К 100-ЛЕТИЮ Б.В. СЕСТРОРЕЦКОГО

УЛК 621.372.542.4

ЧАСТОТНО-РАЗДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ СИСТЕМ ВТОРИЧНОЙ РАДИОЛОКАЦИИ

© 2023 г. А. В. Сучков*

Научно-производственное объединение "Алмаз", Дмитровское шос., 110, Москва, 127411 Российская Федерация *E-mail: avsu@bk.ru

Поступила в редакцию 04.02.2023 г. После доработки 23.05.2023 г. Принята к публикации 30.05.2023 г.

Разработано частотно-разделительное устройство (ЧРУ) с малыми вносимыми потерями, обеспечивающее электрическую прочность при высокой входной мощности и сочетающее в себе функции нескольких типовых элементов фидерного тракта вторичного радиолокатора (ВРЛ): переключателя прием/передача, фильтра гармоник, приемного полосового фильтра. Рассмотрены вопросы синтеза, анализа и оптимизации фильтров приемного и передающего каналов ЧРУ. Предложены два варианта реализации ЧРУ с вносимыми потерями в полосах пропускания каналов в пределах 0.7 дБ, уровнем подавления гармоник более 40 дБ, изоляцией каналов и затуханием при отстройке на ± 60 МГц от центральных частот полос пропускания не менее 50 дБ, устройства работают на частотах RBS и седьмого диапазонов систем ВРЛ при входной импульсной мощности до 12 кВт. Приведены основные размеры конструкции ЧРУ, результаты численного моделирования и данные экспериментальной проверки характеристик. Дан сравнительный анализ теоретических и экспериментальных результатов.

DOI: 10.31857/S0033849423080120, EDN: ZKBIAL

ВВЕДЕНИЕ

Развитие систем вторичной радиолокации, встраиваемых в многофункциональные мобильные РЛС, в настоящее время идет по пути увеличения мощности излучения запросных сигналов, что обеспечивается твердотельным исполнением приемопередатчиков на современной элементной базе (https://lemz.ru/wp-content/ uploads/2019/11/ВРЛ-РУС.pdf). Такой подход позволяет улучшить массогабаритные характеристики встраиваемой антенной системы (за счет возможности уменьшения ее коэффициента усиления и, соответственно, площади раскрыва) и сохранить при этом дальность действия вторичного радиолокатора (ВРЛ). Для встраивания ВРЛ требуется повышение плотности компоновки приемопередающей аппаратуры, что приводит в результате к увеличению вносимых потерь в фидерных трактах основного и компенсационного каналов. Это обусловлено либо необходимостью миниатюризации устройств, образующих тракт (циркуляторов, фильтров, направленных ответвителей, коаксиальных фидеров), либо взаимодействием магнитных систем ферритовых циркуляторов, которые выполняют роль переключателей прием/передача и размещены, как правило, в ограниченном объеме аппаратного шкафа. Поскольку рабочие частоты

сигналов запроса и ответа, формируемых при работе ВРЛ, различны, то решение данной задачи возможно путем замены циркуляторов на двухканальные частотно-разделительные устройства (ЧРУ), также известные в литературе как диплексеры [1].

Среди возможных вариантов реализации ЧРУ наиболее распространенными являются два полосовых фильтра с общим входом, обеспечивающие низкие вносимые потери и достаточно высокую изоляцию каналов. В докладах [2, 3] представлены малогабаритные диплексеры на диэлектрических резонаторах, которые выполнены в виде двух фильтров, соединенных через тройник. Диплексеры с повышенной электрической прочностью на стержневых фильтрах с согласующими элементами на входах и частичным заполнением диэлектриком с малыми потерями, рассмотрены в работах [4, 5]. Однако допустимый уровень входной импульсной мошности в данных устройствах составляет 0.1...1.8 кВт, что исключает возможность их применения в составе встраиваемых ВРЛ. Повышение допустимой входной мощности возможно, например, при построении ЧРУ на базе волноводных фильтров с учетом новых тенденций в методах и технологиях, применяемых для проектирования [6]. Оригинальные варианты исполнения волноводного диплексера и режекторного фильтра большой мощности были предложены Б.В. Сестрорецким [1, 7]. Однако реализация волноводной конструкции в рабочем диапазоне частот систем вторичной радиолокации приведет к существенному увеличению массы и габаритов ЧРУ.

