ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 537.874;621.396

РАДИОПОГЛОТИТЕЛЬ С ВЫСОКОЙ УГЛОВОЙ УСТОЙЧИВОСТЬЮ РЕЗОНАНСНОЙ ЧАСТОТЫ НА ОСНОВЕ ИСКУССТВЕННОГО МАГНИТНОГО ПРОВОДНИКА И РЕЗИСТИВНОЙ ПЛЕНКИ

© 2023 г. Ю. Н. Казанцев^{а,} *, Г. А. Крафтмахер^а, В. П. Мальцев^а, В. С. Солосин^{а, b}

^а Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского 1, Фрязино Московской обл., 141190 Российская Федерация ^b Институт теоретической и прикладной электродинамики РАН,

ул. Ижорская, 13, Москва, 125412 Российская Федерация

**E-mail: yukazantsev@mail.ru* Поступила в редакцию 21.10.2022 г. После доработки 27.01.2023 г. Принята к публикации 18.04.2023 г.

Предложена конструкция радиопоглотителя (РП) с высокой устойчивостью резонансной частоты на основе резистивной пленки с сопротивлением 120 Ом на квадрат и искусственного магнитного проводника в составе пары емкостных решеток на слое диэлектрика с высокой диэлектрической проницаемостью ($\varepsilon_1 \ge 1$), металлизированном с противоположной стороны. Результаты численных расчетов частотно-угловых зависимостей коэффициента отражения от РП подтвердили их предварительные оценки, полученные по аналитическим выражениям. Так, при $\varepsilon_1 = 20$ сдвиг резонансной частоты не превысил 2% в интервале углов падения $\phi = 0^\circ...60^\circ$, а отношение ширины полосы поглощения РП к его толщине "bandwidth thickness ratio" при $\phi = 0$ составило 4.29.

DOI: 10.31857/S0033849423070045, EDN: WOQNAQ

введение

Искусственные магнитные проводники (ИМП) [1-8] обычно относят к классу так называемых метаматериалов, т.е. материалов с необычными электромагнитными свойствами. "Необычность" ИМП состоит в том, что коэффициент отражения плоской волны от них равен +1, а не -1, как в случае электрического проводника, а на поверхности ИМП расположена пучность тангенциальной компоненты электрического поля. Эти свойства позволили эффективно использовать ИМП в антенной технике и технике радиопоглотителей (РП) [9-11]. Так, в работе [11] была предложена конструкция модифицированного РП Солсбери, в которой резистивная пленка была положена вблизи поверхности ИМП, выполненного из пары близко расположенных емкостных решеток на слое диэлектрика, металлизированного с противоположной стороны.

В этой конструкции простота и технологичность сочетались с хорошими поглощающими характеристиками и малым рассеиванием на высоких частотах за пределами полосы поглощения. В той же работе [11] указана потенциальная возможность повышения угловой устойчивости резонансной частоты без изменения полосы поглощения путем применения в слое между решетками и экраном диэлектрика с высокой диэлектрической проницаемостью.

Цель данной работы — исследование частотноугловых зависимостей коэффициента отражения от такого РП для различных значений диэлектрической проницаемости слоя между парой решеток и экраном.

1. АНАЛИТИЧЕСКИЕ ВЫРАЖЕНИЯ ДЛЯ ЧАСТОТНО-УГЛОВЫХ ЗАВИСИМОСТЕЙ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ОТ РАДИОПОГЛОТИТЕЛЯ

Рис. 1. Схема радиопоглотителя: а – структура РП (*1* – ИМП, *2* – резистивная пленка), б – пара емкостных решеток из квадратных проводящих элементов.

стью ε . Все размеры на рис. 1 малы по сравнению с длиной волны и, кроме того, $a \ll b$, $d \ll b$.

