— РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ

УДК 537.622.4;538.955

ИНЕРЦИОННАЯ ДИНАМИКА НАМАГНИЧЕННОСТИ В ФЕРРОМАГНИТНЫХ НАНОЧАСТИЦАХ ВБЛИЗИ НАСЫЩЕНИЯ

© 2023 г. С. В. Титов^{*a*}, Ю. П. Калмыков^{*b*}, К. Д. Казаринов^{*a*}, М. А. Черкасский^{*c*}, *, А. С. Титов^{*a*}

^аФрязинский филиал Институт радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация ^bУниверситет Перпиньяна, F-66860, Перпиньян, Франция ^cУниверситет Дуйсбург-Эссен, Дуйсбург, 47057 Германия

**E-mail: macherkasskii@hotmail.com* Поступила в редакцию 01.04.2022 г. После доработки 29.08.2022 г. Принята к публикации 25.09.2022 г.

Получены аналитические решения инерционного уравнения Ландау—Лифшица—Гилберта для продольной и поперечной компонент намагниченности однодоменной ферромагнитной наночастицы в условиях, близких к насыщению. Метод решения основан на упрощении уравнения с помощью первых интегралов, которые находятся с использованием аналогии между инерционным движением намагниченности и механическим вращением твердого тела. Показано, что учет инерции намагниченности приводит к нутации, частота которой представлена через полный эллиптический интеграл первого рода. Рассмотрена зависимость амплитуды нутаций от величины внешнего поля.

DOI: 10.31857/S0033849423050169, EDN: UIMEIJ

1. ПОСТАНОВКА ЗАДАЧИ

До недавнего времени исследование резонансных и волновых явлений в магнитных средах проводилось в предположении, что прецессионная динамика намагниченности преобладает над нутационной. Однако экспериментальное обнаружение нутационного резонанса [1] на терагерцовых (ТГц) частотах заставляет пересмотреть устоявшийся подход. Отметим, что экспериментальному исследованию предшествовали теоретические изыскания, в которых инерционное движение намагниченности сопоставлялось с кинематикой симметричного волчка [2-4]. В рамках ланных теоретических исследований было показано, что нутация обусловлена инерцией намагниченности. Экспериментальное наблюдение нутационного резонанса дало новый толчок к всестороннему исследованию инерционной динамики намагниченности.

Помимо механической аналогии были предложены и другие модели, обосновывающие инерционное поведение намагниченности: модель корреляции вращающихся моментов [5], модель колеблющейся поверхности Ферми [6], мезоскопическая теория [7], а также обоснование в рамках релятивистской квантовой механики [8]. Различные теоретические модели позволяют широко исследовать инерцию намагниченности и ее роль в магнитных явлениях. Так, например, было показано, что инерция проявляется не только в виде нутационного резонанса в ТГц-диапазоне частот [9–13], но и вызывает нутационные спиновые волны (НСВ) [8, 14, 15], сдвиг частоты обычных (прецессионных) спиновых волн, а также ряд других явлений. Отметим, что эти исследования важны не только с фундаментальных позиций, но в технологических приложениях в связи с развитием ТГц-технологий [16].

В рамках новых теоретических исследований инерционной динамики намагниченности уравнение Ландау–Лифшица–Гильберта (ЛЛГ), широко используемое для описания безынерционной прецессии намагниченности \vec{M} , было обобщено на инерционный случай [3, 7, 17, 18]. Обобщение проведено путем включения в рассмотрение дополнительного члена с коэффициентом более высокого порядка малости по сравнению с коэффициентами при основных членах. Новый член содержит производную намагниченности по времени второго порядка. Обобщенное векторное дифференциальное уравнение второго порядка принято называть инерционным уравнением ЛЛГ и записывать в виде [3, 7, 17, 18]

$$\frac{d\vec{M}}{dt} = \vec{M} \times \left(-\gamma \vec{H}_{\rm sp} + \frac{\alpha}{M_s} \frac{d\vec{M}}{dt} + \frac{\tau}{M_s} \frac{d^2 \vec{M}}{dt^2} \right), \quad (1)$$

где M_S — намагниченность насыщения, γ — гиромагнитное отношение, α — безразмерный коэффициент затухания, $\vec{H}_{\rm эф} = \vec{H} + \vec{H}_{\rm aH}$ — эффективное магнитное поле, включающее в себя внутреннее анизотропное $\vec{H}_{\rm aH}$ и внешнее приложенное магнитное поле \vec{H} , τ — инерционный параметр.