Целью данной работы является разработка ЧРУ с малыми вносимыми потерями, обеспечивающего электрическую прочность при высокой входной мощности и сочетающего в себе функции нескольких типовых элементов фидерного тракта ВРЛ: переключателя прием/передача, фильтра гармоник, приемного полосового фильтра. В соответствии с поставленной целью в работе решены задачи проектирования и практической реализации ЧРУ на частотах RBS (https://lemz.ru/wp-content/uploads/2019/11/ВРЛ-РУС.pdf) и седьмого (VII_д) диапазонов [8] систем вторичной радиолокации.

1. ПОСТАНОВКА ЗАЛАЧИ

По результатам анализа технических характеристик штатных ферритовых циркуляторов, фильтров гармоник и приемных полосовых фильтров, применяемых в фидерных трактах ВРЛ, с учетом компоновки встраиваемой аппаратуры выработаны следующие требования для проектируемых ЧРУ:

- вносимые потери в полосах пропускания каналов не более 1 дБ;
- максимальная входная импульсная мощность12 кВт;
- коэффициент стоячей волны по напряжению входа/выходов не более 1.5;
- уровень подавления второй/третьей гармоники не менее 30 дБ/20 дБ;
- изоляция каналов в рабочей полосе частот не менее 50 дБ;
- затухание при отстройке на ± 60 М Γ ц от центральной частоты полосы пропускания приемного канала не менее 50 дБ;
- тип входа/выходов стандартный коаксиальный разъем, 50 Ом;
- частоты сигналов запроса/ответа диапазона RBS: $1030 \pm 5 \ \mathrm{M}\Gamma \mathrm{U}/1090 \pm 5 \ \mathrm{M}\Gamma \mathrm{U};$
- частоты сигналов запроса/ответа диапазона VII_{π} : $F_4 \pm 5$ МГц/ $F_2 \pm 5$ МГц, $F_3 \pm 5$ МГц.

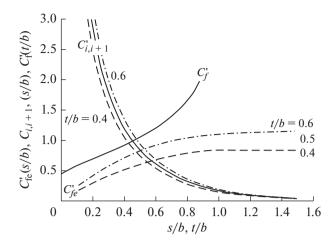
2. СИНТЕЗ ПОЛОСОВЫХ ФИЛЬТРОВ

Проектирование ЧРУ разделено на несколько этапов. На первом выполнен синтез фильтров приемного и передающего каналов. Исходя из компромисса между допустимыми размерами конструкции и требуемыми характеристиками, наиболее приемлемым вариантом представляется использование в ЧРУ полосовых фильтров на

встречных стержнях. Основы синтеза данных фильтров сформулированы в [9], где рассмотрены два метода синтеза – метод неопределенных коэффициентов и классический метод. Конструктивный расчет фильтров предполагает использование известных зависимостей геометрических размеров стержней от величин погонных емкостей, определяемых на этапе синтеза. Для узкополосных фильтров величины проводимостей оконечных линий в большинстве случаев оказываются физически нереализуемыми. Улучшение конструктивной реализуемости возможно с помощью перехода к новой структуре, которая содержит две дополнительные линии, выполняющие роль трансформаторов. Синтез фильтров производился в соответствии с предложенным в [9] алгоритмом. В процессе синтеза рассчитывается необходимое количество резонаторов и выбираются основные размеры конструкции, определяющие характеристики фильтров.