Поперечные размеры РП предполагаются бесконечно большими. Сечения 1-1 и 2-2 на рис. 1а лежат соответственно на правой и левой сторонах пары емкостных решеток, а сечение 3-3 – на левой стороне резистивной пленки. Эквивалентные импедансы в этих сечениях Z_{11} , Z_{22} и Z_{33} связаны следующими соотношениями:

$$Z_{22} = \frac{Z_{11}Z}{Z_{11} + Z},\tag{1}$$

$$Z_{33} = \frac{Z_{22}}{1 + Z_{22}},\tag{2}$$

где импеданс пары емкостных решеток имеет вид

$$Z = -j \frac{2d}{k(b-2a)b\varepsilon},\tag{3}$$

 $k = 2\pi/\lambda = 2\pi f/c$, λ – длина волны, f – частота, c – скорость света в свободном пространстве, а импеданс в сечении 1–1 описывается для волн *TE*-поляризации следующими формулами [8]:

$$Z_{11} = j \frac{\mathrm{tg}(kD\sqrt{\varepsilon_1 - \sin^2 \phi})}{\sqrt{\varepsilon_1 - \sin^2 \phi}}, \qquad (4)$$

а для волн ТМ-поляризации —

$$Z_{11} = j \frac{\sqrt{\varepsilon_1 - \sin^2 \varphi} \operatorname{tg}(k D \sqrt{\varepsilon_1 - \sin^2 \varphi})}{\varepsilon_1}, \qquad (5)$$

где ф – угол падения плоской волны на РП.

В формулах (1)–(5) все импедансы нормализованы на импеданс свободного пространства.

Импеданс Z_{22} стремится к бесконечности при условии

$$Z_{11} + Z \to 0, \tag{6}$$

что соответствует резонансу в объеме между парой решеток и электропроводящим экраном. Подставив в формулу (6) выражения (3)–(5), легко получить уравнения для резонансных значений k_p волновых чисел для волн *TE*-поляризации

$$\frac{k_{\rm p} \operatorname{tg}(k_{\rm p} D \sqrt{\varepsilon_1 - \sin^2 \varphi})}{\sqrt{\varepsilon_1 - \sin^2 \varphi}} = \frac{2d}{(b - 2a)b\varepsilon}$$
(7)

и для волн ТМ-поляризации

$$\frac{k_{\rm p}\sqrt{\varepsilon_{\rm l}} - \sin^2\varphi\,\mathrm{tg}(k_{\rm p}D\sqrt{\varepsilon_{\rm l}} - \sin^2\varphi}{\varepsilon_{\rm l}} = \frac{2d}{(b-2a)b\varepsilon}.$$
 (8)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 8 2023

(9)

Коэффициент отражения *R* от РП может быть определен по известным формулам [12] отражения от импедансной плоскости для волн *TE*-поляризации:

 $R = \frac{Z_{33} - 1/\cos\phi}{Z_{33} + 1/\cos\phi}$

и для волн ТМ-поляризации

$$R = \frac{Z_{33} - \cos \varphi}{Z_{33} + \cos \varphi}.$$
 (10)

Используя формулы (9), (10) и (1)—(5) несложно получить выражение для $|R|^2$ для волн *TE*-поляризации:

$$\left|R\right|^{2} = \frac{\left(1 - \frac{1}{\cos\varphi}\right)^{2} + \frac{1}{\cos^{2}\varphi} \left(\frac{k(b - 2a)b\varepsilon}{2d} - \frac{\sqrt{\varepsilon_{1} - \sin^{2}\varphi}}{tg(kD\sqrt{\varepsilon_{1} - \sin^{2}\varphi})}\right)^{2}}{\left(1 + \frac{1}{\cos\varphi}\right)^{2} + \frac{1}{\cos^{2}\varphi} \left(\frac{k(b - 2a)b\varepsilon}{2d} - \frac{\sqrt{\varepsilon_{1} - \sin^{2}\varphi}}{tg(kD\sqrt{\varepsilon_{1} - \sin^{2}\varphi})}\right)^{2}}$$
(11)

и для волн ТМ-поляризации

$$\left|R\right|^{2} = \frac{\left(1 - \cos\varphi\right)^{2} + \cos^{2}\varphi\left(\frac{k(b - 2a)b\varepsilon}{2d} - \frac{\varepsilon_{1}}{\sqrt{\varepsilon_{1} - \sin^{2}\varphi} \operatorname{tg}(kD\sqrt{\varepsilon_{1} - \sin^{2}\varphi})}\right)^{2}}{\left(1 + \cos\varphi\right)^{2} + \cos^{2}\varphi\left(\frac{k(b - 2a)b\varepsilon}{2d} - \frac{\varepsilon_{1}}{\sqrt{\varepsilon_{1} - \sin^{2}\varphi} \operatorname{tg}(kD\sqrt{\varepsilon_{1} - \sin^{2}\varphi})}\right)^{2}}.$$
(12)

