РАДИОТЕХНИКА И ЭЛЕКТРОНИКА, 2023, том 68, № 5, с. 492-497

ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 537.533.79

МАГНИТОИЗОЛИРОВАННЫЙ ВИРКАТОР С МАГНИТНОЙ ПРОБКОЙ НА ДОПРЕДЕЛЬНОМ ЭЛЕКТРОННОМ ПУЧКЕ: ОСОБЕННОСТИ ДИНАМИКИ ПУЧКА И СВЕРХВЫСОКОЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ

© 2023 г. А. Е. Дубинов^{а, b,} *, Г. Н. Колесов^{b,} **, В. Д. Селемир^a, В. П. Тараканов^{с, d}

^а Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, просп. Мира, 37, Саров, Нижегородской обл., 607188 Российская Федерация ^bСаровский физико-технический институт, ул. Духова, 6, Саров, Нижегородской обл., 607189 Российская Федерация ^cОбъединенный институт высоких температур РАН, ул. Ижорская, 13, Москва, 125412 Российская Федерация

^dНациональный исследовательский ядерный университет "МИФИ", Каширское шоссе, 31, Москва, 115409 Российская Федерация

*E-mail: dubinov-ae@yandex.ru

***E-mail: kolesov.german@yandex.ru* Поступила в редакцию 28.03.2022 г. После доработки 18.04.2022 г. Принята к публикации 15.05.2022 г.

Предложен релятивистский магнитоизолированный виркатор с магнитной пробкой на допредельном электронном пучке. Проведено его компьютерное моделирование. Исследована фазовая динамика электронного пучка в виркаторе. Показано, что в пучке возникает ряд виртуальных катодов после отражения пучка от магнитной пробки. Вычислены выходные сверхвысокочастотные характеристики: средняя мощность и спектральный состав генерации, содержащий набор узких спектральных линий и их гармоник. Исследовано влияние величины пробочного отношения на величину средней мощности генерации и на частоты спектральных линий. Найдено, что мощность растет с ростом пробочного отношения. Частоты некоторых спектральных линий увеличиваются с ростом пробочного отношения, в то время как частоты других линий не зависят от этого отношения.

DOI: 10.31857/S0033849423050078, EDN: UHUNPV

ВВЕДЕНИЕ

Сверхвысокочастотные (СВЧ) генераторы с виртуальным катодом (ВК) – виркаторы, отражательные триоды, виртоды, редитроны и др. – образуют важный класс приборов в мощной релятивистской СВЧ-электронике. На них уже достаточно давно получен мультигигаваттный выход СВЧ-излучения [1, 2] и были созданы излучательные СВЧ-комплексы на основе нескольких виркаторов [3, 4]. Обзоры результатов исследований и достижений на виркаторах и отражательных триодах представлены в [5–10].

Считается, что для работы виркаторов необходимо, чтобы ток электронного пучка превышал значение предельного вакуумного тока в трубе дрейфа виркатора [11]. Тогда в трубе дрейфа возникает ВК, колебания которого и являются источником СВЧ-излучения. По этой причине виркаторы часто называют СВЧ-генераторами на сверхпредельном электронном пучке.

В последнее время возник интерес к виркаторам, работающим на допредельных электронных пучках. В [12, 13] было показано, что если, например, заставить пучок повторно или многократно проходить через одну и ту же трубу дрейфа с помощью дополнительного электростатического отражателя, то повторно вошедшие в трубу дрейфа электроны увеличивают пространственный заряд в ней и способствуют формированию ВК.

Однако такой способ формирования ВК представляется технически неудобным, так как на отражатель приходится подавать потенциал, превышающий по абсолютной величине напряжение в диоде используемого ускорителя.

Тем не менее известен еще один способ осуществления повторного прохождения электронным пучком камеры, при котором может формироваться ВК — использование магнитной пробки. Этот способ был предложен в виркаторе с магнитной пробкой [14] и исследован для целей генерации мощных СВЧ-импульсов. Область отражения электронного пучка от магнитной пробки названа в [9] магнитным ВК. В дальнейшем способ формирования ВК при помощи магнитной пробки в СВЧ-генераторах другого класса был применен в [15, 16].