Количество резонансных стержней определяется из следующего неравенства:

$$n \ge \frac{\operatorname{arch}\left(\sqrt{\frac{10^{(Lr/10)} - 1}{10^{(L\rho/10)} - 1}}\right)}{\operatorname{arch}\left(\frac{\cos\theta r}{\cos\theta \rho}\right)} - \frac{\operatorname{arch}\left(\frac{\operatorname{tg}\theta p}{\operatorname{tg}\theta r}\right)}{\operatorname{arch}\left(\frac{\cos\theta r}{\cos\theta p}\right)} + 1, \quad (1)$$


где $\theta p = \pi/(1+fp_2/fp_1)$, $\theta r = \pi/(1+fr_2/fr_1)$ — электрические длины стержней в полосах пропускания и заграждения, fp_1 , fp_2 — нижняя и верхняя граничные частоты полосы пропускания соответственно, fr_1 , fr_2 — нижняя и верхняя граничные частоты полосы заграждения, Lp — неравномерность затухания в полосе пропускания, в дБ, Lr — уровень заграждения, в дБ. По заданным требованиям определяем, что для фильтров диапазонов RBS и VII $_{\pi}$ n=4 и n=5 соответственно.

Функция рабочего затухания фильтра может быть представлена в виде

$$L(f) = 10 \lg \left[1 + \left(10^{(Lp/10)} - 1 \right) \times \cosh^{2} \left[\operatorname{arch} \left(\frac{\cos \theta(f)}{\cos \theta p} \right) (n-1) + \operatorname{arch} \left(\frac{\operatorname{tg} \theta p}{\operatorname{tg} \theta(f)} \right) \right] \right],$$
 (2)

где $\theta(f) = 2\pi l/\lambda(f)$, $\lambda(f)$ — длина волны на частоте f, $l \approx \lambda_0/4$ — длина стержней, λ_0 — длина волны на центральной частоте полосы пропускания.

Далее по системе таблиц, приведенных в [9], для случая m=1 и найденных значений n, Lp, fp_2/fp_1 были выбраны независимые параметры α_1 , α_2 , α_3 . Поскольку уровень проводимости оконечных стержней высок, то необходимо применить согласующие стержни, которые выполняют роль трансформаторов волнового сопротивления. При этом необходимо выполнить пересчет

Рис. 1. Емкость связи $C_{i,i+1}$ и краевые емкости C'_{fe} , C'_f стержней прямоугольной формы.

значений независимых параметров для структуры с согласующими оконечными стержнями по соотношениям

$$A_0 = 1$$
, $A_1 = 1 + \alpha_1$, $A_2 = \alpha_2 \left(1 + \frac{1}{\alpha_1} \right)$, (3)
 $A_3 = \alpha_3$.

Частичные погонные емкости связи, однозначно определяющие зазоры $S_{i,i+1}$ между соседними стержнями при выбранных размерах стержней t и корпуса b согласно рис. 1, были рассчитаны по выражению

$$C_{i,i+1} = \frac{120\pi}{\sqrt{A_{i+1}\omega_i\omega_{i+1}}},$$
 (4)

где ω_i — волновые сопротивления стержней (выбираются из условий физической реализуемости стержней с учетом заданных требований), $i \in 0...2$.

Частичные погонные емкости стержней на заземленный экран —

$$C_{00} = \frac{120\pi}{\omega_0} - C_{01}, \quad C_{10} = \frac{120\pi}{\omega_1} - C_{01} - C_{12},$$

$$C_{20} = \frac{120\pi}{\omega_2} - C_{12} - C_{23},$$

$$C_{30} = \frac{120\pi}{\omega_2} - C_{23} - C_{23},$$

Соответственно, ширины стержней фильтров рассчитаны по выражениям

$$W_{0} = (b-t) \left(C_{00} - 2C'_{f} - 2C'_{fe_{01}} \right) / 4,$$

$$W_{1} = (b-t) \left(C_{10} - 2C'_{fe_{01}} - 2C'_{fe_{12}} \right) / 4,$$

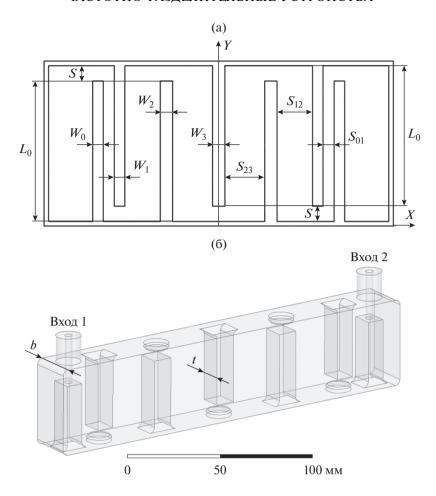
$$W_{2} = (b-t) \left(C_{20} - 2C'_{fe_{12}} - 2C'_{fe_{23}} \right) / 4.$$