В прелыдушей работе [19] мы получили аналитические решения инерционного уравнения ЛЛГ для траекторий намагниченности однодоменной ферромагнитной наночастицы, пренебрегая затуханием. Наличие анизотропного поля $\vec{H}_{_{\rm aH}}(\vec{M})$, соответствующего даже наиболее простой форме симметрии внутреннего потенциала магнитной частицы, а именно одноосному потенциалу, привело к достаточно громоздким выражениям. Так, решения представлены как сложные комбинации эллиптических функций Якоби для продольной компоненты намагниченности и в квадратурах для поперечной компоненты [19]. Более того, предельный переход $\vec{H}_{_{\rm 2H}}(\vec{M}) \rightarrow 0$ выполнить довольно затруднительно в связи с необходимостью анализа возникающей при этом особенности.

Следует отметить, что при сильных внешних полях ферромагнетик близок к насыщению и, следовательно, решение можно искать методом теории возмущений как поправку $\Delta \vec{M}(t)$ к состоянию насыщения \vec{M}_{S} , а именно $\vec{M} = \vec{M}_{S} + \Delta \vec{M}(t)$ [20]. Недостатком метода является нарушение принципа сохранения длины вектора намагниченности $|\vec{M}(t)| = M_s$ [20]. Кроме того, в первом приближении траектория конца вектора $\vec{M}(t)$ лежит в плоскости, перпендикулярной приложенному полю, а не на сфере, как при реальном движении намагниченности. Наконец, возмущенные траектории нецелесообразно использовать для расчета корреляционных функций намагниченности, где требуется усреднение по всевозможным начальным условиям, в том числе и приводящим, хоть и с незначительной (но не нулевой) вероятностью, к нарушению условия $|\Delta \vec{M}(t)| \ll |\vec{M}_S|$ Это существенно ограничивает область использования подобных методов.

Целью данной работы является получение и анализ общего аналитического решения инерционного уравнения ЛЛГ в случае, когда внешнее приложенное магнитное поле гораздо больше внутреннего $|\vec{H}| \gg |\vec{H}_{aH}(\vec{M})|$.

Таким образом, в рамках данной работы исследуется инерционная динамика намагниченности в однодоменных ферромагнитных наночастицах в условиях, близких к насыщению. Однако с математической точки зрения решение имеет более широкое применение. Так, оно может быть исполь-

Рис. 1. Вектор намагниченности \vec{M} , вектор поля \vec{H} , полярный угол ϑ и азимутальный угол ϕ в лабораторной системе координат.

зовано при описании магнитной релаксации в различных спиновых системах, находящихся в сильном постоянном магнитном поле, например, электронов, внедренных в плотную среду, и т.п.

2. УРАВНЕНИЯ ДЛЯ ПРОДОЛЬНОЙ И ПОПЕРЕЧНОЙ КОМПОНЕНТ НАМАГНИЧЕННОСТИ

Уравнение (1) удобно переписать для единичного вектора $\vec{u} = \vec{M} / M_s$, направленного вдоль вектора намагниченности, которое при $\alpha = 0$ примет вид

$$\dot{\vec{u}} = \gamma \left(\vec{H} \times \vec{u} \right) + \tau \left(\vec{u} \times \ddot{\vec{u}} \right). \tag{2}$$

Векторное уравнение (2) может быть преобразовано в систему скалярных нелинейных дифференциальных уравнений для продольной $u_{\parallel} = \cos \vartheta$ (вдоль оси *z*, которая сонаправлена с внешним магнитным полем) и поперечной $u_{\perp} = \sin \vartheta \cos \varphi$ компонент вектора \vec{u} (рис. 1)

$$\ddot{u}_{\parallel} = -\Omega^2 u_{\parallel} + \tau^{-1} \Omega_Z + \frac{1}{2\eta^2} \xi (1 - u_{\parallel}^2), \qquad (3)$$

$$\ddot{u}_{\perp} = -\Omega^2 u_{\perp} + \tau^{-1} \Omega_X - \frac{1}{2\eta^2} \xi u_{\parallel} u_{\perp}, \qquad (4)$$

