К 70-ЛЕТИЮ ИРЭ ИМ. В.А. КОТЕЛЬНИКОВА РАН

УДК 539.23,621.793.18

МАГНЕТРОННОЕ ОСАЖДЕНИЕ ПЛЕНОК ГЕКСАФЕРРИТА БАРИЯ ИЗ МИШЕНИ СТЕХИОМЕТРИЧЕСКОГО СОСТАВА

© 2023 г. В. А. Лузанов*

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино, Московской обл., 141190 Российская Федерация

> **E-mail: valery@luzanov.ru* Поступила в редакцию 25.02.2023 г. После доработки 25.02.2023 г. Принята к публикации 23.03.2023 г.

Предложена методика получения пленок гексаферрита бария на сапфире с ориентацией (0001) методом высокочастотного магнетронного распыления стехиометрической мишени BaFe₁₂O₁₉ с последующим отжигом. Проведенные рентгеноструктурный анализ и рамановская спектрометрия показали возможность кристаллизации ориентированных пленок без использования коррекции состава мишени.

DOI: 10.31857/S0033849423090176, EDN: RGKOWT

Соединения оксида железа с оксидами других металлов, называемые ферритами, образуют различные группы, объединяемые по структурному признаку: например, ферриты-гранаты, ортоферриты, ферриты шпинели и гексаферриты. Две последние группы, в частности, могут быть представлены ферритами бария. Первое упоминание об исследовании феррита бария относится еще к 1931 г. [1]. Открытие гексаферритов в 50-е годы дало толчок к активизации исследований этих соединений. Наиболее известным из них является гексаферрит бария. Как и все гексагональные ферриты, он является ферримагнетиком.

На сегодня повышенный коммерческий и технологический интерес к этому материалу обусловлен возможным использованием его в элементах устройств, работающих на гигагерцовых частотах. Это такие области, как мобильная и беспроводная связь, запись и хранение данных, поглотители электромагнитных волн. Развитие нанотехнологий диктует необходимость разработки воспроизводимых методов получения необходимых материалов в виде тонкопленочных элементов. Сообщалось о различных способах успешного получения пленок гексаферрита бария: импульсно-лазерное напыление [2], ионно-лучевое распыление [3], молекулярно-лучевая эпитаксия [4], жидкофазная эпитаксия [5] и др. В настоящее время для этого чаще других используются магнетронные методы напыления на постоянном и переменном токе [6, 7]. При этом первый вариант требует использования специальных низкоомных мишеней. Применение керамических мишеней из стехиометрической керамики в реактивных процессах затруднено из-за возможной бомбардировки растущей пленки отрицательными ионами кислорода, и вследствие этого, обратного распыления атомов бария. Это приводит к отклонению результирующего состава пленки от стехиометрического. Для компенсации потерь в [6] авторы размещали на мишени обогащенные барием элементы.

В данной работе использовалось распыление мишени стехиометрического состава в атмосфере аргона на холодную подложку. Минимальное содержание кислорода в вакуумной камере в процессе распыления мишени позволяет избежать бомбардировки растущего слоя отрицательными ионами кислорода, а низкая температура подложки препятствует избирательному реиспарению осажденных атомов, что положительно влияет на перенос состава мишени на подложку. Давление в камере составляло 3×10^{-3} Торр, диаметр мишени 50 мм, расстояние до подложки 50 мм. При мощности разряда 100 Вт скорость осаждения составляла 0.25 мкм/ч.

Полученные пленки были исследованы методами рентгеновской дифрактометрии и рамановской спектроскопии комбинационного рассеяния. Рентгеноструктурный анализ проводили на автоматизированном дифрактометре ДРОН-3 с кварцевым монохроматором. Длина волны рентгеновской трубки составляла 0.15405 нм. Съемка велась в геометрии Брегга–Брентано. Для съемки рамановских спектров был использован раманмикроскоп EnSpectr M532 с длиной волны лазера 532 нм. Сразу после напыления на рентгеновской

Рис. 1. Рамановский спектр от аморфной пленки гексаферрита бария.

Рис. 3. Рамановский спектр от пленки гексаферрита бария после отжига на 800°С.

дифрактограмме выраженных пиков, кроме пика от подложки, не обнаружено.

Рамановский спектр приведен на рис. 1. Наблюдаются очень широкие пики, совпадающие по расположению с приведенными в [8] спектрами для $BaFe_{12}O_{19}$. Все это свидетельствует о том, что в указанных условиях напыления происходит, во-первых, перенос распыляемого материала без искажения состава, во-вторых, образуется аморфная фаза. Для рекристаллизации осажденного слоя была проведена серия отжигов при различных температурах. До 700°С изменений в кристаллической структуре не наблюдалось. После отжига при температуре 800°С на дифрактограмме (рис. 2) появляется пик, соответствующий отражению (0008) $BaFe_{12}O_{19}$. По ширине этого пика, используя метод Шеррера, был определен размер

Рис. 2. Рентгеновский спектр от пленки гексаферрита бария после отжига на 800°С.

Рис. 4. Рентгеновский спектр от пленки гексаферрита бария после отжига на 900°С.

областей когерентного рассеяния, который составил около 17 нм. Раман-спектр (рис. 3) показывает наличие узких линий, что подтверждает успешную рекристаллизацию гексаферрита бария. Посторонних фаз не обнаруживалось. Однако после увеличения температуры отжига до 900°С на рентгенограмме от полученной пленки наблюдалось появление пика, который можно интерпретировать как отражение от плоскости (0001) Fe_2O_3 . Это свидетельствует о том, что в данном случае происходит разложение гексаферрита с выделением гематита (Fe_2O_3) в отдельную фазу. Так что можно сказать, что оптимальной температурой отжига является 800°С.

Таким образом, определены оптимальные условия получения пленок гексаферрита бария путем магнетронного распыления мишени стехиометрического состава в чистом аргоне без нагрева подложки с последующим отжигом в атмосфере при 800°С. Показано, что в этом случае нет необходимости в коррекции состава мишени. А последующий отжиг позволяет провести рекристаллизацию полученной аморфной пленки.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИРЭ им. В.А. Котельникова РАН.

СПИСОК ЛИТЕРАТУРЫ

1. Guillissen J., Van Rysselberghe, Pierre J. // J. Electrochem. Soc. 1931. V. 59. № 1. P. 95.

- Cai Z., Chen Z., Goodrich T.L. et al. // J. Cryst. Growth. 2007. V. 307. P. 321.
- 3. Kostishin V.G., Mironovich A.Yu., Shakirzyanov R.I. et al. // J. Magn. Magn. Mat. 2021. V. 527. P. 167786.
- 4. *Ohodnicki P.R., Goh K.Y., McHenry M.E. et al.* // J. Appl. Phys. 2008. V. 103. № 7. P. 07E514.
- Yoon S.D., Vittoria C. // J. Appl. Phys. 2004. V. 96. P. 2131.
- Xiaozhi Zh., Zhenxing Y., Siqin M., Lixin Y. // J. Appl. Phys. 2014. V. 116. P. 243909.
- Abuzir A.R., Salman S.A. // Results Phys. 2018. V. 8. P. 587.
- Kreisel J., Pignard S., Vincent H., Sénateur J.P. // J. Appl. Phys. Lett. 1998. V. 73. № 9. P. 1194.