Отметим, что в [14] рассматривался магнитоизолированный виркатор с магнитной пробкой на сверхпредельном электронном пучке, в котором формировались два ВК: обычный — бурсиановский, ВК и магнитный ВК. Было показано, что при определенном положении магнитной пробки мощность СВЧ-генерации виркатора выше, чем в обычном виркаторе. Представляет интерес исследовать также магнитоизолированный виркатор с магнитной пробкой на допредельном электронном пучке.

Цель данной работы — моделирование методом крупных частиц особенностей динамики электронов в магнитоизолированном релятивистском виркаторе с магнитной пробкой на допредельном электронном пучке и вычисление его выходных СВЧ-характеристик.

1. ПОСТАНОВКА ЗАДАЧИ, ГЕОМЕТРИЯ ВИРКАТОРА, ФИЗИЧЕСКИЕ ПАРАМЕТРЫ И МЕТОД РЕШЕНИЯ

Рассмотрим в качестве примера длинный цилиндрический резонатор радиусом R = 10 см и длиной L = 400 см (рис. 1). Примем, что резонатор ограничен вдоль боковой поверхности и вдоль одного из оснований, например вдоль левого основания, идеально приводящими стенками. Другое основание цилиндрического резонатора правое — будем считать полностью открытым. Будем рассматривать данный резонатор в качестве основной области взаимодействия электронов пучка и электромагнитных волн в виркаторе.

Допустим, что на резонатор наложено аксиальное магнитное поле, имеющее следующие три участка (слева направо):

— участок однородного магнитного поля длиной 170 см с величиной магнитной индукции $B = 10 \ \kappa \Gamma c$;

 – участок повышенного магнитного поля, простирающийся вдоль оси от 180 до 250 см, на котором магнитная индукция также является однородной и в δ раз превосходит величину магнитной индукции предыдущего участка;

 – участок нулевого магнитного поля, простирающийся вдоль оси от 260 см до правого основания цилиндрического резонатора.

Рис. 1. Геометрия резонатора, электронного пучка и линий индукции магнитного поля.

В промежутках между участками величина магнитного поля изменяется с осевой координатой по линейному закону. Такая геометрия магнитного поля получила название "магнитная пробка", а параметр δ называют пробочным отношением. Линии индукции магнитного поля показаны на рис. 1.

С левого основания цилиндрического резонатора в начальный момент времени начинает инжектироваться трубчатый релятивистский электронный пучок с постоянным током $I_b = 8$ кА. Пучок имеет внутренний и внешний радиусы $r_i = 3$ см и $r_e = 4$ см соответственно. Инжектируемый пучок считаем моноэнергетичным, и электроны в нем имеют энергию U = 1 МэВ (лоренцфактор $\gamma \approx 2.96$). Считаем также, что электроны, попавшие на торцы резонатора, поглощаются там и изымаются из рассмотрения.

Укажем, что для выбранных геометрии резонатора и параметров электронного пучка значение предельного вакуумного тока, которое можно оценить по формуле для труб бесконечной длины (например, [13, 17])

$$I_{\rm lim} = I_0 \frac{\left(\gamma^{2/3} - 1\right)^{3/2}}{(r_e - r_i)/r_e + 2\ln R/r_e},$$
 (1)

 $(I_0 = mc^3/e \approx 17.03 \text{ кA})$, составляет $I_{\text{lim}} = 8.9 \text{ кA}$. Таким образом, задаваемый ток электронного пучка является в данной задаче слегка допредельным.

Моделирование физических процессов выполняли с помощью кода particle-in-cell (PIC) КАРАТ [18], в котором заложены алгоритмы самосогласованного решения нестационарных уравнений Максвелла и уравнений релятивистской динамики заряженных частиц. Код многократно ранее тестировался и широко использовался для моделирования СВЧ-приборов вакуумной и плазменной электроники [12–14, 19–26].