где

$$\vec{\Omega} = (\Omega_X, \Omega_Y, \Omega_Z) = (\vec{u} \times \vec{u}) + \tau^{-1} \vec{u}, \qquad (5)$$

И

$$\Omega^2 = \left(\vec{\Omega} \cdot \vec{\Omega}\right) = \left(\vec{\dot{u}} \cdot \vec{\dot{u}}\right) + \tau^{-2}.$$
 (6)

Здесь $\xi = 2\gamma H \eta^2 / \tau$, $\eta = \left[v \mu_0 M_S \tau / (2\gamma kT) \right]^{1/2}$, ν – объем частицы, kT – тепловая энергия и $\mu_0=4\pi\!\times\!10^{-7}$ (Дж $A^{-2}\,{\rm m}^{-1})$ в международной системе единиц СИ. Введение фактора η позволяет использовать безразмерные параметры. Например, по физическому смыслу параметр $\xi = v \mu_0 M_s H / (kT)$ представляет собой энергию частицы объемом v с магнитным моментом v M_s во внешнем постоянном поле Н, выраженную в единицах тепловой энергии kT. При T = 30 K, $v = 10^{-24}$ м³, $M_{S} = 1.4 \times 10^{6}$ А/м (кобальт), $H \sim 450$ А/м (~5 Э) имеем следующую оценку ξ ≈ 1.9. Следует отметить, что трехмерное вращение вектора \vec{u} в силу жесткой связи $|\vec{u}| = 1$ описывается двумя независимыми координатами, в нашем случае это и и u_1 . Другими словами, мы имеем дело с движением конца вектора намагниченности (длина которого не меняется) по сфере, которое в свою очередь характеризуется двумя координатами.

3. АНАЛИТИЧЕСКАЯ ДИНАМИКА ПРОДОЛЬНОЙ И ПОПЕРЕЧНОЙ НАМАГНИЧЕННОСТИ

Используемый нами метод решения уравнений (3) и (4) основан на их упрощении с помощью первых интегралов (величин не меняющихся в процессе движения). Два первых интеграла легко получить с помощью аналогии между инерционным движением намагниченности и механическим вращением твердого тела [3, 4, 18, 19]. В последнем случае сохраняется полная энергия вращающегося тела и проекция углового момента вращения на ось лабораторной системы координат. Аналоги этих величин в случае намагниченности имеют вид [19]

$$l = \eta \Omega_Z = \text{const}, \quad E = \eta^2 \Omega^2 - \xi u_{\parallel} = \text{const.}$$
 (7)

С учетом констант (7) дифференциальное уравнение второй степени (3) может быть преобразовано к дифференциальному уравнению первой степени, а именно

$$\frac{du_{\parallel}}{dt'} = \pm \sqrt{\Phi(u_{\parallel})},\tag{8}$$

где $t' = t/\eta$ (масштабирующий фактор η делает t' безразмерным) и

$$\Phi(u_{\parallel}) = \left(\xi u_{\parallel} + E\right)(1 - u_{\parallel}^2) + 2lru_{\parallel} - l^2 - r^2 \qquad (9)$$

– многочлен третьей степени. Следует отметить, что аналог еще одного первого интеграла в динамике твердого тела типа симметричного волчка, а именно проекции углового момента на ось симметрии волчка, в случае намагниченности задан безразмерным параметром инерции $r = \eta/\tau$. Параметр *r* определяет частоту нутационного резонанса $\omega_{\rm Hp} \approx r/\eta \approx \tau^{-1}$. Недавние экспериментальные исследования [1] показали, что эта частота попадает в ТГц-диапазон $\omega_{\rm Hp} \approx 10^{11}...10^{13}$ Гц. В уравнении (8) знак производной $\dot{u}_{\parallel}(t')$ определяется из начальных условий

$$\dot{u}_{\parallel}(0) = -\dot{\vartheta}(0)\sin\vartheta(0),$$

где ϑ – полярный угол вектора \vec{u} [21] (рис. 1). Значение параметра E лежит в диапазоне $[r^2 - \xi, \infty]$, тогда как значение параметра |l| - в диапазоне $[l_1, l_2]$. Здесь l_1 и l_2 определяются из уравнения $\Phi(u_m) = 0$, где u_m соответствует значению u_{\parallel} , при котором функция $\Phi(u_{\parallel})$ достигает максимума на интервале [-1,1].