В случае нормального падения волны на РП выражения (11) и (12) сводятся к следующей формуле:

$$\left|R\right|^{2} = \frac{1}{\left|\left(1 + \left(\frac{2}{k(b-2a)b\varepsilon/(2d) - \sqrt{\varepsilon_{1}}/\mathrm{tg}(kD\sqrt{\varepsilon_{1}})}\right)^{2}\right]\right|}$$
(13)

Для электрически тонкого слоя диэлектрика между парой решеток и экраном ($kD\sqrt{\varepsilon_1} \ll 1$) выражение (13) с учетом формул (7) и (8) при $\varphi = 0$ приобретает вид

$$|\mathbf{R}|^{2} = 1 / \left[1 + \left(\frac{2kD}{k^{2} / k_{p}^{2} - 1} \right)^{2} \right],$$
(14)

С помощью формулы (14) легко получить выражение для относительной полосы поглощения РП

$$\frac{k_{\text{макс}} - k_{\text{мин}}}{k_{\text{p}}} = 2kD \sqrt{\frac{r^2}{1 - r^2}},$$
(15)

где r^2 — коэффициент отражения по мощности на краях полосы поглощения и формулу для "band-width thickness ratio"

$$\frac{\lambda_{\text{макс}} - \lambda_{\text{мин}}}{D} = 4\pi \sqrt{\frac{r^2}{1 - r^2}}.$$
(16)

При $r^2 = 0.1$ относительная полоса поглощения и "bandwidth thickness ratio" равны $4.19D/\lambda_p$ и 4.19 соответственно.

Формулы (7), (8) и (11)–(16) позволяют оценить полосу поглощения и угловую устойчивость РП при различных значениях диэлектрической

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 68 № 8 2023

проницаемости ε_1 слоя материала между парой решеток и электропроводящим экраном. Следует отметить, что эти формулы не учитывают таких факторов как неоднородности электрического поля вблизи решеток и взаимодействие между парой решеток и резистивной пленкой.

В качестве расчетной модели для таких оценок принята конструкция РП, в которой используются промышленные материалы и компоненты. Так, пара решеток может быть выполнена методом фотолитографии на двухсторонней фольгированной пленке AP 8535R фирмы DuPont. Характеристики этой пары: 2b = 4 мм, 2a = 0.3 мм, 2d = 0.1 мм, $\varepsilon = 3.4$ (полиимид). Слой диэлектрика между парой решеток и электропроводящим экраном толщиной D = 4 мм может быть выполнен из ламината RO 3006 ($\varepsilon_1 = 6.15$), RO 3010 ($\varepsilon_1 = 10.2$) фирмы Rogers, из керамики MT-15 ($\varepsilon_1 = 15$) и MT-20 ($\varepsilon_1 = 20$) фирмы ЦКБ СРМ.

На рис. 2 приведены частотные зависимости коэффициента отражения от РП при нормальном падении волны для трех значений ε_1 , рассчитанные по формуле (13). Характеристики этих зависимостей f_p , $\Delta f / f_p$ и $\Delta \lambda / D$ даны в табл. 1. Величины $\Delta f = f_{\text{макс}} - f_{\text{мин}}$ и $\Delta \lambda = \lambda_{\text{макс}} - \lambda_{\text{мин}}$ берутся по уровню отражения –10 дБ. Из данных табл. 1 сле-

Рис. 2. Частотные зависимости коэффициента отражения от РП при нормальном падении волны, рассчитанные по аналитической формуле для $\varepsilon_1 = 6.15$ (*I*), 10.2 (*2*) и 20 (*3*).

дует, что в широком интервале значений ε_1 полосы поглощения РП $\Delta f / f_p$ и значение $\Delta \lambda / D$ изменяются незначительно. В табл. 2 приведены результаты расчета резонансных частот f_p для волн *TM*-поляризации при четырех углах падения φ для трех значений диэлектрической проницаемости ε_1 , полученные с помощью формулы (8). Из данных, представленных в табл. 2, следует, что уже при $\varepsilon_1 = 10.2$ смещение резонансной частоты $\Delta f / f_p$ при увеличении угла падения φ от 0° до 60° не превышает 4%. Аналогичный расчет для волн *TE*-поляризации дает существенно меньшее смещение резонансной частоты.