2. ОСОБЕННОСТИ ДИНАМИКИ ЭЛЕКТРОНОВ В РЕЗОНАТОРЕ ВИРКАТОРА

Было выполнено несколько десятков расчетов для исследования динамики электронов в резона-

Рис. 2. Отдельные кадры эволюции фазового портрета электронного пучка: а – в момент формирования ВК, 10 нс; б – начальная стадия формирования областей со сжатым состоянием пучка, 20 нс; в – стадия расширения областей со сжатым состоянием, 40 нс; г – конечное состояние фазового портрета со сжатым состоянием максимальной длины, на котором видна продольная волна, 60 нс.

торе виркатора с магнитной пробкой в течение 500 нс при различных значениях параметра δ . Приведем сначала результаты расчетов для $\delta = 4.3$.

Так как конфигурационный портрет электронного пучка, показанный на рис. 1, неизменен во времени после 10 нс после начала счета для каждого значения δ , когда фронт пучка долетел до коллектора, то наиболее информативным является представление динамики пучка последовательностью его фазовых портретов. На рис. 2 представлены несколько характерных кадров эволюции фазового портрета в первые 60 нс, когда эта эволюция еще существенна; на временах более 60 нс фазовые портреты пучка практически не изменяются.

За первые 10 нс головные электроны успевают долететь до магнитной пробки, пройти ее насквозь и высадиться на боковую стенку резонатора. К этому моменту времени в нарастающем вдоль оси маг-

Рис. 3. Зависимость полного числа электронов в резонаторе от времени.

нитном поле начинает формироваться магнитный ВК, который отражает часть электронов пучка назад, в сторону плоскости их инжекции (рис. 2а).

Пространственный заряд в резонаторе перед пробкой начинает при этом возрастать, что приводит к появлению еще одного BK — вблизи плоскости инжекции пучка. Оба этих BK, обозначенные на рис. 2 $BK_{1,2}$, почти неподвижны и локализованы на краях области взаимодействия. Далее от обоих $BK_{1,2}$ навстречу друг другу начинают распространяться две области, занятые так называемым сжатым состоянием пучка, которые представляют собой горячую электронную плазму (рис. 26). Это состояние пучка было открыто в [27], а затем интенсивно исследовалось многими авторами [28–34]. Между этими участками со сжатым состоянием находится фазовая дыра (фазовый вихрь), ограниченная движущимися навстречу $BK_{3,4}$.

Области со сжатым состоянием распространяются навстречу друг другу в течение нескольких десятков наносекунд (рис. 2в), пока почти целиком не заполнят собой часть резонатора от плоскости инжекции до магнитной пробки (рис. 2г), когда полностью исчезнут фазовая дыра и BK_{3,4}. При этом на сжатом состоянии возбуждается периодическая волна. Она также, вместе со всеми BK может быть ответственна за генерацию CBЧ-излучения при t > 60 нс.

Интересно проследить за зависимостью полного числа электронов в резонаторе от времени. Эта зависимость была рассчитана и представлена на рис. 3. Видно, что электроны накапливаются в резонаторе примерно 60 нс, пока расширяется сжатое состояние пучка, а затем общее число электронов выходит на плато. Накопление электронов в резонаторе происходит немонотонно: различимые этапы уменьшения числа электронов связаны с массированным высыпанием электронов на стенки резонатора.

Наблюдаемая здесь динамика электронного пучка типична, она реализуется и при других значениях δ , больших 4. При меньших значениях δ , например, при $\delta < 2.5$ отраженных от магнитной пробки электронов уже недостаточно для формирования BK_2 , а следовательно, и фазовая дыра не образуется.

