее простые и перспективные системы для этого. В частности, в поле 10 Тл в сплаве GdNi₂ вблизи $T_{\rm C} = 73.6$ К наблюдается адиабатическое изменение температуры $\Delta T_{\rm ad} = 6.8$ К за один цикл намагничивания, а учитывая широкий температурный диапазон в 50 К, в котором наблюдается МКЭ, для создания таких устройств достаточно будет всего нескольких каскадов теплообменников из подобных материалов.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Лаборатории сильных полей (HLD) Центра им. Гельмгольца Дрезден-Россендорф (HZDR) за проведение измерений в импульсных полях.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-22-20033).

СПИСОК ЛИТЕРАТУРЫ

1. *Суслов Д.А., Шавров В.Г., Коледов В.В. и др.* // Челябинский физико-математический журн. 2020. Т. 5. № 4. С. 612.

https://doi.org/10.47475/2500-0101-2020-15420

- Stein F., Leineweber A. // J. Mater. Sci. 2021. V. 56. № 9. P. 5321. https://doi.org/10.1007/s10853-020-05509-2
- Chu F., Chen Z.W., Fuller C.J. et al. // J. Appl. Phys. 1996. V. 79. № 8. P. 6405. https://doi.org/10.1063/1.362013
- Young K-H., Chang S., Lin X. // Batteries. 2017. V. 3. № 3. P. 27. https://doi.org/10.3390/batteries3030027
- Goremychkin A., Natkaniec I., Mühle E., Chistyakov O.D. // J. Magn. Magn. Mater. 1989. V. 81. P. 63. https://doi.org/10.1016/0304-8853(89)90229-1
- Plaza J.R., de Sousa V.S.R., von Ranke P.J. et al. // J. Appl. Phys. 2009. V. 105. № 1. P. 013903. https://doi.org/10.1063/1.3054178
- von Ranke P.J., Nobrega E.P., de Oliveira I.G. et al. // J. Alloys Compound. 2002. V. 344. № 1-2. P.145. https://doi.org/10.1016/S0925-8388(02)00354-7
- Gomes M., Oliveira I.S., Guimarães A.P., et al. // J. Appl. Phys. 2003. V. 93. № 10. P. 6939. https://doi.org/10.1063/1.1558251
- 9. *Nouri K., Saidi M., Walha S. et al.* // Chemistry Africa. 2020. V. 3. № 1. P. 111. https://doi.org/10.1007/s42250-019-00095-6
- Sánchez Llamazares J.L., Sánchez-Valdes C.F., Ibarra-Gaytan P.J. et al. // J. Appl. Phys. 2013. V. 113. № 17. P. 17A912. https://doi.org/10.1063/1.4794988
- Ibarra-Gaytán P.J., Sánchez Llamazares J.L., Álvarez-Alonso P. et al. // J. Appl. Phys. 2015. V. 117. № 17. P. 17C116. https://doi.org/10.1063/1.4915480
- Taskaev S.V., Buchelnikov V.D., Pellenen A.P. et al. // J. Appl. Phys. 2013. V. 113. № 13. P. 17A933. https://doi.org/10.1063/1.4799256
- Taskaev S., Skokov K., Khovaylo, V. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 42. https://doi.org/10.1016/j.jmmm.2017.12.052
- Matsumoto K., Asamato K., Nishimura Y. et al. // J. Phys.: Conf. Ser. 2012. V. 400. № 5. Article No. 052020. https://doi.org/10.1088/1742-6596/400/5/052020
- 15. Baranov N.V., Proshkin A.V., Gerasimov E.G. et al. // Phys. Rev. B 2007. V. 75. № 9. P. 092402. https://doi.org/10.1103/PhysRevB.75.092402
- Jiang C. // Acta Mater. 2007. V. 55. P. 1599. https://doi.org/10.1016/j.actamat.2006.10.020
- Skrabeck E.A., Wallace W.E. // J. Appl. Phys. 1963.
 V. 34. № 4. P. 1356. https://doi.org/10.1063/1.1729507
- 18. *Coey J.M.D.* Magnetism and Magnetic Materials. Cambridge University. N.Y.: Press, 2009.

- 19. *Gottschall T., Kuz'min M.D., Skokov K.P. et al.* // Phys. Rev. B. 2019. V. 99. № 13. P. 134429. https://doi.org/10.1103/PhysRevB.99.134429
- Каманцев А.П., Амиров А.А., Кошкидько Ю.С. и др. // ФТТ. 2020. Т. 62. № 1. С. 117. https://doi.org/10.21883/FTT.2020.01.48747.492
- Pan Y.Y., Nash P. // Phase Diagrams of Binary Nickel Alloys / Ed. by P. Nash. Materials Park: ASM International, 1991. P. 382.
- 22. *Fiorillo F.* Characterization and Measurement of Magnetic Materials. Amsterdam: Elsevier, 2004. P. 554.

- 23. Paudyal D., Mudryk Y., Lee Y.B. et al. // Phys. Rev. B 2008. V. 78. № 18. P. 184436. https://doi.org/10.1103/PhysRevB.78.184436
- 24. *Taskaev S., Khovaylo V., Skokov K. et al.* // J. Appl. Phys. 2020. V. 127. № 22. P. 233906. https://doi.org/10.1063/5.0006281
- Oesterreicher H., Parker T.F. // J. Appl. Phys. 1984.
 V. 55. № 12. P. 4334. https://doi.org/10.1063/1.333046
- Khovaylo V.V., Taskaev S.V. // Encyclopedia of Smart Materials. 2022. V. 5. P. 407. https://doi.org/10.1016/B978-0-12-815732-9.00132-7