Анализ функции $\Phi(u_{\parallel})$ показывает, что она отрицательна или равна нулю при $u_{\parallel} = \pm 1$, так как $\Phi(\pm 1) = -(l \mp r)^2 \le 0$. Кроме того, функция $\Phi(u_{\parallel})$ положительна при $u_{\parallel} \to -\infty$ ($\Phi(-\infty) > 0$). В интервале $u_{\parallel} \in [-1,1]$ функция $\Phi(u_{\parallel}) \ge 0$ при некотором значении u_{\parallel} , так как $\Phi(u_{\parallel}) = \dot{u}_{\parallel}^2(t') \ge 0$ (см. (8)).

Таким образом, многочлен $\Phi(u_{\parallel})$ имеет три реальных корня, $e_3 < e_2 < e_1$, причем корни e_1 и e_2 лежат в интервале [-1,1], а корень e_3 – слева от этого интервала $e_3 < -1$. Наличие трех корней $e_3 < e_2 < e_1$ приводит к существованию двух областей, в которых уравнение (8) имеет действительное решение, а именно

$$-1 < e_2 < u_{||}(t) < e_1 < 1$$
 и $u_{||}(t) < e_3 < -1$.

Дополнительное физическое ограничение $|u_{\parallel}| = |\cos\vartheta| < 1$ (наряду с требованием действительности функции $\cos\vartheta(t)$) реализуется только в области $e_2 < u_{\parallel}(t) < e_1$. Именно такое решение, соответствующее физике задачи, рассматривается далее. Используя метод решения алгебраических уравнений третьей степени, корни e_i можно выразить в тригонометрической форме [22]

$$e_1 = 2p\cos(\Xi/3) - E/3\xi,$$
 (10)

$$e_{2,3} = -2p\cos\left[(\Xi \pm \pi)/3\right] - E/3\xi,$$
 (11)

$$p = \sqrt{\left(\frac{E}{3\xi}\right)^2 + \frac{2lr}{3\xi} + \frac{1}{3}},$$
$$\Xi = \arccos\left[\frac{1}{p^3}\left(\frac{E}{3\xi}\left(1 - \frac{lr}{\xi}\right) - \left(\frac{E}{3\xi}\right)^3 - \frac{l^2 + r^2}{2\xi}\right)\right]$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 5 2023

где

Из теории эллиптических функций [23] следует, что решение дифференциального уравнения (8) с начальным условием $u_{\parallel}(0) = \cos \vartheta(0)$ можно выразить через дважды периодическую эллиптическую функцию Якоби sn($u \mid m$) [24]

$$u_{\parallel}(t') = e_1 - (e_1 - e_2) \operatorname{sn}^2(s|m), \qquad (12)$$

где

$$s = \frac{t'}{2}\sqrt{\xi(e_1 - e_3)} + \delta, \quad m = \frac{e_1 - e_2}{e_1 - e_3}.$$
 (13)

Константа интегрирования δ определяется начальным условием и находится из уравнения

$$\operatorname{sn}^{2}(\delta|m) = \frac{e_{1} - \cos\vartheta(0)}{e_{1} - e_{2}}.$$
 (14)

Решением уравнения (14) является неполный эллиптический интеграл первого рода [24]

$$\delta = F\left(\arcsin\sqrt{\frac{e_1 - \cos\vartheta(0)}{e_1 - e_2}}, m\right) = \int_{0}^{\sqrt{\frac{e_1 - \cos\vartheta(0)}{e_1 - e_2}}} \left[(1 - x^2)(1 - mx^2)\right]^{-1/2} dx.$$
(15)

Для определения поперечной намагниченности $u_{\perp}(t')$ мы используем метод, предложенный в работах [25, 26], где рассматривалось сложное вращение линейной полярной молекулы в поле. Это в свою очередь возможно в силу аналогии между инерционным движением намагниченности и вращением твердого тела. Поперечную компоненту вектора $\vec{u}(t')$, а именно $u_{\perp}(t') = \sin \vartheta(t') \cos \varphi(t')$, можно выразить через уже полученное решение для продольной компоненты $u_{\parallel}(t')$ и угол $\varphi(t')$ как [19]

$$u_{\perp}(t') = \sqrt{1 - u_{\parallel}^2(t')} \cos\varphi(t').$$
 (16)