3. ВЫХОДНЫЕ СВЧ-ХАРАКТЕРИСТИКИ ВИРКАТОРА

Для оценки значений СВЧ-мощности, генерируемой в виркаторе, вычислялся поток вектора Пойнтинга вблизи открытого основания цилиндрического резонатора в сечении z = 399 см. На рис. 4 дан график зависимости этого потока во времени в течение $\tau = 500$ нс при $\delta = 4.3$. Расчеты показывают, что пиковая мощность виркатора может кратковременно превышать P = 300 MBT, в то время как средняя мощность генерации за все время 150...500 нс составляет $\langle P \rangle \approx 45$ MBT.

Для установления спектральных характеристик CBЧ-полей, генерируемых в виркаторе, была вычислена зависимость радиальной составляющей электрического поля во внутренней точке резонатора с координатами (399; 8.5) (рис. 5), а затем спектр — фурье-образ этой зависимости. Оказалось, что этот спектр имеет сложную структуру, он содержит несколько линий f_{1-6} , некоторые из которых имеют заметные по амплитуде высшие гармоники (рис. 6). Ниже представлены значения частот (ГГц) основных спектральных пиков (f_n):

Пик	f_1	f_2	f_3	f_4	f_5	f_6
Значение	1.185	1.522	1.865	2.705	3.894	4.226

Известно, что в обычном виркаторе имеются две характерные частоты генерации, одна из которых обязана колебаниям ВК как целого, а другая – колебаниям электронов в потенциальной яме, образованной ВК [35, 36]. Первые практически синусоидальны, а другие имеют высшие гармоники вследствие неизохронности потенциальной ямы, сильно отличаюшейся от параболической. На это обстоятельство обращено внимание в [24]. Таким образом, из спектров, представленных на рис. 6, спектральные пики $f_{5,6}$ не имеют заметных высших гармоник. В данном расчете их можно отнести к колебаниям BK_{1.2}. Остальные пики $- f_{1-4}$ – имеют высшие гармоники и, следовательно, их можно отнести к частотам колебаний электронов в потенциальных ямах, которых в резонаторе возникает несколько.

Отметим также, что в диапазоне частот менее 10 ГГц спектральных пиков, связанных с вращением электронов в магнитном поле, нет. Простые оценки циклотронных частот в магнитных полях 10 и 43 кГс дают значения частот более 10 ГГц.

Рис. 4. Зависимость потока вектора Пойнтинга от времени в сечении z = 399 см; штриховая линия — уровень средней мощности.

Рис. 5. Зависимость радиальной составляющей электрического поля в точке с координатами (399; 8.5).

Рис. 6. Спектр колебаний электрического поля в резонаторе.

4. ВЛИЯНИЕ ВЕЛИЧИНЫ ПРОБОЧНОГО ОТНОШЕНИЯ δ НА ВЫХОДНЫЕ СВЧ-ХАРАКТЕРИСТИКИ ВИРКАТОРА

Рассмотрим, как влияет на выходные CBЧ-характеристики виркатора величина пробочного отношения δ. На рис. 7 представлена вычисленная зависимость средней мощности CBЧ-генерации

Рис. 7. Зависимость средней мощности СВЧ-генерации от величины пробочного отношения δ.

Рис. 8. Спектрограмма электрического поля в резонаторе в зависимости от величины пробочного отношения δ .

от δ. Несмотря на сложный характер этой зависимости, она имеет тенденцию роста с увеличением δ. Эта тенденция коррелирует с ростом количества ВК в резонаторе при увеличении пробочного отношения δ.

Спектры СВЧ-генерации, полученные при разных значениях δ , были аккумулированы на общей спектрограмме, показывающей, как расположены спектральные линии в спектрах в зависимости от δ . На спектрограмме видно, что частоты некоторых гармоник растут с увеличением δ по квадратичному закону (например, для f_2 и ее высших гармоник), в то время как частоты других составляющих спектра практически не зависят от δ (например, $f_{1,4}$).

ЗАКЛЮЧЕНИЕ

Рассмотрен релятивистский магнитоизолированный виркатор с магнитной пробкой на допредельном электронном пучке. Проведено его компьютерное моделирование с помощью PIC-кода KAPAT.