Для фильтров пятого порядка (диапазон $VII_{_{1}}$) также были рассчитаны значения $C_{30}=\frac{120\pi}{\omega_{_{3}}}-2C_{23}$,

$$W_3 = (b-t) \left(C_{30} - 4C'_{fe_{23}} \right) / 4$$
. Краевые емкости

 $C_{fe_{i,i+1}}$ и C_f определены по соответствующим графикам рис. 1 с учетом нормированных значений $S_{i,i+1}/b$ и t/b. Основные размеры конструкции, выбранные на этапе синтеза, показаны на рис. 2а.

3. МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ


3.1. Анализ и оптимизация фильтров

Анализ и оптимизация полосовых фильтров были проведены на втором этапе с помощью специализированной программы трехмерного моделирования электромагнитного поля методом конечных элементов (МКЭ) в частотной области [10]. В процессе создания компьютерной модели фильтра заданы электрофизические параметры применяемых материалов, входной и выходные порты, определены граничные условия. Также задан частотный диапазон для анализа и определены условия сходимости решения. Конфигурация компьютерной модели фильтра диапазона VII_д показана на рис. 26.

На всех плоскостях модели фильтра заданы граничные условия, соответствующие электропроводности серебра с шероховатостью поверхности 0.8 мкм. Волновые порты фильтра выполнены в виде коаксиальной линии 14.1 × 4.2 мм с фторопластовым изолятором.

3.2. Моделирование и оптимизация ЧРУ

На заключительном этапе выполнены моделирование и оптимизация двух исполнений ЧРУ. Фильтры ЧРУ связаны с общим стержнем, соединенным с входным разъемом, оконечные стержни фильтров соединены с выходными разъемами. Каждый из резонаторов имеет возможность подстройки с помощью регулировочного винта. Для подбора оптимальных размеров конструкции использован генетический алгоритм глобальной оптимизации [10]. В пространство оптимизации входят следующие параметры: расстояния между резонаторами $S_{i,i+1}$, длины L_0 и ширины резонаторов W_i ($i \in 0...2$, $j \in 0...2$ для фильтров диапазона RBS, $j \in 0...3$ для фильтров VII_д), расстояние между резонаторами и корпусом S (см. рис. 1). В качестве критерия построения целевой функции (оптимизационного функционала) использована разность между заданными и моделируемыми значениями амплитудно-частотной характеристики, определяемой на элементах параметрического пространства. В табл. 1 приведены скоррек-

Рис. 2. Основные размеры конструкции полосового фильтра пятого порядка (а) и компьютерная модель фильтра передающего канала ЧРУ диапазона $VII_{_{\rm II}}$ (б).

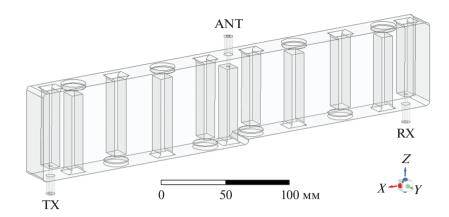
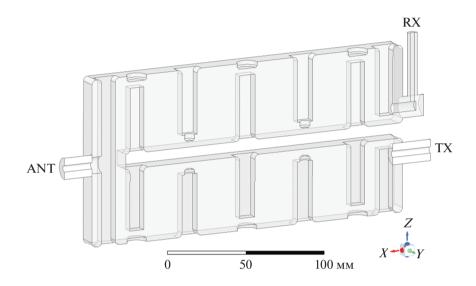
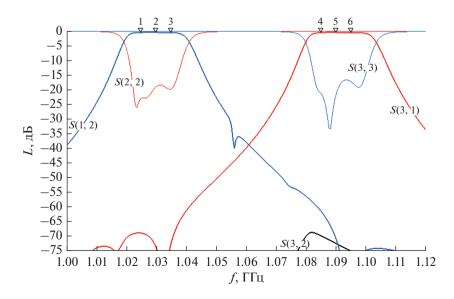
тированные размеры конструкции фильтров передающего (ТХ) и приемного (RX) каналов ЧРУ, полученные по результатам оптимизации целевой функции (единицы измерения F_2 , F_3 , F_4 в $\Gamma\Gamma$ Ц).