Азимутальный угол $\varphi(t')$ можно найти непосредственно из первого интеграла $l = r \cos \vartheta(t') - - \dot{\varphi}(t') \sin \vartheta(t')$ (см. уравнение (7)) и уравнения (12). В результате получим дифференциальное уравнение для $\varphi(t')$

$$\dot{\varphi}(t') = \frac{ru_{\parallel}(t') - l}{1 - u_{\parallel}^{2}(t')} = -\frac{1}{2} \left(\frac{l+r}{1 + u_{\parallel}(t')} + \frac{l-r}{1 - u_{\parallel}(t')} \right).$$
(17)

Из теории эллиптических функций [23] следует, что решение дифференциального уравнения (17) с начальным условием

$$u_{\perp}(0) = \sqrt{1 - u_{\parallel}^2(0) \cos(0)}$$

можно выразить через неполный эллиптический интеграл третьего рода $\Pi(a; \varphi | m)$ [24], а именно

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 5 2023

Рис. 2. Нутационное движение намагниченности в плоскостях *XZ*, рассчитанное при r = 20, $\xi = 50$, $\vartheta(0) = 0.5$, $\dot{\vartheta}(0) = \dot{\varphi}(0) = 0$.

$$\varphi(t') - \varphi(0) = \sum_{j=1,2} b_j \int_{\delta}^{s} \frac{dx}{1 - a_j \operatorname{sn}^2(x|m)} =$$

$$= \sum_{j=1,2} b_j [\Pi(a_j; \operatorname{am}(s,m)|m) - \Pi(a_j; \operatorname{am}(\delta,m)|m)],$$
(18)

где

$$a_{1,2} = \frac{e_1 - e_2}{e_1 \pm 1}, \quad b_{1,2} = -\frac{l \pm r}{(l \pm e_1)\sqrt{\xi(e_1 - e_3)}}$$

s определяется уравнением (13). Уравнения (12), (16) и (18) окончательно дают решение для $u_{\perp}(t')$

$$u_{\perp}(t') = \left\{ \left(1 - e_{1}^{2}\right) \prod_{j=1,2} \left(1 - a_{j} s n^{2}(s|m)\right) \right\}^{1/2} \cos\left[\phi(0) + \sum_{j=1,2} b_{j} \left[\Pi\left(a_{j}; \operatorname{am}(s,m)|m\right) - \Pi\left(a_{j}; \operatorname{am}(\delta,m)|m\right)\right].$$
(19)

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Решения (12) и (19) позволяют рассчитать нутационное движение намагниченности в плоскости *XZ* (рис. 2), используя $u_Z(t') = u_{\parallel}(t'), u_X(t') = u_{\perp}(t')$ и $u_Y(t') = \sqrt{1 - u_{\parallel}^2(t')} \sin \varphi(t').$

Также с помощью выражений (12) и (19) возможно изобразить инерционное (нутационное) движение намагниченности в трехмерном пространстве (рис. 3).

Амплитуду нутаций можно оценить, как амплитуду колебаний *z*-компоненты вектора $\vec{u}(t')$, а именно $u_{\parallel \max}(t') - u_{\parallel \min}(t')$. На рис. 4 показана зависимость данной амплитуды от поля ξ для различных значений *r*. Из рисунка видно, что увеличение поля приводит к росту амплитуды нутаций, в то

Рис. 3. Прецессия и нутация намагниченности \vec{M} в поле \vec{H} в отсутствие затухания, рассчитанные при $r = 25, \xi = 50, \vartheta(0) = 0.5, \dot{\vartheta}(0) = \dot{\varphi}(0) = 0.$

время как амплитуда нутации падает с уменьшением инерции (с ростом обратного параметра r) и исчезает для безынерционного случая ($u_{\parallel}(t') = \text{const}$). Очевидно, что расчет согласуется с физическими представлениями. Следует отметить, что все оценки остаются справедливыми при изменении температуры, если сохраняется численное отношение используемых энергетических величин к тепловой энергии. Это же утверждение справедливо для изменения объема, все оценки остаются справедливыми при изменении объема, если сохраняется численное произведение объемной плотности энергии на объем.