Исследована фазовая динамика электронного пучка в виркаторе. Показано, что в пучке после его отражения от магнитной пробки возникает ряд ВК. При величинах пробочного отношения $\delta > 2.6$ обнаружено возникновение фазовых дыр, которые вносят вклад в генерацию СВЧ-излучения.

Вычислены выходные СВЧ-характеристики виркатора: поток вектора Пойнтинга и средняя мощность генерации, которая может превышать величину 50 МВт.

Определен спектральный состав генерации, содержащий набор узких спектральных линий и их гармоник. Дана интерпретация спектральных линий, часть из которых возникает вследствие колебаний ВК, а другие — вследствие колебаний электронов в неизохронной потенциальной яме.

Исследовано влияние величины пробочного отношения на величину средней мощности генерации и на частоты спектральных линий. Найдено,

что мощность повышается при увеличении пробочного отношения. Частоты некоторых спектральных линий увеличиваются квадратично с ростом пробочного отношения, в то время как частоты других линий не зависят от этого отношения.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект № 075-15-2020-790).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Platt R., Anderson B., Christofferson J. et al.* // Appl. Phys. Lett. 1989. V. 54. № 13. P. 1215. https://doi.org/10.1063/1.100719
- 2. *Huttlin G.A., Bushell M.S., Conrad D.B. et al.* // IEEE Trans. 1990. V. PS-18. № 3. P. 618. https://doi.org/10.1109/27.55935
- Sze H., Price D., Harteneck B. // J. Appl. Phys. 1990. V. 67. № 5. P. 2278. https://doi.org/10.1063/1.345521
- 4. Селемир В.Д., Дубинов А.Е., Степанов Н.В. и др. // Антенны. 2001. № 3. С. 6.
- 5. Диденко А.Н., Арзин А.П., Жерлицын А.Г. и др. // Релятивистская высокочастотная электроника: Сб. науч. тр. Горький: ИПФ АН СССР. 1984. № 4. С. 104. https://ipfran.ru/api/elibrary/11573/4.pdf
- Диденко А.Н., Григорьев В.П., Жерлицын А.Г. // Плазменная электроника: Сб. науч. тр. Киев: Наукова думка, 1989. С. 112.
- Hoeberling R.F., Fazio M.V. // IEEE Trans. 1992.
 V. EC-34. № 3. P. 252. https://doi.org/10.1109/15.155837
- 8. Рухадзе А.А., Столбецов С.Д., Тараканов В.П. // РЭ. 1992. Т. 37. № 3. С. 385.
- 9. Дубинов А.Е., Селемир В.Д. // РЭ. 2002. Т. 47. № 6. С. 645.
- 10. Selemir V.D., Dubinov A.E., Voronin V.V., Zhdanov V.S. // IEEE Trans. 2020. V. PS-48. № 6. P. 1860. https://doi.org/10.1109/TPS.2020.2974868
- 11. Богданкевич Л.С., Рухадзе А.А. // Успехи физ. наук. 1971. Т. 103. № 4. С. 609. https://doi.org/10.1070/PU1971v014n02ABEH004456
- Дубинов А.Е., Тараканов В.П. // ЖТФ. 2020. Т. 90. № 6. С. 1043.
- https://doi.org/10.1134/S1063784220060080 13. Дубинов А.Е., Тараканов В.П. // Физика плазмы.
- 2020. T. 46. № 5. C. 476. https://doi.org/10.1134/S1063780X20040029
- 14. Дубинов А.Е. // РЭ. 2000. Т. 45. № 7. С. 875.
- Fuks M.I., Schamiloglu E. // Phys. Rev. Lett. 2019.
 V. 122. № 22. Article No. 224801. https://doi.org/10.1103/PhysRevLett.122.224801
- 16. *Leopold J.G., Krasik Ya.E., Bliokh Y.P., Schamiloglu E. //* Phys. Plasmas. 2020. V. 27. № 10. Article No. 103102. https://doi.org/10.1063/5.0022115