Компьютерные модели ЧРУ показаны на рис. 3 и 4, общий вход ANT, подключается к антенной системе. Расчетные амплитудно-частотные характеристики представлены на рис. 5 и 6, где L и f обозначены, соответственно, амплитуда и частота. Для S-параметров на рис. 5 и 6 приняты следующие обозначения: индекс 1 соответствует входу ANT, 2 - TX, 3 - RX, например, амплитуда коэффициента передачи на вход ANT от входа TX соответствует элементу S(1,2) матрицы рассеяния, амплитуда коэффициента отражения входа TX — элементу S(1,1) и т.д. Вносимые потери в полосах пропускания каналов ЧРУ на частотах, отмеченных на рис. 5 и 6 маркерами 1...6, приведены в табл. 2 и 3. Расчетные уровни подавления второй и третьей гармоник для ЧРУ диапазона RBS составляют не менее 93 и 45 дБ соответственно, для VII_{π} — не менее 114 и 82 дБ. Анализ напряженности моделируемого электрического поля

показал, что электрический пробой конструкции происходит при уровне входной импульсной мощности около 12.7 кВт.

Таблица 1. Размеры оптимизированной конструкции фильтров ЧРУ

	Размер, мм			
Параметр	Фильтр RBS		Φ ильтр ${ m VII}_{\scriptscriptstyle m J}$	
	TX	RX	TX	RX
$\overline{L_0}$	64.8	60.7	~75/F ₄	$\sim 150/(F_2 + F_3)$
W_0	9.8	9.8	9.7	9.7
W_1	10	10	9.8	9.8
W_2	10.9	10.9	10.8	10.8
W_3	_	_	10.9	10.9
S_{01}	11.4	11.4	10.6	10.6
S_{12}	29.5	29.5	27.6	27.6
S_{23}	32.3	32.3	30.6	30.6
\boldsymbol{S}	8	8	$\sim 12/F_4$	$\sim 23/(F_2 + F_3)$
t	12.5	12.5	12.5	12.5
b	25	25	25	25

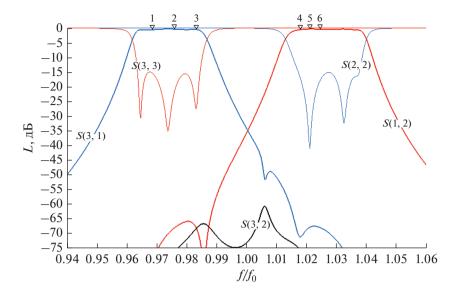

Рис. 3. Компьютерная модель ЧРУ диапазона RBS.

Рис. 4. Компьютерная модель ЧРУ диапазона ${\rm VII}_{_{\rm I\! I}}$ (в разрезе плоскостью симметрии).

Рис. 5. Расчетные амплитудно-частотные характеристики ЧРУ диапазона RBS.

Рис. 6. Расчетные амплитудно-частотные характеристики ЧРУ диапазона VII_{π} .

4. КОНСТРУКЦИЯ И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

4.1. Описание конструкции

Конструкция ЧРУ представляет собой два встречно-стержневых фильтра с общим входом, которые выполнены в едином корпусе, имеющем отверстия для установки разъемов, регулировочных винтов и их фиксаторов. По периметру корпуса организован контактный бурт, обеспечивающий надежный электрический контакт при винтовом соединении с внешними экранирующими крышками. При изготовлении корпуса использована технология фрезерной обработки металла на станках с числовым программным управлением. Корпус, крышки и регулировочные винты изготовлены на базе алюминиевых сплавов и покрыты серебром. Снижение шероховатости рабочих поверхностей обеспечивается крацеванием покрытия. Коаксиальные разъемы выполнены в виде стандартных герметичных розеток с волновым сопротивлением 50 Ом. После проведения настройки характеристик устройство герметизируется. Для обеспечения необходимого запаса по электрической прочности [11] внутренний объем конструкции заполняется элегазом (гексафторид серы SF₆). Предложенная конструкция ЧРУ защищена патентом [12]. Фотографии изготовленных опытных образцов ЧРУ показаны на рис. 7.