Аналитические решения (12) и (19) для продольной и поперечной компонент вектора $\vec{u}(t')$ можно сравнить с соответствующими результатами численного решения системы скалярных дифференциальных уравнений (3) и (4). Начальные условия для этих уравнений задаются через начальные значения полярных углов $\vartheta(0) = \vartheta_0$ и $\varphi(0) = \varphi_0$ и их производных как

$$u_{\parallel}(0) = \cos\vartheta_0, \quad \dot{u}_{\parallel}(0) = -\vartheta_0 \sin\vartheta_0, \quad (20)$$

$$u_{\perp}(0) = \sin\vartheta_0 \cos\varphi_0,$$

$$\dot{u}_{\perp}(0) = \dot{\vartheta}_0 \cos\vartheta_0 \cos\varphi_0 - \dot{\varphi}_0 \sin\vartheta_0 \sin\varphi_0.$$
(21)

Следует отметить, что два первых интеграла *l* и *E* связаны с начальными условиями соотношени-ями [19]

$$l = r\cos\vartheta_0 - \eta\dot{\varphi}_0\sin^2\vartheta_0, \qquad (22)$$

$$E = \eta^2 \dot{\vartheta}_0^2 + \eta^2 \dot{\varphi}_0^2 \sin^2 \vartheta_0 + r^2 - \xi \cos \vartheta_0.$$
 (23)

Аналитическое и численное решения дают тождественные результаты, что наглядно видно из рис. 5, где представлено их сравнение.

Рис. 4. Амплитуда нутаций в зависимости от величины поля ξ для различных значений обратного параметра инерции: r = 30 (1), 20 (2), 10 (3); использованы следующие начальные условия: $\vartheta(0) = 0.5$, $\dot{\vartheta}(0) = \dot{\varphi}(0) = 0$.

Частоту нутаций $\omega_{\rm H}$, так же как и амплитуду, можно оценить, рассматривая инерционные колебания $u_{\parallel}(t')$, заданные уравнением (12) [19]. Так как периодом эллиптической функции Якоби sn²(*s*|*m*) является удвоенный полный эллиптический интеграл первого рода 2*K*(*m*) [23], то период колебаний продольной намагниченности $u_{\parallel}(t')$ задается как

$$T_{\rm H} = \frac{4\eta}{\sqrt{\xi(e_1 - e_3)}} K(m).$$
(24)

Отсюда частота нутаций выражается в виде

$$\omega_{\rm H} = \frac{2\pi}{T_{\rm H}} = \frac{\pi\sqrt{\xi(e_1 - e_3)}}{2\eta K(m)}.$$
(25)

(26)

Аналогично, прецессионная частота ω_{np} определяется вращением намагниченности вокруг направления поля, а именно динамикой поперечной намагниченности $u_{\perp}(t')$, и находится из соотношения

 $\varphi(2\pi/(\eta\omega_{\rm up})) - \varphi(0) = 2\pi$

или

$$\sum_{i=1,2} b_j \left[\Pi \left(a_j; \operatorname{am} \left(\frac{\pi \sqrt{\xi(e_1 - e_3)}}{\eta \omega_{np}} + \delta, m \right) | m \right) - (27) - \Pi \left(a_j; \operatorname{am} (\delta, m) | m \right) \right] = 2\pi.$$

Следует отметить, что частоты ферромагнитного и нутационного резонансов связаны с частотами прецессии и нутации соответственно. Так, в работе [27] частота ферромагнитного резонанса

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 5 2023

Рис. 5. Динамика продольной $u_{\parallel} = M_{\parallel}/M_S$ (а) и поперечной $u_{\perp} = M_{\perp}/M_S$ (б) компонент вектора намагниченности при $\xi = 50$, r = 20: сплошные линии – аналитическое решение (12) и (19); символы – численное решение уравнений (3) и (4); начальные условия: $\vartheta(0) = \varphi(0) = \pi/4$, $\dot{\vartheta}(0) = \dot{\varphi}(0) = 0$, $T_{\rm np} = 2\pi/\omega_{\rm np}$ – период прецессии.

оценивалась как усредненная по всем начальным значениям частота прецессии намагниченности при условии, что равновесное распределение по начальным условиям задается больцмановским распределением.

5. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Таким образом, показано, как точные решения для продольной и поперечной компонент намагниченности, а именно функции (12) и (19), могут быть получены в аналитическом виде из незатухающего предела инерционного уравнения ЛЛГ и представлены через соответствующие эллиптические функции Якоби и эллиптические интегралы. Решения основаны на упрощении уравнения с помощью первых интегралов, которые находим с использованием аналогии между инерционным движением намагниченности и динамикой симметричного волчка с электрическим дипольным моментом. Поскольку симметричные волчки широко используются для моделирования невзаимодействующих полярных молекул в теории диэлектрической релаксации конденсированных сред (жидкостей, жидких кристаллов и сжатых газов), то многие методы этой теории могут быть применены к рассмотрению систем ферромагнитных частиц, где необходимо учитывать инерционность намагниченности.

Мы также определили частоту нутации (25) как обратный период эллиптической функции Якоби. Частоты прецессии и нутации обычно хорошо отделены друг от друга (соответственно находятся в ГГц- и ТГц-диапазонах частот). Хотя инерционность намагниченности оказывает влияние на частоту прецессии, однако это влияние незначительное [10], и, следовательно, на частотах в прецессионном диапазоне можно использовать обычное уравнение ЛЛГ для получения разумных решений и оценок. В нашем решении инерционного уравнения ЛЛГ предполагается, что безразмерный параметр затухания намагниченности α настолько мал, что им можно пренебречь. Это допущение существенно для получения аналитических результатов. Более того, физическая причина, оправдывающая это допущение, заключается в том, что колебательное движение намагниченности (прецессионное и нутационное) в принципе возможно при малых α. Наконец, не рассматривалась анизотропия формы образцов малых размеров, которая (как и анизотропия внутренних потенциалов) становится несущественной в сильных внешних полях.

Аналитические решения для продольной (12) и для поперечной (19) компонент вектора намагниченности послужат хорошей основой для анализа инерционных эффектов в наномагнитах. Преимущество этих решений по сравнению с численными решениями заключается в том, что они позволяют получить аналитические выражения для продольной

$$C_{\parallel}(t') = \left\langle u_{\parallel}(0)u_{\parallel}(t')\right\rangle - \left\langle u_{\parallel}(0)\right\rangle^{2}$$

и поперечной

$$C_{\perp}(t') = \langle u_{\perp}(0)u_{\perp}(t') \rangle$$

равновесных корреляционных функций в случае незатухающих осцилляций намагниченности. Здесь угловые скобки означают равновесные средние в четырехмерном фазовом про-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 5 2023

странстве начальных координат и скоростей $\{\vartheta, \varphi, \omega_x = \dot{\vartheta}, \omega_y = \dot{\varphi}\sin\vartheta\}$ [28]

$$\langle (\cdot) \rangle = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\cdot) W_{st}(\vartheta, \varphi, \omega_x, \omega_y) \times \\ \times \sin \vartheta d\omega_x d\omega_y d\varphi d\vartheta,$$
(28)

где

$$W_{st}(\vartheta, \varphi, \omega_x, \omega_y) =$$

= $Z^{-1} \exp\left(-\eta^2(\omega_x^2 + \omega_y^2) + \xi \cos\vartheta\right),$ (29)

 – равновесное распределение в ансамбле намагниченностей [18] и

$$Z = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\eta^{2}(\omega_{x}^{2} + \omega_{y}^{2}) + \xi\cos\vartheta\right) \times \\ \times \sin\vartheta d\omega_{x} d\omega_{y} d\varphi d\vartheta = \frac{4\pi^{2}\sinh\xi}{\xi\eta^{2}}$$
(30)

 статистическая сумма. Затухания в системе можно учесть в рамках феноменологического подхода Блоха [28] (опять же по аналогии с теорией диэлектрической релаксации [25, 26]).

В свою очередь корреляционные функции важны для определения магнитных свойств ферромагнитных сред (например, восприимчивости, времен переориентации намагниченности и т.п.). Так, согласно теории линейного отклика [32] компоненты тензора восприимчивости системы связаны с соответствующими равновесными корреляционными функциями

$$\chi_{\parallel,\perp}(\omega) = C_{\parallel,\perp}(0) + i\omega \int_{0}^{\infty} C_{\parallel,\perp}(t) \exp(i\omega t) dt.$$
 (31)

Актуальность полученных результатов обусловлена тем, что инерционность намагниченности уже является предметом экспериментальных исследований и должна учитываться в моделях сверхбыстрой спиновой динамики. Анализ магнитных свойств ферромагнитных сред на основе приведенных соотношений представляется отдельной задачей. Наконец, следует упомянуть о возможности решения инерционного уравнения ЛЛГ с учетом тепловых флуктуаций [18], что также представляется важной задачей ближайшего будущего.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Фонда развития теоретической физики и математики "БАЗИС" (грант 22-1-1-28-1).