2. ЧИСЛЕННЫЙ РАСЧЕТ ЧАСТОТНОЙ ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ОТ РАДИОПОГЛОТИТЕЛЯ

Целью численного расчета является определение характеристик РП с учетом факторов, не учтенных в аналитических выражениях разд. 1, к числу которых относятся: неоднородность электромагнитного поля вблизи решеток и взаимодействие между решетками и резистивной пленкой.

Параметры пары решеток приняты те же, что и в разд. 1. Расстояние между резистивной пленкой и решетками s = 0.2 мм выбрано из условия мак-

Таблица 1. Характеристики частотных зависимостей коэффициента отражения от РП при нормальном падении волны *TM*-поляризации для трех значений ε₁

ε ₁	<i>f</i> _p , ГГц		$f_{\text{макс}},$ ГГц		$f_{_{ m MИH}},$ ГГц		$\Delta f/f_{\rm p},\%$		$\Delta\lambda/D$	
	Α	Ч	А	Ч	Α	Ч	Α	Ч	Α	Ч
6.15	2.144	2.044	2.28	2.17	2.02	1.93	12.1	11.7	4.23	4.3
10.2	2.096	1.935	2.22	2.04	1.98	1.83	11.5	10.9	4.1	4.22
20	1.994	1.728	2.11	1.81	1.89	1.64	11	10	4.14	4.29

Примечание. А – аналитический расчет, Ч – численный расчет.

Таблица 2. Характеристики частотных зависимостей коэффициента отражения от РП для волн *ТМ*-поляризации при различных углах падения φ для трех значений ε_1

٤.	() град	$f_{ m p},$ ГГц		$\Delta f_{\rm p}, \Gamma \Gamma$ ц		$\Delta f_{\rm p}/f_{\rm p},\%$	
	<i>ф</i> , град	А	Ч	А	Ч	А	Ч
6.15	0	2.144	2.044	0.0	0.0	0.0	0.0
	30	2.19	2.087	0.046	0.041	2.1	2.06
	45	2.238	2.133	0.094	0.089	4.2	4.17
	60	2.29	2.184	0.146	0.14	6.81	6.41
	0	2.096	1.935	0.0	0.0	0.0	0.0
10.2	30	2.124	1.959	0.028	0.024	1.32	1.23
10.2	45	2.152	1.985	0.056	0.05	2.6	2.52
	60	2.18	2.012	0.084	0.077	3.85	3.83
20	0	1.994	1.728	0.0	0.0	0.0	0.0
	30	2.006	1.74	0.012	0.012	0.6	0.69
	45	2.02	1.75	0.026	0.022	1.29	1.26
	60	2.032	1.763	0.038	0.035	1.87	1.99

Примечание. А – аналитический расчет, Ч – численный расчет.

Рис. 3. Частотные зависимости коэффициента отражения от РП для волн *ТМ*-поляризации (а) и *TE*-поляризации (б) при $\varepsilon_1 = 6.15$ и углах падения 0 (*I*), 30 (*2*), 45 (*3*) и 60 град (*4*): численный расчет (сплошные кривые), расчет по аналитической формуле (штриховые).

симума глубины резонансного минимума коэффициента отражения от РП при нормальном падении плоской волны.

На рис. 3 приведены частотные зависимости коэффициента отражения от РП для волн *ТМ*- и *TE*-поляризаций при $\varepsilon_1 = 6.15$ и углах падения 0°, 30°, 45° и 60°. На рис. 4 и 5 приведены аналогичные зависимости при $\varepsilon_1 = 10.3$ и $\varepsilon_1 = 20$ соответственно. На этих же рисунках штриховыми линиями для сравнения даны те же зависимости, но рассчитанные по аналитическим формулам (11) и (12).

Характеристики этих зависимостей даны в табл. 1 и 2, а также в табл. 3 для волн *TE*-поляризации. Данные этих таблиц показывают неплохое соответствие результатов численных расчетов и оценок по аналитическим выражениям.

Рис. 4. Частотные зависимости коэффициента отражения от РП для волн *ТМ*-поляризации (а) и *ТЕ*-поляризации (б) при $\varepsilon_1 = 10.2$ и углах падения 0 (*1*), 30 (*2*), 45 (*3*) и 60 град (*4*): численный расчет (сплошные кривые), расчет по аналитической формуле (штриховые).