4.2. Экспериментальные результаты

На рис. 8 и 9 представлены амплитудно-частотные характеристики изготовленных образцов, измеренные на векторном анализаторе цепей PNA-L N5230C. Измеренные уровни подавления второй и третьей гармоник для фильтров

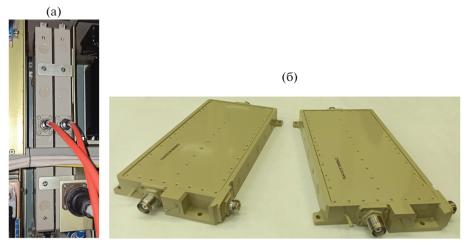

диапазона RBS составляют не менее 89 и 44 дБ соответственно, для фильтров VII_{π} — не менее 101 и 73 дБ. Проверка устройств на стенде высокого уровня мощности (ВУМ) показала, что электрическая прочность конструкции сохраняется при заданной максимальной входной импульсной мощности 12 кВт. Температура конструкции ЧРУ в установившемся тепловом режиме при рабочей скважности сигналов запроса, формируемых стендом ВУМ, не превышает 43°С.

Таблица 2. Вносимые потери в каналах ЧРУ диапазона RBS

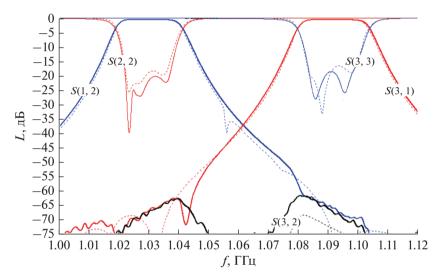

Маркер	<i>f</i> , ГГц	<i>L</i> , дБ
1	1.025	-0.47
2	1.03	-0.45
3	1.035	-0.5
4	1.085	-0.52
5	1.09	-0.45
6	1.095	-0.53

Таблица 3. Вносимые потери в каналах ЧРУ диапазона VII $_{\scriptscriptstyle \Pi}$

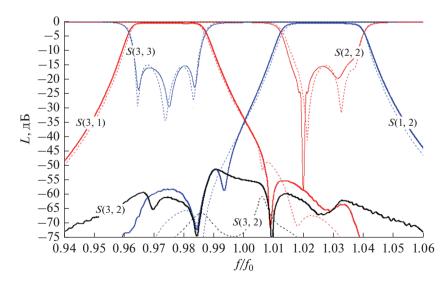

Маркер	f	<i>L</i> , дБ
1	$F_2 - 5$ МГц	-0.67
2	$F_2 - 5 \text{ МГц}$ $(F_2 + F_3)/2$	-0.48
3	F_3 + 5 МГц	-0.63
4	F_4 — 5 МГц	-0.63
5	F_4	-0.44
6	F_4 + 5 МГц	-0.53

Рис. 7. Изготовленные опытные образцы: ЧРУ диапазона RBS, установленные в фидерный тракт приемопередатчика ВРЛ (а), ЧРУ диапазона $VII_{_{\rm I}}$ (б).

Рис. 8. Измеренные (сплошные линии) и расчетные (штриховые) амплитудно-частотные характеристики ЧРУ диапазона RBS.

Рис. 9. Измеренные (сплошные линии) и расчетные (штриховые) амплитудно-частотные характеристики ЧРУ диапазона ${
m VII}_{\scriptscriptstyle \Pi}.$

Реализованные характеристики в целом хорошо согласуются с результатами численного моделирования, что подтверждает корректность проведенных расчетов и заложенных технических решений. Сопоставление полученных результатов с характеристиками диплексера высокой мощности на объемных резонаторах (https://mesamicrowave.com/product/) компании "Mesa Microwave", разработанного для зарубежных систем вторичной радиолокации, показывает, что предложенный вариант ЧРУ RBS-диапазона имеет меньшие вносимые потери: 0.7 дБ против 1.5 дБ и обеспечивает электрическую прочность при большей входной мощности: 12 кВт против 5 кВт. По сравнению с общепринятыми вариантами построения фидерных трактов ВРЛ с применением циркуляторов, фильтров гармоник и приемных фильтров, соединенных с помощью кабельных сборок, предложенные решения позволяют снизить потери фидерных трактов основного и компенсационного каналов, обеспечить их электрическую прочность при большей входной мощности, упростить конструкцию и повысить плотность компоновки встраиваемой аппаратуры.