- 17. Nikolov N.A., Kostov K.G., Spasovsky I.P., Spasov V.A. // Electron. Lett. 1988. V. 24. № 23. P. 1445. https://doi.org/10.1049/el:19880987
- 18. *Tarakanov V.P.* User's Manual for Code KARAT. Springfield: Berkley Res. Associates, 1992.
- Ginzburg N.S., Rozental R.M., Sergeev A.S. et al. // Phys. Rev. Lett. 2017. V. 119. № 3. Article No. 034801. https://doi.org/10.1103/PhysRevLett.119.034801
- 20. *Тараканов В.П., Шустин Е.Г.* // Физика плазмы. 2007. Т. 33. № 2. С. 151. https://doi.org/10.1134/S1063780X07020067
- 21. Korovin S.D., Mesyats G.A., Pegel I.V. et al. // IEEE Trans. 2000. V. PS-28. № 3. P. 485. https://doi.org/10.1109/27.887654
- 22. Дубинов А.Е., Селемир В.Д., Тараканов В.П. // Физика плазмы. 2020. Т. 46. № 11. С. 1026. https://doi.org/10.1134/S1063780X20110021
- Dubinov A.E., Tarakanov V.P. // Laser Particle Beams. 2017. V. 35. № 2. P. 362. https://doi.org/10.1017/S0263034617000283
- 24. Dubinov A.E., Selemir V.D., Tarakanov V.P. // IEEE Trans. 2021. V. PS-49. № 6. P. 1834. https://doi.org/10.1109/TPS.2021.3080987
- 25. Dubinov A.E., Saikov S.K., Tarakanov V.P. // IEEE Trans. 2020. V. PS-48. № 1. P. 141. https://doi.org/10.1109/TPS.2019.2956833
- 26. Дубинов А.Е., Тараканов В.П. // РЭ. 2022. Т. 67. № 6. С. 596

https://doi.org/10.31857/S0033849422050059

- 27. *Ignatov A.M., Tarakanov V.P.* // Phys. Plasmas. 1994. V. 1. № 3. P. 741. https://doi.org/10.1063/1.870819
- 28. Дубинов А.Е. // Письма ЖТФ. 1997. Т. 23. № 22. С. 29. https://doi.org/10.1134/1.1261915
- 29. Беломытцев С.Я., Гришков А.А., Кицанов С.А. и др. // Письма ЖТФ. 2005. Т. 31. № 22. С. 74. https://doi.org/10.1134/1.2136972
- Барабанов В.Н., Дубинов А.Е., Лойко М.В. и др. // Физика плазмы. 2012. Т. 38. № 2. С. 189. https://doi.org/10.1134/S1063780X12010023
- 31. Егоров Е.Н., Короновский А.А., Куркин С.А., Храмов А.Е. // Физика плазмы. 2013. Т. 39. № 11. С. 1033. https://doi.org/10.1134/S1063780X13110044
- 32. *Dubinov A.E., Petrik A.G., Kurkin S.A. et al.* // Phys. Plasmas. 2016. V. 23. № 4. Article No. 042105. https://doi.org/10.1063/1.4945644
- Dubinov A.E., Saikov S.K., Tarakanov V.P. // Phys. Wave Phenom. 2017. V. 25. № 3. P. 238. https://doi.org/10.3103/S1541308X17030128
- 34. *Leopold J.G., Krasik Ya.E., Bliokh Y.P., Schamiloglu E. //* Phys. Plasmas. 2020. V. 27. № 10. P. 103102-1. https://doi.org/10.1063/5.0022115
- 35. Hwang C.S., Wu M.W., Song P.S., Hou W.S. // J. Appl. Phys. 1991. V. 69. № 3. P. 1247. https://doi.org/10.1063/1.347310
- 36. Verma R., Shukla R., Sharma S.K. et al. // IEEE Trans. 2014. V. ED-61. № 1. P. 141. https://doi.org/10.1109/TED.2013.2288310