СПИСОК ЛИТЕРАТУРЫ

- Neeraj K., Awari N., Kovalev S. et al. // Nature Phys. 2021. V. 17. P. 245.
- 2. Olive E., Lansac Y., Wegrowe J.-E. // Appl. Phys. Lett. 2012. V. 100. № 19. Article No. 192407.
- 3. Wegrowe J.-E., Ciornei M.-C. // Amer. J. Phys. 2012. V. 80. № 7. P. 607.
- Giordano S., Déjardin P.-M. // Phys. Rev. B. 2020.
 V. 102. № 21. Article No. 214406.
- Thonig D., Eriksson O., Pereiro M. // Sci. Rep. 2017. V. 7. Article No. 931.
- Fähnle M., Steiauf D., Illg C. // Phys. Rev. B. 2011. V. 84. № 17. Article No. 172403.
- Ciornei M.-C., Rubí J.M., Wegrowe J.-E. // Phys. Rev. B. 2011. V. 83. № 2. Article No. 020410(R).
- Cherkasskii M., Farle M., Semisalova A. // Phys. Rev. B. 2021. V. 103. № 17. Article No. 174435.
- 9. Olive E., Lansac Y., Meyer M. et al. // J. Appl. Phys. 2015. V. 117. № 21. Article No. 213904.
- 10. *Cherkasskii M., Farle M., Semisalova A.* // Phys. Rev. B. 2020. V. 102. № 18. Article No. 184432.
- 11. *Mondal R., Groβenbach S., Rózsa L., Nowak U.* // Phys. Rev. B. 2021. V. 103. № 10. Article No. 104404.
- Mondal R. // J. Phys. Condens. Matt. 2021. V. 33. № 27. Article No. 275804.
- 13. *Mondal R., Oppeneer P.M.* // Phys. Rev. B. 2021. V. 104. № 10. Article No. 104405.
- 14. *Makhfudz I., Olive E., Nicolis S.* // Appl. Phys. Lett. 2020. V. 117. № 13. Article No. 132403.
- 15. Lomonosov A.M., Temnov V.V., Wegrowe J.-E. // Phys. Rev. B. 2021. V. 104. № 5. Article No. 054425.
- Handbook of Terahertz Technology for Imaging, Sensing and Communications. / Ed. D. Saeedkia. Sawston: Woodhead Publ. Lim., 2013.
- 17. *Kikuchi T., Tatara G.* // Phys. Rev. B. 2015. V. 92. №18. Article No. 184410.
- Titov S.V., Coffey W.T., Kalmykov Y.P. et al. // Phys. Rev. B. 2021. V. 103. № 14. Article No. 144433.
- 19. *Titov S.V., Coffey W.T., Kalmykov Y.P., Zarifakis M. //* Phys. Rev. B. 2021. V. 103. № 21. Article No. 214444.
- 20. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматлит, 1994.
- 21. Варшалович Д.А., Москалёв А.Н., Херсонский В.К. Квантовая теория углового момента. Л.: Наука, 1975.
- 22. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984.
- 23. *Уиттекер Э.Т., Ватсон Дж.Н.* Курс современного анализа. Ч. 2. Трансцендентные функции. М.: Физматлит, 1963.
- Справочник по специальным функциям с формулами, графиками и математическими таблицами / Под ред. М. Абрамовица, И. Стиган. М.: Наука, 1979.
- 25. Kalmykov Yu.P. // Phys. Rev. A. 1992. V. 45. № 10. P. 7184.
- 26. *Titov S.V., Kalmykov Yu.P., Coffey W.T.* // J. Chem. Phys. 2003. V. 118. № 1. P. 209.
- Titov S.V., Kalmykov Yu.P., Coffey W.T. // Phys. Rev. B. 2018. V. 97. № 22. Article No. 224418.
- 28. Coffey W.T., Kalmykov Yu.P., Titov S.V. Thermal Fluctuations and Relaxation Processes in Nanomagnets. Singapore: World Scientific, 2020.