ЗАКЛЮЧЕНИЕ

В работе решены задачи проектирования и практической реализации двух вариантов ЧРУ в диапазонах частот RBS и VII, для систем вторичной радиолокации. Каждый из предложенных вариантов выполнен на основе двух встречно-стержневых фильтров, которые связаны с общим стержнем, соединенным с входным разъемом. Вносимые потери в полосах пропускания приемного и передающего каналов ЧРУ не превышают 0.7 дБ. Электрическая прочность устройств сохраняется при входной импульсной мощности до 12 кВт. Уровень подавления гармоник превышает 40 дБ. Изоляция каналов в рабочей полосе частот и затухание при отстройке на ±60 МГц от центральных частот полос пропускания составляют не менее 50 дБ. Использование разработанных ЧРУ в фидерных трактах ВРЛ обеспечивает возможность замены нескольких типовых элементов — переключателя прием/передача, фильтра гармоник, приемного полосового фильтра и применяемых для их соединения кабельных сборок. Предложенные решения также могут быть реализованы как в более высоких, так и в более низких диапазонах частот и применяться в системах активной радиолокации с активным ответом, в которых сигналы запроса и ответа формируются на разнесенных частотах.

СПИСОК ЛИТЕРАТУРЫ

- Belostotskay K.K., Klimov C.N., Sestroretskiy B.V. et al. // Proc. 5th Int. Conf. Antenna Theory and Techniques. Kyiv. 24–27 May 2005. N.Y.: IEEE, 2005. P. 457.
- 2. *Pelliccia L., Cacciamani F., Cazzorla A. et al.* // Proc. 49th Europ. Microwave Conf. (EuMC). Paris. Oct. 1–3. 2019. N.Y.: IEEE, 2019. P. 61.
- 3. Vallerotonda P., Cacciamani F., Pelliccia L. et al. //Proc. IEEE MTT-S Int. Microwave Filter Workshop (IMFW). Perugia. 17—19 Nov. 2021. N.Y.: IEEE, 2021. P. 11.
- 4. *Shamsaifar K., Rodriguez T., Haas J.* // IEEE Trans. 2013. V. MTT-61. № 5. P. 1850.
- 5. Blair W.D., Harbor L., Bentivenga S. Duplexing Filter. US Pat. № 5151670. Publ. 29 Sep. 1992.
- 6. Snyder R.V., Macchiarella G., Bastioli S., Tomassoni C. // IEEE J. Microwaves. 2021. V. 1. № 1. P. 317.
- 7. Рученков В.А., Сестрорецкий Б.В., Белостоцкая К.К., Бакитько Р.В. Режекторный волноводный многозвенный СВЧ-фильтр. Пат. РФ № 2399997. Опубл. офиц. бюл. "Изобретения. Полезные модели" № 26 от 20.09.2010.
- 8. *Ермак С.Н., Касанин С.Н., Хожевец О.А.* Устройство и эксплуатация наземных средств системы государственного опознавания. Минск: БГУИР, 2017.
- 9. *Леонченко В.П., Фельдштейн А.Л., Шепелянский Л.А.* Расчет полосковых фильтров на встречных стержнях. Справочник. М.: Связь, 1975.
- Гринев А.Ю. Численные методы решения прикладных задач электродинамики. М.: Радиотехника, 2012.
- 11. *Кухаркин Е.С., Сестрорецкий Б.В.* Электрическая прочность волноводных устройств. М.: Высш. школа, 1963.
- 12. *Сучков А.В.* Частотно-разделительное устройство. Пат. РФ № 2 775 338. Опубл. офиц. бюл. "Изобретения. Полезные модели" № 19 от 29.06.2022.