Результаты численных расчетов подтверждают тот факт, что увеличение диэлектрической проницаемости ε_1 слоя между парой решеток и экраном позволило сильно повысить угловую устойчивость РП без существенного изменения полосы поглощения. Так, при увеличении диэлектрической проницаемости слоя ε_1 с 6.15 до 20 характеристика угловой устойчивости $\Delta f_p / f_p$ при максимальном угле падения $\varphi = 60^\circ$ изменяется от 6.4 до 2% и от 2.8 до 1.8% для волн *ТМ*- и *TE*-поляризаций соответственно. При этом полоса поглощения для нормального падения волны на РП меняется всего с 11.7 до 10%.

Этот факт физически обусловлен тем, что диэлектрик с высокой диэлектрической проницае-

Рис. 5. Частотные зависимости коэффициента отражения от РП для волн *ТМ*-поляризации (а) и *TE*-поляризации (б) при $\varepsilon_1 = 20$ и углах падения 0 (1), 30 (2), 45 (3) и 60 град (4): численный расчет (сплошные кривые), расчет по аналитической формуле (штриховые).

мостью находится в области малой интенсивности электрического поля и поэтому слабо влияет на эффективную емкость, а следовательно, на резонансную частоту и полосу поглощения РП.

Все численные расчеты в работе выполнены методом моментов в программе FEKO.

ЗАКЛЮЧЕНИЕ

Таким образом, численный расчет частотноугловых зависимостей коэффициента отражения от РП при разных значениях диэлектрической проницаемости ε_1 слоя подтвердил, что увеличение диэлектрической проницаемости до $\varepsilon_1 = 20$ позволяет обеспечить высокую угловую устойчивость резонансной частоты (сдвиг частоты меньше 2% при увеличении угла падения от 0° до 60°)

Таблица 3. Характеристики частотных зависимостей коэффициента отражения от РП (численный расчет) для волн *TE*-поляризации при различных углах падения φ для трех значений ε_1

ϵ_1	ф, град	$f_{\rm p},$ ГГц	$\Delta f_{\rm p}, \Gamma \Gamma$ ц	$\Delta f_{\rm p}/f_{\rm p},$ %
	0	2.044	0.0	0.0
6 15	30	2.064	0.02	0.93
0.15	45	2.083	0.039	1.81
	60	2.103	0.059	2.81
	0	1.935	0.0	0.0
10.2	30	1.952	0.017	0.81
10.2	45	1.968	0.033	1.57
	60	1.985	0.05	2.37
	0	1.728	0.0	0.0
20	30	1.741	0.013	0.65
20	45	1.752	0.024	1.20
	60	1.764	0.036	1.80

без существенного изменения полосы поглощения для нормального падения волны.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена за счет бюджетного финансирования в рамках государственного задания ФИРЭ им. В.А. Котельникова РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sievenpiper D., Zhang L., Broas R.F.J. et al.* // IEEE Trans. 1999. V. MTT-47. № 11. P. 2059.
- 2. Broas R.F.J., Sievenpiper D.F., Yablonovitch E. // IEEE Trans. 2001. V. MTT-49. № 7. P. 1262.
- 3. Broas R.F.J., Sievenpiper D.F., Yablonovitch E. // IEEE Trans. 2005. V. AP-53. № 4. P. 1377.
- 4. *Clavijo S., Diaz R.E., McKinzie W.E.* // IEEE Trans. 2003. V. AP-51. № 10. P. 2678.
- 5. Feresidis A.P., Goussetis G., Shenhong Wang, Vardaxoglou J.C. // IEEE Trans. 2003. V. AP-51. № 1. P. 209.
- 6. *Ying Zhang, von Hagen J., Younis M. et al.* // IEEE Trans. 2003. V. AP-51. № 10. P. 2704.
- 7. *Fan Yang, Rahmat-Samii Y.* // IEEE Trans. 2003. V. AP-51. № 10. P. 2691.
- 8. Казанцев Ю.Н., Аплеталин В.Н. // РЭ. 2007. Т. 52. № 4. С. 415.
- 9. *Engheta N.* // IEEE Antennas and Propagation Society Intern. Symp. June 2002. V. 2. P. 392.
- 10. *Simms S., Fusco V.* // Electron. Lett. 2005. V. 41. № 24. P. 1311.
- Казанцев Ю.Н., Крафтмахер Г.А., Мальцев В.П., Солосин В.С. // РЭ. 2022. Т. 67. № 4. С. 339.
- 12. *Бреховских Л.М.* Волны в слоистых средах. М.: Наука, 1973.